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PREFACE 

The following lectures were intended to serve as an introduc­

tion to the theory of gravitational waves, mainly for mathematicians not 

specialized in the field of general relativity. Accordingly, basic concepts 

and motivations an the purely local, differential geometrical" pure" 

radiation theory have been put in the foreground, and conceptually and 

computationally more complicated recent advances have indica ted only 

briefly. 

The references and footnotes should be considered an essen­

tial part of the course; I hope that some of them serve to clarify points 

raised in discussions which followed the lectures. 
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GRA VIT ATIONAL WAVES 

by Jurgen Ehlers 

1. Introduction: The Basis of the ,General Theory of Relativity 

From a physicist's point of view the general theory of relativity is of basic 

importance, despite of its very poor experimental or observational verifica­

tion, for two reasons: 

a) It is the most convincing field theory of gravitation which is locally com­

patible with the experimentally well-established Lorentzian structure of the 

space-time metric, and 

b) it is the most impOJ'tant example of a physical theory in which the metric 

structure of space-time is treated not as given a priori, but dependent on 

and interrelated to other physical variables describing processes in space­

time. 

Although b) is not independent of a) it is worthwhile to stress the auto­

nomousimportance of aspect b):So far, every physical theory, whether non­

relativistic or relativistic, classical or quantum, whether a particle -or a 

field theory, requires for the formulation of its basic laws as well as for its 

interpretation a metric and, associated with it, an affine connection which ser­

ves to formulate laws relating quantities with directional properties at diffe­

rent space-time points or "events". This implies that in all physical theories 

the metric has a strong influence on other physical quantities - I need only 

mention the law of inertia so fundamental not only for classical mechanics 

but also for, say, the quantum theory of scattering. N.evertheless this metric 

structure is not reinfluenced by these physical quantities except in the general 

theory of relativity and its generalizations. This strongly suggests the idea 

that the pre-Einsteinian theories may well be considered as approximate theories 
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which describe situations in which the metric field can be treated as an exter-

nal field which has, under the special circumstances considered, always the 

same structure, whereas in more general cases or in a more precise descri-

ption the metric is a field variable like, say, the electromagnetic field. It 

is certainly more convincing to have a theory where all quantities which are 

used to interpret the observed phenomena are interrelated ("principle of omni­

presence of all state variables", to use a phrase from the modern theory of 

irreversible processes in continuous media) than the assign some of these 

quantities a priori and prescribe "laws" only for the remaining ones. 

If this point of view is accepted, then the gravitational field - if it is iden-

tified with the metric field - acquires, despite of its extreme weakness even 

in comparison with so called "weak" interactions, a fundamental role in phy­

sics since it is coupled to all other fields, due to the role of the metric stres-

sed above. There is a very good reason for this identication, namely the uni­

versal proportionality of inertial and ("passive ") gravitational mass of bodies 
-11 1 

substantiated with a precision of 10 by the Eotvos-Dicke experiment. 

Let us, then, accept this idea of the metric as a physical field, and for­

mulate the first basic assumption of the Einsteinian theory, motivated by the 

special theory of relativity: 

(G) Riemannian assumption: The space-time manifold V 4 = V carries a 

normal-hyperbolic Riemannian metric with the fundamental quadratic form 

(in an arbitrary local coordinate-system) 

G 
cab 

gab (x )dx dx 

(We take the signature to be +++-. ) 

(1 ~ a, b, .... <;;4) 

Since is supposed to describe the gravitational field well-known 

considerations of Einstein (which contain some weak points which are still not 
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clarified completely) lead to the assumption that the source of the gab­

field is the stress-energy-momentum tensor of all the matter populating V ; 

we formulate the second assumption: 

(T) The mechanical properties of matter are described by a symmetric tensor 

field Tab depending on the state-variables of matter. 

Finally, Newtonian theory (Poisson's equation), simplicity-requirements 

(quasi-linearity, second differentiation order for the gab'S) and energy-
2 

momentum conservation suggest the most specific assumption of Einstein's 

1915-theory: 

(GT) The metric G of space time is related to the stress energy momen-
9 

tum distribution T in V by the field equation 

(1) o 

Here the Einstein tensor Gab = Rab - 2 gab R occurs where Rab is 

the contracted curvature tensor, and R its trace. (We choose units such 

that c = 1 and (Newton's constant of gravity) = 8~ • ) 

The gravitational field equation (1) is, of course, not sufficient as a ba­

sis for a theory of the interaction between matter and the gravitational field. 

It is necessary to add assumptions about the structure of matter, i. e. to specify 

the dependence of Tab on the basic matter (or field) variables, and to sta-

te the non-gravitational equations of motion which these variables are suppo­

sed to obey. Since, however, the interaction between matter and gravitational 

waves has so far not been investigated in the full, non-linear theory, we need 

not specify such assumptions here. 

In empty space, where (1) reduces to 

(2) 0, or o 
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no further assumptions are needed in order to calculate the time-development 

of a field from given initial data. 

The gravitational field equation implies the "mechanical law" 

(3) o 

which is the general-relativistic analogue of the balance-equations for ener-

gy and momentum for continuous media. 

For isolated bodies of appropriate internal structure one can "approxi­

mately deduce" from (3) equations of motion for the center of mass world 

line and for multipole moments describing the structure of the body such as 

spin, quadruple moment etc. We adopt here4 as equations of motion of an appro­

ximately rigid, spherically symmetrical test parti cle with internal angular mo­

mentum per proper mass Sa 

s 

a 
u 

denotes the proper time, 

the 4-acceleration, and 

Rl> abcd 

o 

u a the 4-velocity, 

2 
R ab 11 efcd 

ef l 

o 

a 
u u 

a 
-1, 

\lua 
ds 

is 

is the "right-dual" of the Riemann curvature tensor. The metric quantities 

are those of the external field. 
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A nonspinning test particle has, according to (4)1 ' a geodesic world li­

ne. For a pair of neighbouring nonspinning test particles the relative accele­

ration is a linear transform of the relative position vector xa , u b xa = 0 ; 
a 

(5) 
a b d (" c 

R bcdu u ox 

These equations of motion for test particles give direct operational meaning 

to the metric gab since the set of all timelike geodesics determines a nor-
~ 

mal hyperbolic metric uniquely up to a constant factor. Moreover, (3)1 and 

(4) give a precise meaning to the statement that "the curvature tensor descri­

bes the strength and the directional properties of a gravitational field similarly 

to the way in which the field strength tensor describes an electromagnetic field. 

Finally, we observe that (4)2 gives a physical meaning to the Fermi pro­

pagation of vectors along curves. Since we may take the spin as small as we 

like" for a given mass, we can, to any desired degree of accuracy, realise 

a geodesic with a vector parallely propagated along it and orthogonal to the 

curve. Taking two such test-gyroscopes near one another, we can supple­

ment (5) by the statementif-; 

The difference ~ Sa between tha angular momentum of the first particle 

and that of the second particle parallel displaced along the connection vector 

6xa and projected into the local space orthogonal to the 4-velocity u a 

of the first part icle, b.L Sa ,obeys the law -V ~.1.Sa 
ds 

.... -S x H 

where 

R- a b d r c 
bcdu u Ox 
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Here Ha belong to the 3-space orthogonal to 
a 

u ,and 

(6)1 is written as a 3-vector relation containing the usual exterior product. 

Rewritten in this notation, (5) assumes the form 

-E 

a b d c a 
R bcdu u ox 

The equations (6) and (5') exhibit that, for a given "observer" ... ... 
a 

u ,the 

(spatial) vectorfields E and H defined in the infinitesimal neighbouhood 

of the observer's world line playa similar role for a gravitational field as 

the electric and magnetic vectors relative to an inertial frame for an electro­

magnetic field. 

A null-geodesic also has a physical interpretation: It represents the world 

line of a particle of vanishing rest mass or, more classically, a light ray in 

the sense of geometrical optics. In this case, the statement can be "approxi­

mately deduced" by starting with the general relativistic form of Maxwell's 

equations and going over to the limit of "locally plane waves of infinitely small 

wave-length ,,3. 

As long as we do not have a description of the interaction of matter with 

gravitational fields, especially gravitational waves, the preceding remarks 

on test-body motions are a useful preliminary tool for the physical interpre­

tation of algebraic and anlytic properties of vacuum gravitational fields and, 

especially, their curvature tensors. One should keep in mind, however, that 

this description of the action of gravitational fields on matter is very incom­

plete since the reaction of the particles on the fields is completely neglected. 
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2. The linear approximation. Survey of problems 

In order to get a survey over the problems with which we are faced let 

us at first drastically eliminate the mathematical complications due to the non­

linearity of eqs. (1) : 

Let us denote by fl ab the orthonormal components of the flat space 

time metric, and let us assume that the quantities 

(7) t') =g -fl 
lab ab ab 

satisfy the "weak field conditions" 

where r ~c are the Christoffel symbols associated with the gab . Then 

the field equation (1) reduces, in the sense of a formal approximation in which 

small quantities are neglected, to the linearised field equation 

(9) 

here 

(10) 

o 2\1} +11 W C 

0/ ab - 1 (a, b) ab T ' c 
-2T 

ab 

and the D'Alembert-operator 0 

refer to the flat metric II ab 

and the raising and lowering of indices 
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A "small" coordinate change 

a' 
x a E a 

x + 5 

induces the transformation 

- 9 -

r a'b' 
U) -2~ +A EC 

Tab J(a, b) ab), c 

~ a' 

of the field variables \lJ 
Tab 

J. Ehlers 

One may now forget the "derivation" of (9) and (12) from the rigorous 

theory and consider (9) as a gravitational field equation in flat space-time, 

formaRly very similar to electrodynamics. Then (12) can be considered not 

as induced by a coordinate transformation bur as a gage-transformation; in 

fact, the substitution (12) (with unchanged independent variables x a! ) lea­

ves the left hand side of eq. (9) unchanged. It also follows from (9) that 

(13) o 

But this equation clearly shows this linear theory of gravitation being physi-

cally wrong: According to (13), the gravitational field \iJ would have 
1 ab 

no influence on the energy and momentum bnlances of matter. Although the 

field is determined by its source Tab only up to gage transformations the 

linearised equation of motion of a test particle is not gage invariant; this is 

a second inconsistency'3. 
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We therefore have to consider (9) at best as the first step in a sequence 
16 

of successive approximations", Let us nevertheless apply the flat-space in-

terpretation of (9), (12) in the following and state some mathematical pro­

perties of this theory rigorously, as a motivation for the analysis of the full 

theory. 

Let us consider a spatially bounded source 

tial frame. Then the retarded integral 

(14 ) lJ'ab (x) 

at rest in some iner-

exists and satisfies, if (13) holds, the Einstein convention 

(15) ~a o 

and the field equation (9). (dK is the Lorentz-invariant measure on the past 

light cone C of x.) If Tab and its first derivatives are bounded in the 
x 

past, (14) satisfies the boundary conditions 

~ab, c X k + It (2.) 
ab c r 

~a 6- > 0 . 

r denotes the spatial distance of the argument of t.. from a time like stra­

ight line contained in the source region, and ka is a null vector field poin­

ting away from the source and into the future, normalised according to 
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k a u = -1 if u a is the 4-velocity of the line mentioned above. 
a 
We now state the 

theorem 11 : For a given source exists up to gage transformations 

one and only one solution til of (9) which satisfies the "outgoing radia-
Tab 

tion condition" (16). Among these, precisely one satisfies the Einstein con-

vention (15) . 

To prove uniqueness, we apply the Kirchhoff integral representationlt 

(known in physics from the theory of diffraction) 

(17) 41t· ~ ab (x) -i _ 0 rab dK 
C x 

to the difference of two solutions of (9) both satisfying (16). The surface in­

tegrals in the general Kirchhoff-representation can and have been shifted to 

(past) infinity in Cx and then give zero because of (16)1,2,3' From (9) 

and (17) we obtain for this difference 41'( r ab(x) = - ,~_ (2 r (a, b) - l1 ab fC
, c)d 

x 

which can be written, on account of (16)4' in the form -2 E + 11 E c 
') (a, b) ab ') ,c 

with ~a(x) = ~~ ~ a dK ,and is, consequently, gage-equivalent to zero. 

The existence has already been shown. 

A motivation for the name "outgoing radiation condition" for (16) can be 

seen in the fact that the change 

at large distances from the source is smallest for displacements within the 

hypersurfaces of constant phase, k dxa = 0 . 
a 



13

- 12 -

J. Ehlers 

Because of this theorem, it is no loss of generality for problems involving 

bounded sources only to impose generally the condition (15), i. e. 

( 18) 

Then (9) simplifies to 

( 19) 

b 

~ a; b 
o . 

-2T 
ab 

Outside of the sources, we have 

(20) 0, o 

and we define, in the linear approximation, "free" gravitational waves as ga-

ge-equivalente classes of solutions of (20). 

The "free" classical field theory defined by (20) can be used to construct 

a corresponding special relativistic quantum theory of a "graviton field" . 

For this purpose one hase to define, on a suitably chosen subset of the solu­

tions of (20), a Hilbert space structure with a scalar product that is invariant 

under (inhomogeneous) Lorentz transformations. You obtain thus an irreduci-

ble unitary representation of the inhomogeneous Lorentz group in a Hilbert 

space of solutions of (20) which is to be interpreted physically as the space 

of one - graviton states. According to the group theoretic classification of 

fundamental particles (or fields), one then finds the linearised free graviton 

field belonging to particles with vanishing rest mass and spin 2. (The spa­

ces of n-particle states and, finally, the total (Fock-) space of the free gra­

viton field can be constructed by standard procedures from the space of one­

particle states, ) 
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The metric corresponding to the general solution of (20) which represents 

a plane wave travelling in the z-direction can be written in the form 

(21 ) G 

with two arbitrary functions 

Minkowskian metric. 

G + A(dx 2 dy2) + 2B dxdy 
o 

A, B of the "phase" u = z-t. G denotes the 
o 

Since the coefficients of (21) depend on u only, the curvature tensor 

(and all intrinsic characteristics of the metric field) are propagated without 

change along the rays (x, y, u) = const. which form a congruence of null geo­

desics, i. e. a plane gravitational wave propagates without distortion with fun­

damental velocity. 

(21) is in Gauss'normal form with respect to ,and thus the geodesics 

(x, y, z) = const. may bethought of as world lines of test particles. It follows 

from (21) that a cloud of such particles undergoes a volume-preserving defor­

mation which is restricted to directions orthogonal to the direction of propa­

gation of the wave; the magnitude of this deformation depends on the ampli-

tudes A, B . 

In order to characterize the wave (21 )independently of a special set of 

test particles we use the linearized curvature tensor. It has the form 

" .. 
(22) 1 R abcd mabmcd - mabmcd 

where mab is a singular bivector, 

ab ~ ab 
(22)2 mabm 0 mabm 0 
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Consequently there exists a null vector ka such that 

(-> 0). 

a 
The quantities mab' k 

The 'interpretation of 

are determined by Rabcd up to their signs. 

mab' k a follows from eq. (5) : Let ua be the 

4-velocity of an arbitrary nonspinning test particle or "observer" . Then 

a b .. a b 
a m bU a =- m bU 

(23)1 p - q 
-k u 

c 
-k u 

c 
c c 

form an orthogonal pair of (with respect to this observer) purely spatial vectors, 

and (22) may be rewritten as 

The accelerations of nearby test particles relative to our observer are, accor-

ding to (5) and (23) , given by 

(24) 

These formulae show: The acceleration of a test particle relative to a freely 

falling observer vanishes if and only if its position vector li xa is parallel 

to the projection k~ of ka into the observers 3-space. (ka u
a )2 is equal 

to the ratio (magnitude of relative acceleration / distance) for arbitrary nearby 
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(a 'xa test particles. The acceleration is parallel to 0 x if 0 A pa , anti-

parallel if b xa = A, qa . 

For the wave (21) ka is given by 

(25) 

and the propagation of the wave along the rays is expressed by 

m k C 

ab;c 
o 

which implies, by (22) , 

R k e 
abcd;e 

0, o 

A freely falling observer, however, will notice changes of the field; the 

strength (k U a )2 will be a function of this proper time, and the directions 
a 

a a a 
kJ. ,p ,q will rotate relative to spatial axes which are parallely propa-

gated along his world line. These changes may be used to define, with respect 

to an observer, monochromatic waves and, among them, linearly, circularly 

etc. polarized waves quite similar to electrodynamics. 

We finally remark that vacuum curvature tensors of the algebraic type 

(22) can be characterized by the existence of a vector ka such that 

(27) 
d 

Rabcdk o (~ 0) 

this remark suggests a way of defining pure radiation fields in the rigorous 

theory. 
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Let us now return to the inhomogeneous equation (19) and its retarded 

solution (14). If we choose an inertial frame in which the source is at rest 

and located near the origin of the space-coordinates we may write 

(28) 

CZ' l denote 3-vectors). If we are interested in the radiation field at large 

distances from the source, we will, as usual, write t-i!-ll 
= t - I ~ I + ( 12f I - j 2f - :iP 

-1 

and develop __ 1 ___ and 
/:!f - II I~I - I ~ - II in powers 

of r , obtaining 

N b(U, w) 
a 1 

\lJab (x, t) = + e (------z) 
T - r r 

where we have written u for the retarded time t - I~I 

rection given by the unit vector ~ ,r = I ~ I ' and 

T b(y, u + --- ) d Y J x. X 3 

a - r 

From (29) it follows that 

. 
~ ab;c 

-N ab 

r 
k + e(~) 

c r 

.. 
~ ab;cd 

N 
~k k + e(+) 
red r 

w for the di-

here the dot indicates a partial derivative with respect to the retarded time 

for fixed w ,and k a is chosen as in (16) . Since the Einstein convention 
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(15) is satisfied in consequence of (13) we also have 

iT kb = a(..!..) 
ab r 

(30)2,3 give for the linearized curvature tensor the expression 

{ (23)2 + a( :2)} with 

(31) 
-1" 1 

iab = (2r) (Nab 2 A bNc ) + a (+) 
a c r 

This result proves : The ..!.. - part of the curvature tensor which belongs r . 

10 the retarded radiation field of a bounded source has the same algebraic 

structure as that of a plane wave. 

The development indicated before (29) 1 

ther; the coefficients of the higher powers of 

can of course be carried on fur­
-1 

r will be functions of (u, w) 

which can be represented by integrals like (29)2 with 
2 

Tab replaced by its 

time derivatives, multiplied by polynomials in;t and 2S. .;£. • We shall 
r 

return to this result in the rigorous theory. If the changes within the source 

are sufficiently slow it is useful to develop the integrand of (29)2 in powers 

of 1l!Jf. ; this leads to a multipole expansion of the radiation field. Becau­
r 

se of the energy-momentum conservation law (13) the lowest order radiation 

is of the quadrupole type. 

We may finally ask: What is the energy carried away from a source by 

gravitational radiation? If we accept the gravitational energy tensor 20 

(32) tab = -4l. ( i' Y cd -.!. ~ 'I' - .!. ~ 
cd, a , b 2 " a , b 2 ab 

llJ cd, e 1 
III T - - If If ' c ) Tcd,e 2 ,c 


