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NONLINEAR EIGENVALUE PROBLEMS
IN ORDERED BANACH SPACES

Herbert Amann

1. Introduction

In this paper we study nonlinear elliptic boundary value problems
of the form

Lx(t)

rp(t,x(t)) in q,
(1.1)
Bx(t) = o on 3 ,
where @ 1is a bounded smooth domain in H?N o, N=21, L 1is a second
order strongly uniformly elliptic real differential operator, B 1is an

at most first order real boundary operator, and A is a real number.

As for the pair (L,B) , we impose the following fundamental
hypotheses:
(H1) The pair (L,B) safisfies the strong maximum principle, that is,
for every function x € CZ(Q) n Cl(ﬁ) such that
Lx(t) 20 in @q,

Bx(t) 20 on 30 ,
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it follows that x(t) =0 on © . Moreover, if x # o then

x(t) >0 for every te€ q , and for every t € 30 such that

x(t) =0, it follows that %%(t) <0 , where v denotes the outer

normal on 3@ .

(H2) The pair (L,B) satisfies Schauder type a priori estimates, that
is, there exists a constant y > o such that for every x € C2+“(§)
satisfying the boundary conditions Bx(t) = o on sa ,

X1l < v o likxl
C M @)
where u€ (0,1) if N>2,and w=o0 if N=1.

24 (@)

It is well known that hypothesis (H2) is satisfied if the
coefficients of L belong to CH(@) , Bx = x93 , and the homogeneous
problem '

Lx =0, Bx =0
has the trivial solution only. Clearly, this latter condition is satisfied
if hypothesis (H1) holds. If B is the Dirichlet boundary operator, that
is, Bx = x93 , then (H1) is satisfied if the coefficient of the non-
differentiated term in L is nonnegative. For more general boundary

conditions we refer to[1,2] .

As for the nbn]inearity ¢ , we impose the following hypothesis.

(H3) (i) ¢ec?@xR,),

(i)  there exist positive constants Yo and § such that for '
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every (t,g) €0 x R_, o(t,g) 2y, + 6,

(i11) there exists a nonnegative constant w_ such that for every

0
(tse) € X R, Dyo(t,) > -uy
where D, denotes the partial derivative with respect to the

second variable.

It should be remarked that for simplicity we restrict our considera-
tions to nonlinear eigenvalue problems of the form (1.1). However, it is
easily seen that the same methods apply to more general problems of the
form

Lx(t)

v (t,x(t),A) in @ ,

Bx(t) = x(t) on 3Q

It is an immediate consequence of the above hypotheses that for the
solvability of (1.1) it is necessary that A > o . Moreover, if for some
x> o0 , problem (1.1) has a solution x then x# o and x(t) 2o for
t €@ . In order to use this important information we transform the
nonlinear elliptic eigenvalue problem (1.1) into an abstract fixed point
equation depending on a real parameter in a suitable ordered Banach space,

Hypothesis (H2) implies that L has a continuous inverse L_1

mapping CM(2) into C2+“(§) . It follows from (H1) that L™ s a

positive linear operator, that is, the images of nonnegative functions

are nonnegative functions. Hence it seems natural to transform problem



-6 -

H. Amann

(1.1) into a fixed point\§quation in the Banach space CH{®) where this
space is given the naturai ordering. However, for technical reasons (the
positive cone is not normal) we do not use the‘space C“(ﬁ)’ but C(%) .
In fact, it will be necessary to consider a certain subspace of C(R)

which is particularly well adapted to the differential equation.
Let T be a nonempty set and let x : T= R be a functionon T .
Then we write x =0 if x(t) 2o forevery t€T, and x>o0 if

x 20 but x# o . In the Tatter case, 'x is said to be positive.

It is well known that for every y € C“(ﬁ) the linear boundary

value problem (BVP)

Bx =0 .on 3,

has a unique solution x := Ky 1in C2+“(§) . By using the Lp-theory for
elliptic BVPs and Sobolev type imbedding theorems it can be shown (e.g.

fl] )} that the linear operator K defined above has a continuous exten-
sion, denoted again by K , to a compact linear operator K : C(2) - Cl(ﬁj.

the solution operator (for the pair (L,B)).

It is a consequence of the strong maximum principle that the solution
operator K 1is not only a positive Tinear operator but it maps every
positive function into a function without zeros in @ . The following

lemma (which is proved in [1] ) contains the precise statement of this



-7 -

H. Amann

fact in a form which can be generalized to abstract ordered Banach

spaces.

(1.1) Lemma: The solution operator K maps C(R) compactly into
Cl(ﬁ) and K <s eo-positive, that is, there exists a positive function
e, E. C(Q_)‘ such that for every X € C(R) .with x> 0 , there are
positive numbers o and B such that
(1.2) ag < Kx < Be,
For e o we may take the unique solution of the linear BVP

Lx =1  4n Q
Bx = o on 0,

where 1 (t) =1 for every te€ q .

In particular, Lemma (1.1) implies that K can be considered as a
positive compact endomorphism of C(E} and there exists a positive
number o such that Keo > ae . Consequently, the Krein-Rutman theorem
[6]1 applies and it fo]]oWs that the spectral radius r(K) is positive
and an eigenvalue of K  having a positive eigenfunction Xy - It is
easily seen that Ay i= r(K)'1 is the smallest eigenvalue, the principal
etgenvalue, 0f the linear eigenvalue problem

Lx = ax in Q ,
(1.3)
Bx =0 on 3R ,

and Xq is a positive eigenfunction of (1.3).
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We denote by C,(?) the positive cone in C(@), that is, C (%)
consists of o and all positive continuous functions on @ . Then we
define a continuous and bounded map

F: C+('s2') - C+(§)
by
F(x)(t) := ¢(t,x(t)) for xeC (W) andteq,
that is, F 1is the Nemytskii operator for the function ¢ . Then it is
easily verified that the nonlinear elliptic eigenvalue problem (1.1) is
equivalent to the fixed point equation
x = AKF(x)

on C,(a) .

It is an immediate consequence of hypothesis (H3(ii)) that for every
x € C.(a) , A
KF(x) = YOKE. + 6Kx =y, e, + SKx .

This inequality can be used to prove the following nonexistence theorem.

(1.2) Theorem: Denote by X o the principal eigenvalue of the linear
eigenvalue problem (1.3). Then the nonlinear elliptic BVP (1.1) has no

solution if A 2 )\0/6 .

Proof: By the Krein-Rutman theorem the dual operator K has an

eigenvector x* to the eigenvalue r(K) = A;I such that (x¥,x) = o

for every x € C (R) .
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We claim that for every x € é+(§) = C, (@) \ {o} , (x*,x)> o
Indeed, since K is eo-positive, inequalities (1.2) imply that
(1.4) a(x¥,e,) < (x¥,x) < B(x*,eo) ,
where - o and B8 are positive numbers depending on x € é+(§) . Suppose

*x) =c

that (x*,eo) = 0 . Then the preceding inequalities imply that (x
for every x € C_(2) . Since every x € C(Q) can be represented in the
form x =y -z with y,z¢€ C+(§) , it follows that (x¥*,x) = o for

every x € C(Q) . Thus x¥ = 0 , which contradicts the fact that x* is

an eigenvector. Consequently, (x*,eo) >o0 and by (1.4), (x*x)>o0

for every x>0 .

Now suppose that for some A > o the eigenvalue problem (1.1) has
a solution x , or, equivalently, that x = AKF(x) . Since F(x) is
positive and K is eo—positive, it follows that x > o . Moreover,
x = AKF(x) = M8y * A8Kx

By applying to this inequality the functional x* , we obtain

¥

(x¥*,x) 2 ayy(x¥e,) + A8 (x¥,Kx) > asr(K) (x¥*,x) .

0)
Thus Asr(K) <1, that is, r < ;\0/6 . Q.E.D.

So far we have‘essentia11y only used the fact that the solution
operator K is positive. It is to be expected that we can obtain better
‘results if the full nonlinear map XKF is compatible with the ordering
of the underlying space. By using the a priori bound of Theorem (1.2) we

can achieve such a situation by means of the following simple device.
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Let w := Aowo/é . Thenproblem (1.1) is obviously equivalent to the
nonlinear BVP

(L + w)x(t)

A (t,x(t)) + wx(t) in Q,

Bx(t) = o on 39 .

Denote by Kw the solution operator for the pair (L + w,B) and define

F, @ Ry xC(R)»>.C ()
by

Fw(A,x) t= AF(X) + wx
Then the nonlinear elliptic eigenvalue problem (1.1) is equivalent to the
fixed point equation

X = Kw Fm(x,x) .

Since (L + w,B) satisfies hypotheses (H1) and (H2) it follows again
that Kw is an e-positive compact linear operator from C(R) into
Cl(ﬁ) » where e ::Kml . Since Fm is continuous and bounded, the ‘map

f: R, xC()~>C(Q)
defined by

f(x,x) := Km Fw(x,x)

is completely continuous, that is, f is continuous and maps bounded

sets into compact sets.

By Theorem (1.2) it suffices to consider the restriction of f - to
the set [0,52,/8) X C+(§) : On this set the map f has the important
property that it is increasiné, that is, for evefy pair (x,x) ,

(usy) € [0,2,/8) x C,(R) such that u<2x and y <x o,

(1.5) Flny) < F(0,x)
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Indeed, for every such pair (A,x) , (u,y) , the positivity of KUJ
implies the inequa]ity
f()\,X) - f(U’.y) =
(1.6) (A - WK, F(x) + uK (F(x) - F(y) + ue(x - y)) 2
(» - u)Kw F(x) + qu(F(x) - F(y) + mo(x -y)) .

Hence (1.5) is a consequence of hypothesis (H3).

1

Now observe that, due to the e-positivity of Kw , every solution
x of the fixed point equation x = f(x,x) is comparable to the function.
e 1in the sense that it belongs to the subset
Ce(ﬁ) := {x € C(R) | there exists a positive number o =a(X)
such that -ne < x <ae}
of C(%) . More precisely, f maps all of [o,xo/d) x C+(5) into

%) = C (@) nC, @) .

Ce,+( e

Hence it suffices to consider the restriction fe of f to

[Os}\o/a) X Ce,+(_§) .

Clearly, Ce(ﬁ) is a vector subspace of C(2) . It can be made into
a Banach space by means of the e-norm,
xiy = infla >0 | e < x <ae}
The e-norm is stronger than the maximum norm and it is monctone, thatris,
lixll, < llyll, whenever o < x <y . The set Ce,+(§) is the positive
cone of Ce(ﬁ) , that is, it consists of o and all positive continuous

functions belonging to Ce(ﬁ) . With respect to the e-norm, Ce +(Q) is

closed and has nonempty interior. In fact, x is an interior point of



- 12 -

H. Amann

Co +(§) if and only if there exist positive numbers o« and g such
s

that oe < x < ge . A proof of these assertions can be found in[51] .

In the following, Ce(ﬁjt will always be given the e-norm. Hence
Ce(ﬁ) is a Banach space which is continuously imﬁedded in C(Q) . If
e(t) > o for every te€q , then Ce(ﬁ) is topologically isomorphic to
C(@) . In case of Dirichlet boundary conditions we have el3Q = o and it
can be shown that Ci(ﬁ) = {x € Cl(ﬁ) | xlae = 0} is continuously
imbedded in Ce(ﬁ) . These facts and the compactness of Km as a map
from C(R) into Cl(ﬁ) imply that Km maps C(Q) compactly into
Ce(ﬁ) (comp. [1] ) . Moreover, since Kw is e-positive, it maps é+(§)

into the interior of Ce Q) , that is, K, is strongly positive.

3+.(
Using these facts and the definition of fe , 1t is easily seen that

fe has the following property:

(P1) The map
fo 1 [0,1,/6) x Ce,+65) - Ce,+(§)
is completely continuous. The map fe(o,.) has exactly one fixed
point, namely x = o . There exists p > o such that for every

positive x with IIxIIe =p and every o=>1, fe(o,x) ¥ ox .

Moreover it follows from inequality (1.6) and the e-positivity of Km
that the map fe is strongly increasing, that is, for every pair of
distinct points (A,x) , (u,y) € [o,AO/S) x Ce +(§) satisfying u <A

‘and y < x ,
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fe(x,x) - fo(usy) € int Ce,+(§) .
The regularity hypothesis (H3(i)) implies the following further property

of fe , which, in turn, implies that fe is strongly increasing.

(P2) The map fe is twice continuously differentiable on [o,Ao/é) x
Ces+(§) . For every (u,y) € (o,xo/s) x Ce,+(5) , the derivative
fé(x,x) = (lee(x,x), sze(A,x)) : R x Ce(ﬁ) - Ce(ﬁ)

is a strongly positive continuous linear operator.

These lengthy considerations show that we can use the information
which is contained in the maximum brincip]e and the exfstence and
regularity theory for Tinear elliptic BVPs to transform the nonlinear
elliptic eigenvalue problem (1.1) into an equivalent fixed point equation
of the form

X = fe(A,x)
in a Banach space Ce(ﬁ) such that both, the Banach space and the map
enjoy the relatively pleasant properties given above. In this form we
can app]y the theory of ordered Banach spaces and the methods of nonlinear
functional analysis to obtain relatively precise information about the

solvability of problem (1.1).
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2. Nonlinear Eigenvalue Problems in Ordered

Banach Spaces

Let E be a real Banach space. A subset P C E 1is called a cone
if P 1is closed, P+ PCP, B%+P CP,and PN (-P) = {0} . Given
acone P in E , we define an ordering in E by setting x <y iff
Yy - x€P . Then (E,P) is called an ordered Bana&h space (OBS) with
positive cone P . The elements x € ﬁ := P\ {0} are called positive
and we write x <y to mean that y - x € P . Throughout this paper we
assume that

(E,P) is an OBS whose positive cone has nonempty interior

lg) and whose norm is monotone, that is, Ixil < Qlyll whenever

0<X=Yy.

Observe that the OBSs (Fl,li+) ~and (R x EsR, x P) enjoy the above

properties also, where the latter space is endowed with one of the usual

norms, e.g. I (A,x)Il = Al o+ ixll

We consider an equation of the form
(2.1) x = F(h,x) ,

where the map f satisfies the following assumptions:

f: R, x P =P and ie completely continuous.
The map f(0,-) : P =P has exactly one fixed point, namely X = 0 .

7

There exists p > 0 such that for every X € P with lxil=op
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every o =1, f(0,x) ¥ ox . There exists X > 0 such that T(X,-)
has no fixed point for A =X

The map f <s twice continuously differentiable on [0,X) € P and
for every (X,x) € (0,X) x P, the derivative

f'(x,x) = (Dq f(x,x) » D, f(A,x)) : R x E ; E

18 a strongly positive linear operator, that is,

o}

£ (0,X) (R, xP) ) CP .

We denote by 1 the solution set of equation (2.1), that is,
Z = {(A,x) € R xP | x="f(2,x)}
It folTows from the results of Dancer [ 4] that the solution set is locally

compact and contains an unbounded component emanating from (0,0)

"~ In the following we give more detailed information about the
structure of £ . For this purpose we denote by A the projection of =

into R that is,

s
A ={x € R | f(r,-) has a fixed point}

Since the derivative f' is strongly positive on (o0,A) x P it follows

that f 1is strongly increasing on this set, that is, for every pair of

distinct points (X,x) , (u,y) € (0,Xx) x P such that (A,x) < (u,y) »

it follows that f(u,y) - f(A,x) € % . By using this fact, it is easy to

prove the following theorem.

(2.1) Theorem: A\ is a nontrivial interval containing 0 . For

every X € L, there exists a minimal fized point X(A) of Ff(r,) .
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The map X(*) : A > P <s strongly increasing and left continuous.

Clearly, X(1) is a minimal fixed point iff every fixed poinf Xy
of f(x,-) satisfies X, 2 %(x) . In particular, the minimal fixed point
is unique. In the proof of Theorem (2.1) it is shown that Xx(A) ecan be
computed iteratively, namely X(1) = k]im fk(x,o) , that is, X(A) fis

: - ®

the Timit of the sequence (xk) » where Xq =0 and Xesl = %) -

We set A% := sup A . Then o< A* <% . Next we impose a further

hypothesis, namely the existence of an a priori bound.

There exist 1€ (0,0X) and p > WX(n)ll such that there is no
(H)

(Asx) €2 with x2u and lIxll=op .

It is an easy consequence of hypothesis (H) that A is closed, that is,

¥ € ). Consequently, »* <% .

A
Now we claim that for every X € [u,A*) , the map f(A,-) has at

least two distinct fixed points. By Theorem (2.1) we know already that

for every such X , there exists arminima] fixed point X(A) . Suppose

now that X 1is a point of discontinuity of X(+) . Then it is easy to

show that X, i= G]Im*?(c) exists and is a fixed point of f(r,-) with

X, > X(x) . Hence it suffices to consider the case where A is a point of

continuity and X(A) 1is an isolated fixed point of f(r,-) . In this

case we show that the Leray-Schauder fixed point index of X(1) is
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equal to + 1

It is an important consequence of the fact that X(A) is the
minimal fixed point of f(x,-) that
r(DZf(xJ{(A))) <1
where r denotes the spectral radius. Suppose now that
r(DZf(A,Y(x))) <1 . Then it is an easy consequence of the standard
Leray-Schauder degree theory that for every sufficiently small p > o0
(2.2) d(id - F(r,) » X() + B, 0) =1 ,

where Bp denotes the open ball in E about o and radius o .

It remains to consider the more difficult case where X%(A) is an

isolated fixed point of f(A,.) with
rgbzf(x;i(x))) =1

In this case, 1 is a si&p]e eigenvalue of sz(A,Y(A)) . By means of
this knowledge and several applications of the implicit function theorem
it is possible to show that in a neighborhood of the point (A,Xx(1)) ,
the solution set © consists of a smooth curve (A(c),x(c)) where
0 € (-e,e) and the map o - x(o) 1is strongly increasing. Using this
local representation of © and the homotopy invariance of the Leray-
Schauder degree, it can finally be shown that also in this case relation

(2.2) is true.

(v}
Now we show that for a sufficiently large open subset U of P

which contains the minimal fixed point of f(x,.) , the Leray-Schauder
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degree vanishes. Then it follows from (2.2) and the additivity property
of the Leray-Schauder degree, that there must be at Teast one more fixed

point in U .

Since X(+) is strongly increasing, there exists X € 8 such that
x(u) - X, € 8 . Hence hypothesis (H) and Theorem (2.1) imply that for
eVery X2 u , no fixed point of f(Xx,-) 1is contained on the boundary of
the bounded open subset
o}
U:= (xO + P) N Bp
of E . Consequently, the Leray-Schauder degree d(id - f(r,-),U,0) is
well defined and, due to the homotopy invariance,
d(id - f(x,-),U,0) = d(id - f(X,-),U,0)
for every A 2 u . But since f(%,-) has no fixed points at all, it
follows that
d(id - f(x,:),U,0) =0

for every X 2 u .

By this way we obtain the following theorem whose detailed proof

is given in[2].

(2.2) Theorem: Let hypothesis (H) be satisfied. Then there exists
2 > 0 such that problem (2.1) has at least one solution for every
M€ [0,0% , no solution for A > 3%, and at least two distinct solutions

for w <<%,
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3. Applications to E1liptic Boundary Value Problems

As has been shown in the introduction, the results of the preceding
paragraph apply to the elliptic eigenvalue problem (1.1) provided the
additional hyhothesis (H) can be verified. This means that a priori

bounds for the solutions of problem (1.1) have to be established.

In the following we exhibit two cases for which the necessary a priori
bounds can be established. Namely, the case of twoe point boundary value
problems of ordinary differential equations and the case of asymptotically

Tinear nonlinearities.

In the remainder of this section we suppose that hypotheses (H1) -

(H3) are satisfied.

(3.1) Theorem: Suppose that N =1, thdt <s, | <8 a second order

ordinary differential operator. Moreover suppose that

Tim iﬁ%zél =

g—)oo

wniformly in t € 6,' Then there exists a positive number ¥ such that

problem (1.1) has no solution for A > 2 ¥, at least one solution for

¥ ., ,
A =2} , and at least two positive solutions for 0 < A < ¥
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A detailed proof of this theorem is given in [31].

The next theorem applies to elliptic BVPs in any dimensions. But

the nonlinearity is supposed to be asymptotically linear.

(3.2) Theorem: Suppose that there exists ¢_ € CH(R) such that

9,(t) = Tim Dyo(t,e)

£ > w
wiiformly in t € Q. In addition suppose that there exists Y € c +(§)
and a constant p > 0 such that for all t€ Q and all £zp,
o(ts8) - Dyo(t,g) - &= -y(t) .

Denote by A, the principal eigenvalue of the linear eigenvalue problem

Lx = A¢_x in 0

BBx = o on 3R
Then there exists a positive number 2 ¥ such that problem (1.1) has no
solution for A > 2¥ and at least one solution for 0 <A < 2 . Further—

more, 0 < A < 2¥ and for every X € ()\w,x*) , problem (1.1) has at

least two distinet solutions.

For a proof of this theorem as well as for further details and

bibliographic references we refer to [2] .
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