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Lamberto Cesari
Department of Mathematics
The University of Michigan
Ann Arbor, Michigan, U.S.A.

We present here outlines of a series of research papers in non-
linear analysis, all centered on the concept of bifurcation equation,
and mostly relying on methods and ideas of functional analysis.
While we do not claim completeness, we attempt to give a fair view

on relevant trends in the field. 1In each of the following short

presentations we list a few bibliographical references.
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Lamberto Cesari

I. PERTURBATION PROBLEMS FOR PERIODIC SOLUTIONS OF
. ORDINARY DIFFERENTTIAL EQUATIONS

The approach described below for the problems under consider-
ation‘was developed in the years 1952-60 and was later framed in the
general method we will describe in Part III. Nevertheless the re-
sults obtained by this approach and the detailed technique which was
correspondingly developed required a presentation of their own.

Iet us consider a system of ordinary differential equations of

the form
du/dt = A(e)u + & f£ft,u,g) , (1)

where € is a small parameter, A is an nxn real or complex constant

U ),

matrix whose elements may depend on €, u = col(ul,..
: n.

f

1l

col(fl,...,fn), and f(t,u,e) is periodic in t of some period
1. = Z«/w, or is independent of &, and then (1) is autonomuos and L

is arbitrary. Instead of (1) we may consider the analogous system
du/dt = Aleg)u + & flt,u,e) + F(t) , (1Y)

where F(t) is a given periodic function of t. We are interested in
the possible pericdic solutions of system (1), or (1'). They are
some-imes czlled periodic oscillations, and indeed, they represent

actual oscillatory phencmena of corresponding physical systems. The
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periodic solutions of system (1), when this is autonomous, are often
called cycles.

System (1) is often thought of as a perturbation of the linear
system with constant coefficients du/dt = A(O)u. Its periodic
solutions, if any, may have large amplitude, even if e is small.
The term F(t) in (l’)fis often denoted as a "large" forcing term.

Systems (1) and (1') (for € # 0) are not any easier to handle
because € is "small." The phenomena which (1) and (1') may repre-
sent (resonance, nonresonance, harmonic oscillations, subharmonic,
higher harmonics, cycles' frequency depending on £ for autonomous
systems, entrainement of frequency, or locking of frequency, sta-
bility of the corresponding solutions) are varied and complex
(cfr., e.g., L. Cesari [10] for some references).

We shall now mention briefly a simple process for the deter-
mination and study of periodic solutions of systems (1), or (1'),
and some of the related phenomena. In Part III we shall frame this
process in a general method for boundary value problems.

To begin with, let us first consider the case of a system (1)

with A = 0, or

du/dt = € f(t,u,e) , u = (ul""’un) ’ (2)
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where f£(t,u,e) = (fl,...,fn) is, say, defined, continuous and peri-
odic in t of period L = 2r/w in the domain -oo < t < +oo, |u| < R,
le] < €, for some R, € > O.
= %5 o
Let S denote the space of all continuous vector functions
p(t) = (ml,...,mn) periodic of period L, and let us take in S the

uniform topology. For peS let Pp = (Pwl,...,Pwn) = L—l

Ig o(t)dt
denote the mean value of @. Thus, Pp is the constant vector whose
components ij are the mean values of the components ¢j of 9. Also,
P can be thought of as an operator P: S + S, and as such P is
linear, idempotent (that is, PP = P), and is a projector operator.
Let ¢ = (cl,...,cn) denote any arbitrary constant vector with
le] <r <R, §=1,...,n, for some fixed r, 0 < r < R. Let 5,
denote the set of all geS, ¢ = (ml,...,mn) with Pp = ¢ and |o(t)| <

R. We consider now the transformation Vv = To defined for every

@eSC by
V(t) = c+e f[f(TJW(T)rE) - mldt ,
m = Pf(T,0(7),e) . (2]

Here m is the mean value of the periodic function f(T,p(7),e);
hence, f(7,p(T),e) - m has mean value zero, and [ in (3) denotes

the unique primitive periodic of period L and mean value zero, so
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that VeS3, PV = c.

Since |c|< r<R, it is easily seenthat, for |e| sufficiently
small, we also have [¥(t)| <R, and thus T: S, % 5, It is easily
seen also that Sc is a convex subset of S, and that T(sc) is com-
pact. By Schauder fixed point theorem there is, therefore, at least
one element ueSC which is transformed by T into itself, that is, a

fixed element u = Tu of T, asy u(t;c,e). Rélation (3) for @ =¥ =

u, shows that u is a solution of the modified differential system
du/dt = e[f(t,u,e) - m], m = PF{t;ult);e) .

Moreover, if we assume that f(t,u,e) is Lipschitzian with respect to
u in the domain -o0o < t < +oo, [u| <R, |e| < €.s then, again for
|€| sufficiently small, T is a contractio, and thus the fixed
element u = Tu is unique and depends continuously on ¢ and E.

The guestion remains as to whether, again for |e| sufficiently
small, we can determine c¢ = (cl,...,cn) = ¢(g), |e] < r, so that
m =\(m1,...,mn) = 0. The equation m = 0, or mj e 0y J = L pseyify
is a first instance of what we shall denote the bifurcation equa-
tion, or determining equation. If c(e) is any solution of the
bifurcation equation m = 0, then u(t,c(s),s) is a periodic solution

of the original differential system {2).
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For this process and various modifications, one of which is
mentioned below, we refer to L. Cesari [6]. A linear version of
it was proposed by Cesari in [5], and variants and applications
have been discussed by R. Gembill and J. K. Hale [17]. As men-
tioned, we shall see in Part III a more general process for boundary
value problems.

Let us consider a periodic system (1) of period T = 2n/w of
which we want to determine solutions of some period in rational
ratio with T. ILet pl,...,pn denote the n eigenvalues of A (which
in general depend on g£), and let us separate those pl,...,ov which,

8 €+0, approach purely imaginary numbers pj(O) =it = iajaybj,

J
. >
J = 1yeeeyv, aj, bj integers, bj 5105 a.j = 0, from those pv+l,...,pn

whose limits as £+0 are complex or real numbers different from any

; i >
number 1aa¥bo, b, =b,.eb , a 1ntege?, a 2 0. Here v denote any

integer 0 < v < n, and the case v = 0 is particularly simple, and
we shall not discuss it here. Correspondingly, we can reduce A

in (1) to the form diag(Al,Ae), A) with eigenvalues p.,...,0 , A

1 2

with eigenvalues pv+l,...,pn. To simplify the present exposition
we assume that all roots pl,...,pn are simple, so that we can
reduce A in (1) to the diagonal form A = diag(pl,...,pn). We shall

denote by B the analogous matrix B = diag(iTl,...,iTv, pv+l""’pn)'
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Let S denote the space of all continuous vector functions

o(t) =_,(q)1""’tpn) periodic of period 2b°«/w, and let us take in S
the uniform topology. Let P be defined now by Pp = (Rpl"”’Pq)v ’
0y.4+50). For the sake of simplicity let us assume here that f(t,u,
) is defined, continuous, and periodic in t of period L = 2x/w, in
the domain -oo < t < +0o, |u| <R, |e| < g, for some R, £ > 0. Let
c = (cl,...,cv,o,...,o) denote any constant vector (with Crreeesty #
0) and |e| < r <R. Let z(t) = (cleiﬂt,...,cveth,o,‘..,O). Let
Sc denote the set of all @eS, ¢ = (tpl,...,cpn) with P(e_Bt:p) = ¢ and

lp(t) | < R, so that zesc. We consider now the transformation v = Tp

defined for every cpesc by

W(t) = z2(t) + e e tfe PrE(T,0(T),e) - Do(t)lat ,
()

-BT
D = aiag(d,...sd ,0,...,0) , De = Ple " f(7,0(1),e)] .

It has been shown in [6] that it is possible to choose the primi-

i : " - ~ =Bt -Bt

tives in (4) so that ¥ is periodie, ¥eS, P[e ~ ¥] = Ple =~ z] = c.
Since [e| < r <R, it can be proved (cfr. [6]) that, for [g]

sufficiently small, we also have [¥(t)| <R, and thus T: 5§, 5.

It can also be proved (cfr. [6]) that Sc is a convex subset of §,

and that T( Sc) is compact. By Schauder fixed point theorem there

is, therefore, at least one fixed element uesc, u = Tu, say
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u(tjc,e). Relation (4) for @ =¥ = u shows that u is & solution of

the modified differential system

du/dt = (B - eD)u + & f(t,u,e) ,
De = Ple TUe(t,u(t),e)]
D —-—

diag(dl,...,dv, G500 .

Again as before, if we assume that f(t,u,e) is Lipschitzian with
respect to u in the domain -0o < t < 400, |u] <R, |e| < e, then,
for |e| sufficiently small, the map T: S, + 8, is a contraction
(cfr. [6]), and thus the fixed point u = Tu in S, is unique, and it
can be proved to depend continuously upon c¢ and €.

The question remains as to whether, again for |e| sufficiently
small, we can determine ¢ = (cl,...,cv,O,...,O) =c (e), le] <, so

that B =€ D = A, that is,

iawb, -ed, c, = p.&) [ T
J/J j DJ( 2 ’ )

J
The equation B - € D = A is the bifurcation or determining equation.
If c(e) is any solution of the bifuration equation, [e(e)| < r, then
u(t,c(e),e) is a periodic solution of the original differential

system (1).
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The argument above remains the same for autonomous systems,
with the difference that now w = w(e) is among the unknowns in
solving the bifurcation equation, and, on the other hand, the phase
in the solutions must remain undetermined, so that v is still the
number of essential unknowns.

Under sole conditions of continuity the existence of solutions
to the bifurcation equation, and hence to the original problem, can
be assured by the use of the concept of topological degree and of
fixed point theorems. Actually, the following statement by C. Miranda
has been shown to be relevant [6]. It is an equivalent form of
Brouwer's fixed point theorem. This statement concerns vector
valued continuous functions F(z)=(Fl,...,Fn) defined on an interval
c=[z= (zl,...,zn) | lzil <R, 1l & lunnyils If F, has constant
opposite signs on each of the sides zi = o Ri of C, then there is at
least one point zeC where F(z) = O (C. Miranda, Boll. Un. Mat. Ital,
3, 1941, 5-7).

For the case v = 1, which is the most usual one, much less is
needed, since then the bifurcation equation reduces to a single

quation in one real variable, and all is reduced to the verifica-
tion that a function F(z) of the real variable z has opposite signs

at the end points of the interval [-R,R].
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For any v > 1 and f smooth, much more elementary considerations
based on the implicit function theorem of calculus lead to simple

and practical criteria for the existence and determination of

¢ = c(e) for |e| small.
The following theorem (cfr. [6]), corresponding to the case
v = 1, is a particularly simple statement for autonomous systems

which can be derived from the above process.
Let us consider the system of first and second order differ-

ential equations

2
y; toy, = € fl(y,y',s) ’
: 2
y; & guﬁyj + adyj = & fj(y’y'ﬁs) ’ J = 25..05m, (5)
vi t By = efyyte) . § = prlm,

where y = (¥_seee,¥ ): AR T AR 46 TR R i R ): 1=
1 1l
1 n 8] n

v < u < n, where o, (g), 03(5), Bj(e) are real continuous functions

J
of € (or constants), 0 < € < €y and oj(O) S 0y 3 = yeeigily

BJ(O) £0, j=p+1,...,n, and either aj(o) # 0, or O‘J(O) = 0,
UJ(O) # 0 (mod 01(0)), J=2,00.,u. We assume a.=b =1, ¢
Ri = Ty and ¢ is now a scalar. We assume that f(y,y',g) is

Lipschitzian in y,y' and continuous with respect to € for
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1 |
lyl <R, ly'l <R, 0<e< Eyr Foro, <w<a ,0<r <A<
A€ A" < Fo < R, L = 2r/w, let
, 1 o =
P(A,w) = (LA) fo fl{Kw sinwt,0,...,0,Acoswt,0,...,0;0)coswt dt.

(I.i) If for some @, < <o

i - A< Ko < A", we have

P(Ko,ub) = o, and P(K',mb), P(R",U%) have opposite signs, then

there is an N > 0 such that for every g, 0 < € < El system (5)

has at least one periodic solution of the form
1
(

Ne)w (g) sina(e)(t+0) + O(e) ,

]

yl(t,z-:)
yjtt,ﬁ) = O(g) , § ® By.aesli,

for convenient uf€) E[G% ,uga], Ae) e[A',A"], o(0) = @, AO) = A

1 o’

and the phase © is of course arbitrary.

For details and proofs of this and other general existence
theorems and criteria for periodic solutions for systems (1), peri-
odic, or autonomous, we refer to Cesari [6]. See also [6] for ex-
tensions to types of linear systems more general than (l), exten-
sions to the case where f satisfies weaker forms of the Lipschitz
condition, and extensions to quasi periodic solutions.

For systems (1') containing a large forcing term F(t) =

(F ,...,Fn), say F periodic of period L = 2x/w (F large in the sense

1
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that it does not vanish with g), the existence of perturbation-type
solutions requires in general that P[e-BtF(t)] = 0. In this situ-
ation, the linear system u' = A(O)u has a periodic solution U(t),
and the change of variables u = U(t) + v transforms the nonlinear
system (1') into an analogous system (1) without forcing term.

In the discussion above the case v = 0 is rather elementary,
and the determination of periodic solutions for the nonlinear
gase does not require the analysis of bifurcation equations.
%

th :
If we consider z(t) as the 0  eapproximation z (t) of the

+1

periodic sclution of system (1), then the iterated scheme zn

Tzn, n = 0,1,..., can be used in combination with the equation

A to get successive approximations of the functions c

B - €D
c(e) and of the periodic solution u(t,c(e),e) for |e| sufficiently
small, Preliminary work has been done by J. K. Hale and R. Gambill
[14-17,19-24] who studied in detail this method of successive
approximations and discussed many applications of this method
(efr. particularly [17]). A relevant improvement in the method of
successive approximations has been proposed recently by C. Banfi and
G. Casadei [2-4].

The case where the matrix A in system (1) hes multiple eigen-
values has been studied in detail by C. Imaz [30] by the approach

described above.
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As mentioned, J. K. Hale and R. A. Gambill discussed in [17]
great many examples by the method above: e.g., the autonomous

van der Pol equation

w" +u = a(l-ue)u' y
the nonlinear Mathieu equation with large forcing term

" 2 3

u" + g u = A cosPut + (Bxcos 2wt + Cu’) ;

the van der Pol equation with mild forcing term:
2 =l
u" +ou = g(l-u)u' + e pucos(wt + @) ;
the generalized van der Pol equation .
2m

u" +o0u = g(l-u” )u' + e pucos(wt + ) ,

with m integer and large (almost square characteristic function);

the system of two nonlinear Mathieu equations

2 : 2
g(Au + Bu cos t + Cuj +Duv ) ,

=
+
Q
[t

i

2
e(Ev + Fy cos t + Gv3 + Ha v) 3

<
+
a
<
I

the autonomous system of two norlinear equaticns
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2 2
u" +u - g(l-u"-v )u' = sfl(u,v,v') + egl(u,u',v,v')v 3
" 2 2 t S 1] 1
v" + 2v - g(l-u-v Jv' = Efe(u,u SV) + egE(u,u V¥ i YL
with
fl(-U;V;V') = 'fl(u;V:V')r fe(u,u',-v) e -fe(u,u',v).

For instance, the latter system has, for IEI sufficiently small, two

cycles given by

u = Asin(wt + ¢) + O(g) , v = 0(g) ,
A = 2+ 0(€), w=1+0(‘e),

and
u = 0(g), v = Asin(wt + ¢) + O(€) ,
A = 21/2+0(5) 5 @ = 21/2+0(£—:) "

J. K. Hale [21,2L] proved, by the same method above, the existence
of families of periodic solutions and of cycles for systems (1)
under suitable symmetry relations.

Of a number of Hale's théorems concerning families of periodic
solutions of systems (1), we report here only one concerning autono-
mous systems (under sole Lipschitz hypotheses as proved in [e1.
This theorém guarantees the existence of a (n - p + 2)-parameter

family of periodic solutions (cycles).
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Let us consider the autonomous system

yi o+ aey

b I ef:)(y’y.’e) 4 3= Liceosm,

-

p+l,...,n, (6)

]

ed
e
]

Efj(Y;.V':E) s 3

where y = (yl,...,yn), y' = (y]'_,...,yll), £f=(f ,...,fn)I, where f is

1
Lipschitzian with respect to y, y' and continuous in e for |y| <R,

ly'l <R, 0 esE;
(I.i1) Let us assume, for f, only, that
£ (0 e w O, ¥ 5eeeyy'se) = 0
1( :Y2: ;Yn: 2Ypr ;Yu; ) »

and that either all £ , J = 1,...,n, are odd in (yl,...,yu), or £,

J,
is even and f_,...,f are odd in (¥.,...,¥ ,¥'). Suppose o.{g) > 0O,
2 n 2 TRAT] 1

3 =1,...,u, are continuous functions of & (or constants), with
cj((}) # 0(mod 01(0)), J=25.c0;p. Teke o = 01(0), ard let r, be

any number O < r, < R. Then there exists an €7 0<e, < €, such

1

that, for all g, 7\1, “1"“”‘:1—,;’ 0< 7\1, nl,...,nn_u < T, 0<ex<

€y system (6) has a real periodic solution of the form
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-1 "
yl(t,s) = ng) sinot + O(g) , or yl(t,s) = le cosat + O(g) ,
yj(t,s) = o(e) , J = 2500050,
yj(t,s) = n,_ +0(g), J = p+1l,...n,
where ¥y is odd or even in t, ye,...,yﬁ are odd, yp+1""’yn are

even, where w = u{e,hl,nl,...,nn_u) is a continuous function of the
same parameters, w = @ for € = 0, and t can be replaced by t + e,
o

the phase 6 being arbitrary.

The following examples, all derived from the statement above or
by analogous theorems (cfr. [21,24,6]), may illustrate the situa-

tion. For instance the simple equation

u" +u = ef(u,u') ,

with £(0,0) = 0, and either f(u,-u) = £(u,u'), or f(-u,u') =
-f(u,u'), hac a family of cycles of the form u = Ka;lcos(am + ) +
o(e), or u = Nn’lsin(mt + 6) + O(e), with @ = &(A,e) =1 + O(g), A,
¢ arbitrary, |e| sufficiently small. We may take for instance

2

f=u+u + u'2, or f = |u|l + |u'l, or £ = |ulu'. As another

example we may consider the system

u" +u = g(l-|v[)u', v' +2v = g(l-|u|)v',
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which has two families of cycles respectively of the forms

u = }nflcos(am + ¢) + 0(g) , v = 0(g) ,
o = a{M\e) = 1+0(€),

and -1
u = 0(g), v = Mo cos(at + ¢) + O(g) ,
o = a(he) = 21/2* o(e) ,

A, ¢ arbitrary, |e| sufficiently small.

As & further example let us consider the third order equation
[ 2’ - ’ n
u +ou = ef(u,u’,u",e) ,

where f(u,-u',u",g).= -f(u,u',u",e). J. K. Hale proved that this

equation has a family of cycles of the form

-1
u = c,0 cos ot + c, + o(e) ,

with u(cl,c yE,-t) = u(cl,c ;E>t), where ot can be replaced by

2 2

ot + 9, ¢ ¢ arbitrary, [cl[, '°2|-S r, <R, and |e| suffi-

1’ 2’
ciently small. Thus, for |e| sufficiently small, the third equation
above has a three-parameter family of cycles.

Also, the question of the .asymptotic stability of the periodic
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solutions of system (1), and of the asymptotic orbital stability of
cycles of autonomous systems,’can be discussed by using essentiglly
the same technique, as shown in papers by Cesari [9], J. K. Hale
[20,26-28], R. A. Gambill [14-16], H. R. Bailey and R. A. Gambill
[11].

A. Halanay in his book [18] described the method of successive
approximations mentioned above. More extensive accounts of the
research described in this Part I are in the books by J. K. Hale
[29] and by Cesari [10]. Finally, it should be mentioned here that
J. Mawhin, by the more general method we shall describe in Part III
for boundary value problems not necessarily of the perturbation type,
has improved some of the results for problems of the perturbation
type which had been obtained by the present approach (see Part III

for references to Cesari's extended method and papers by Mawhin).
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II. PERIODIC SOLUTIONS OF NONLINEAR HYPERBOLIC

PARTIAL DIFFERENTIAL EQUATIONS

Here again, as in Part I, we describe another aspect of the
same process of which we shall see a more general form in Part III
for boundary value problems. We shall consider here the question of

the possible periodic solutions of nonlinear differential equations

of the type

uxy = f(x,y,u,ux,uy} 4 u = (ul,...,un) g (1)

or of the systems of nonlinear wave equations
u_ =-u = f(x,y,u,u ,u u = . 2
vy (x,y,u, % y) ) (ul’ ’un) # (2)

or of other systems of nonlinear hyperbolic partial differential
equations. Here again it was shown by Cesari [1-6] that, by taking
into consideration suitably relaxed.problems, it is possible to
prove, for -he relaxed problems, general existence theorems, unique-
ness theorems, and theorems of continuous dependence uﬁon the data.
The solutions of these relaxed problems are then solutions of the
original problems whenever corresponding "bifurcation equations” can
be satisfied. J. K. Hale, D, Petrovanu, G. Hecquet, and others have

further developed this kind of argument in the present context.
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As an example, let us consider the problem of the solutions
u(x,y), of system (1), periodic in x of some period L in a strip
-00 < x < 400, -a <y < a, with a >0Osufficiently small, and f also
periodic in x of period L. Cesari [1,5] found that a suitably re-

laxed problem is of the form

) -1.L
uxy = f(x,y,u,ux,uy) -m(y), mly) = L _% fix ,

and this corresponds to the projection operator P mapping any func-
tion v(x,y) periodior in x of period L, into its mean value Pv with
respect to x. The solution u(x,y) of the relaxed problem is uniquely
determined by Darboux data u(x,0) = uo(x), u(0,y) = VO(YJ + uO(O),
VO(O} = 0. Criteria are then given in order that, for a given uo(x),
we can determine vo(y), -a <y<a, for a > 0 sufficiently small, in
order that the bifurcation equation m = O be satisfied. One of these
criteria was actually derived in [5] from a novel implicit function
theorem of the hereditary type based on functional analysis (Cesari
(41).

As another example, let us consider the problem of the sclutions
u(x,y), (x,y,)eEE, periodic in x and y of a given period L, of system
(1) with f also pericddic in x and y of the same period. Cesari [3]

found that a sultably relaxed problem is of the form
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uy = fOuyuu,u) - n(y) - a(x) - u, (3)

-1.L -1.L -2,L.L
m(y) = L ['fdx, n{y) =L [ fdy, u = L "[T[" fdxdy,
(0] 0 0-0
corresponding to the projection operation P mapping any doubly peri-
odic function v(x,y) into Pv, the sum of the mean values of v with
respect to x, with respect to y, and with respect to (x,y).

Let us consider more closely the last mentioned problem. Let

N;Ni,NE,K,bl,bE,Ml,N%,NB > 0 be given constants satisfying

-1 2 y
B N )L + > > .
Ml_N+2 (N1N2)L 3KL ,ME_N1+3KL,N%_N2+5KL

and let R denote the set R = E, x [u,p,q,eEnl Ju] < M, Ip] < M,
la| < M3]' Let uo(x), vo(y) be periodiec functions of period L, con-
tinuous with their first derivatives ué(x), vé(y), satisfying

- 1 1 -
v (0) =0, iuo(o)] < N, |uo(x)| <N, lvo(y)| < N,, and let f be con

sinuous in P With |f(x,y,u,p,q)| < X, and

If, in addition,
2lb, <1, 2Ib, <1, (1)

1

then Cesari [3] proved, by application of Schauder's fixed point



