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NONLINEAR ANALYSIS

Lamberto Cesari
Department of Mathematics
The University of Michigan

Ann Arbor, Michigan, U.S .A.

We present here outlines of a series of research papers in non-

linear analysis, all centered on the concept of bifurcation equation,

and mostly relying on methods and ideas of functional analysis.

While we do not claim comp~eteness, we attempt to give a fair view

on relevant t-rends in the field. In each of the following short

presentations we list a few bibliographical references.
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I . PERTURBATION PROBLEMS FOR PERIODIC SOLUTIONS OF
ORD I NARY DIFFERENTIAL EQUATIONS

The approach described below for the problems under consider-

ation was developed i n the years 1952-60 and was later framed in the

gen er a l me t hod we wi l l describe in Part III. Ne ver t he l e s s the re-

suUs obtai ned by this appr oach and the detailed technique which was

cor r e spond i ngl y deve l oped required a presentat ion of their own.

Let us cons ider a sys tem of ordinary differential equations of

t he f orm

dU/dt A(E)U + E f ( t , u , E) , ( 1)

wher e c is a small parameter , A is a n nxn real or c ompl ex cons t ant

ma t r i x whose e l emen t s may depend on E, u = col( u
l,

.. . ,u ),
n .

f co l ( f
l

, ... ,f
n

), and f ( t ,u, E) is pe r i odic in t of s ome period

1. = ?rr/ m, or i s i ndepende nt of t, and t he n ( 1) i s autonomuos and L

i s arbitr ary . I ns t ead of (1) ~e may cons i der t he analogous system

du/ dt ME) U + E f( t , u ,E ) + r re) , ( i : )

,her e Fit) i s a gi ven pe r i odi c f unc ti on of t. We are inte~~ sted in

the possible per iodi c so l ut ions of sys t em ( 1) , or ( I ' ) . They are

s ome t i me s ca l l ed pe r i odic osci llati ons , and indeed, t hey r epresen t

ac t ua l oscillatory phenomena of cor re spond i ng phys ica l sys t ems . The
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periodic solutions of system (1), when this is autonomous, are often

called cycles.

System (1) is often thought of as a perturbation of the linear

system with constant coefficients dU/dt = A(O)u. Its periodic

solutions, .i f any, may have large amplitude, even if E is small.

The term F(t) in (1')' is often denoted as a "large" forcing term.

Systems (1) and (1') (for E f 0) are not any easier to handle

because E is "smalL" The phenomena which (1) and (1') may repre­

sent (resonance, nonresonance, harmonic oscillations, subharmonic,

higher harmonics, cycles' frequency depending on E for autonomous

systems, entrainement of frequency, or locking of frequency, sta­

bility of the corresponding solutions) are varied and complex

(cfr., e.g., L. Cesari [10] for some references).

We shall now mention briefly a simple process for the deter­

mination and study of periodic solutions of systems ·(1), or (1'),

and some of the related phenomena. In Part III we shall frame this

process in a general method for boundary value problems.

To begin with, let us first consider the case of a system (1)

with A = 0, or

du/dt E f(t,u,E) , u ( 2)



- 7 -

·Lamber t o Cesari

where f(t,u,E)"= (fl, .•• ,fn) is, say, defined, continuous and peri­

odic in t of period L = 2rr/ro in the · domain -00 < t < +00, lui ~ R,

lEI ~ Eo' for some R, Eo> O.

Let S denote the space of all cont i nuous vector functions

~(t) = (~l""'~n) periodic of period L, and let us~a~e in S the

uniform topology.

denote the mean value of~. Thus, ~ is the constant vector whose

components ~j are the mean values of the components ~j of~. Also,

P can be thought of as an operator P: S ·. S, and as such P is

l inear, idempotent (that is, PP = p), and is a projector operator.

Let c = (cl, ••• ,c
n)

denote any arbitrary constant vector with

Icl ~ r < R, j = l, ••• ,n, for some fixed r, 0 < r < R. Lets
c

denote the set ofall~ES,~= (~l""'~n) with ~ = c and 1~(t)1 <

R. We consider now the transformation ~ = ~ defined for every

~€S by
c

~(t) c + E J[f(T,~(T),E) - m]dT ,

Here m is the mean value of the periodic function f(T,~(T),E);

hence, f(T,~(T),E) - m has mean value zero, and J in (3) denotes

the unique primitive periodic of period L and mean value zero, so
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t ha t 1\1 ES, P1\1 = c .

Since Icl<r<R, it is easily seen that, for lEI sufficiently

small, we also have 11\I(t) I S R, and thus T: S ~ S. It is easily
c C

seen a l s o t ha t S is a convex subse t of S, a nd tha t T(S ) is com-
e c

pac t. By Schauder fixed point theorem t here i s , therefore, at least

one element UES whi ch is transformed by T in~o itself, that is, a
c

f i xed element u = Tu of T, asy U( t; c, E). Rilation ( 3) for ~ = 1\1

u, shows t hat u i s a solution of the modi f ied differential system

dU/dt E[f( t,u,E:) - m] , m Pf( t,u( t ) ,E:) •

Moreover, if we as sume that f(t,u, E) is Lipschitzian with respect to

u in the domain -00 < t < +00, lui s R, lEI S Eo' then, again for

lsi sufficiently small, T is a contractio, and thus the fixed

element u = Tu is unique a nd depends continuously on c and E.

The Guestion remains as to whether, again for lEI sufficiently

small, we can determine c = (cl' ..• 'cn) = C(E), Icl S r, so that

The equation m = 0, or m. = 0, j = l, ••• ,n,
J

is a first instance of what we shall denote the bifurcation equa-

tion, or determining equation. If C(E) is any solution of the

bifurcation equation m = 0, then U( t , C( E) , E) is a peri odic solution

of the or igina l differe ntial syste m ( 2) .
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For this process and "var i ous modifications, one of which is

mention~d below, we refer to L. Cesari [6]. A linear version of

it was proposed by Cesari in [5], and variants and applications

have been discussed by R. Gambill and J. K. Hale [17]. As men-

tioned, we shall see in Part III a more general process for boundary

value problems.

Let us consider a periodic system (1) of period T = 2rr/w of

which we want to determine solutions of some period in rational

ratio with T. Let P , ••• ,p denote the n eigenvalues of A (Which
1 n

in general depend on E), and let us separate those Pl, ••• ,P
v

which,

~s E+O, approach purely imaginary numbers P.(O) = iT = ia,w/b .,
J j J J

j = l, ••• ,v, a., b integers, b. > 0, a. ? 0, from those P l' ••• 'P
J j J J < v+ n

whose limits as E+O are complex or real numbers different from any

>number iaa!bo' bo = bl ..• bv' a integer, a <O. Here v denote any

integer 0 ~ v ~ n, and the case v = 0 is particularly simple, and

we shall not discuss it here. Correspondingly, we can reduce A

in (1) to the form diag(A ,A ), A with eigenvalues Pl' ••• 'p , A
1 2 1 v 2

with eigenvalues P l' ••• 'P. To simplify the present expositiony+ n

we assume that all roots Pl, ••• ,P
n

are simple, so that we can

reduce A in (1) to the diagonal form A = diag(Pl, ••• ,P
n).

We shall

denote by B the analogous matrix B = diag(iTl,···,iTy' Py+l' •.• 'Pn).
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Let S denote the space of all continuous vector functions

cp(t) = (cp , ••• ,cp) periodic 'of period 2b n!ro, and let us take in S
j 1 n 0

the uniform topology. Let P be defined now by Fcp = (Fcpl""'Fcpy'

0, ••. ,0). For the sake of simplicity let us assume here that f(t,u,

E) is defined, continuous, and periodic in t of period L = 2~/ro, in

the domain -00 < t < +00, lui ~ R, lEI ~ Eo for some R, Eo > 0. Let

c = (cl""'c ,0, •.. ,0) denote any constant vector (with c , .•• ,c f
v 1 v

I iTlt iwt
0) and [c ~ r < R. Let z(t) (cle , ••• ,cye ,0, ..• ,0). Let

. -BtSc denote the set of all CPES, cP = (CP1, ••• ,CPn) w~th P(e ~) = c and

Icp(t) I ~ R, so that ZES. We consider now the transformation W = ~
c

defined for every CPES by
. c

w( t)
Bt -BT .

z(t) + E e Ie [f(T,cp(T),E) - Dcp(T)]dT ,

( 4)

D diag(d , ••• ,d ,0, ... ,0)
1 v

Dc
-BT

P[e f(T,cp(T),E)]

It has been shown in [6] that it is possible to choose the primi-

. -Bt -Bt
tives in (4) so that W is periodic, WES, P[e W] = P[e z] = c.

Since Icl ~ r < R, it can be proved (cfr~ [6]) that, for lEI

sufficiently small, we also have Iw(t)1 ~ R, and thus T: S .. S •
c c

It can also be proved (cfr. [6]) that S is a convex subset of S,
c

and that T(S ) is compact. By Schauder fixed point theorem there
c

is, therefore, at least one fixed element UES , U = Tu, say
c
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U(t;c,E). Relation (4) for ~ = W

the modified differential system

u shows that u is a solution of

dU/dt

Dc

D

(B - E D)u + E f(t,u,E) ,

-Bt
PEe f(t,u(t),E)],

Again as before, if we assume that f(t,u,E) is Lipschitzian with

respect to u in the domain -00 < t < +00, [u I < R, lei < E , then,
- 0

for lEI sufficiently small, the map T: s + S is a contraction
c c

( cfr. [6]), and thus the fixed point u = Tu in S is unique, and it
c

can be proved to depend continuously uponc and E.

The question remains as to whether, again for lEI sufficiently

small, we can determine c = (cl""'c ,0, ••• ,0) = c (e), [c ] < r, sov -

thatBJ ED = A, that is,

j = l, ••• ,v •

The equation B - e D = A is the bifurcation or determini~~quation.

If C(E) is any solution of the bifuration equation, Ic(e)! < r, then

U(t,C(E),E) is a periodic solution of the original differential

system (1).
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The argument above remains the same for autonomous systems,

with the difference that now (I) = 0:.( e) is among the unknowns in

solving the bifurcation equation, and, on the other hand, the phase

in the solutions must remain undetermined, so that v is still the

number of essential unknowns.

Under sole conditions of continuity the existence of solutions

to the bifurcation equation, and hence to the original problem, can

be assured by the use of the concept of topological degree and of

fixed point theorems. Actually, the following statement byC. Miranda

has been shown to be relevant [6J. It is an equivalent form of

Brouwer's fixed point theorem. This statement concerns vector

valued continuous functions F(Z)=(Fl, .•• ,F
n)

defined on an interval

C = [z

i
opposite signs on each of the sides Z = + R. of C, then there is at- ~

least one point Z€C where F(z) = a (c. Miranda, Boll. Un. Mat. Ital.

3, 1941, 5-7).

For the case v = 1, which is the most usual one, much less is

needed, since then the bifurcation equation reduces to a single

quation in one real variable, and all is reduced to the verifica-

tion that a function F(z) of the real variable Z has opposite signs

at the end points of the interval [-R,RJ.
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For any v ~ land f smooth, much.~ore elementary considerations

based on the implicit function theorem of calculus lead to simple

and practical criteria for the existence and determination of

C = C(E) for lEI small •

. The following theorem (cfr. (6]), corresponding to the case

v = 1, is a particularly simple statement for autonomous systems

which can be derived from the above process.

Let us consider the system of first and second order differ-

ential equations

s"
2

E f1(y,y' ,E)
1 + °lYl

y': + 2a y 2
E fj(Y,y' ,E) j 2, ••• ,1l , ( 5)+ol·

J j j . J

y': + ~jYj = E f.(y,y' ,E) , j Il + 1, ••• ,n,
J J

where y = (y , ••• ,y ), y' = (Y1', ••• ,Y'), f = (f , ••• ,f ), 1 =
1 n 1..1 1 n

v ~ 1..1 ~ n, where 0j(E), aj(E), ~j(E) are real continuous functions

of E (or constants), 0 ~ E ~ Eo, and 0j(O) > 0, j = 1, ••• ,1..1,

0, j = ~ + 1, ••• ,n, and either aj(o) r 0,~/O) r
0j(O) ¥ 0 (mod 01(0)), j = 2, ••• ,1..1. We assume

or a (0) = 0,
j

a·= b = 1, ° (0) =
1

ill = T and c is now a scalar. We assume that f(y,y',E) is
o 1

Lipschitzian in y,y' and continuous with respect to E for
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/Y/ _< R, /y' I_<R, O< c < c. Forwl<w< w ,O < r <A'<
o 0 - - 0 2 1 -

"\ < A" < < R L
f\ r 2 ' 24 w, let

p( A,W)

( 1. i)

P(A ,w )
o 0

( LA)- l J~ fl ( Aw-lsinwt , o, ... ,O, Acoswt, o, ... ,o ;O)coswt dt .

If for some w 1 < w < w , A' < A < A", we have
o 0 0 2 0

0 , and p( A',W ) , p(A", W) have opposite signs , then
o 0

t her e is an c l > °such that f or every c, °S c S c
l

system ( 5)

has a t l ea s t one pe r i odi c soluti on of the form

-1
A( E)w (E) si~ E)( t+6) + O( c) ,

o( E) , j 2 , • •• ,n ,

for conveni ent 0:.(E) E[W l'w ], A( E) E[A' ,A" ] , 0:.( 0 ) = wo' A( O) A ,
o ~ 0

and the phase e i s of course a r bi t rary .

For de t a ils and proofs of this and ot he r general existence

t heor ems and cri teria for periodic sol ut i ons for systems ( 1) , peri-

odi c , or autonomous, we refer t o Cesar i [6]. See also [6] f or ex-

tens i ons to types of linea r sys t ems mor e gen era l than (1), ex t en-

s i ons t o t he ca se wher e f sat isfies weaker forms of the Li pschi tz

condi t i on, and extens ions to quasi periodic solutions.

For sys tems (1' ) containing a large f orcing t erm F(t )

(F , ••• ,F ) , say F periodic of period .L = 2rr/ w (F l arge in t he sense
1 n
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that it does not vanish with E), the existence of perturbation-type

-Btsolutions requires in general thatP[e F(t)] = O. In this situ-

ation, the linear system u' = A(O)u has a periodic solution U(t),

and the change of variables u = U(t) + v transforms the nonlinear

system (1') into an analogous system (1) without forcing term.

In the discussion above the case v = 0 is rather elementary,

and the determination of periodic solutions for the nonlinear

Qase does not require the analysis of bifurcation equations.

If we consider z(t) as the oth approximation zO(t) of the

n+l
periodic solution of system (1), then the iterated scheme z

n
Tz , n 0,1, • •• , can be used in combination with the equation

B - ED A to get successive approximations of the functions c

c(e) and of the periodic solution U(t,C(E),E) for lei sufficiently

small. Preliminary work has been done by J. K. Hale and R. Gambill

[14-17,19-24] who studied in detail this method of successive

approximations and discussed many applications of this method

(cfr. particularly [17]). A relevant improvement in the method of

successive approximations has been proposed recently by C. Banfi and

G. Casadei [2-4].

The case where the matrix A in system (1) has multiple eigen-

values has been studied in detail by C. Imaz [30] by the approach

described above.
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As mentioned, J. ~ . Hale and R. A. Gambill ,discussed i n [17J

grea t many examples by the me t hod above: e .g., t he autonomous

van der Pol equati on

u" + U
2

e( l-u )u '

the nonlinear Mathieu equati on wi t h large forcing term

2u" + 0 U A c os2wt + ( Excos 2rot + Cu3)

t he van der Pol equation wi th mi l d forcing t erm:

2
u " + 0 U

2
E(l- u )u' + e p~os(rot + ex)

t he gene ralized van der Pol equa tion .

2
u" + 0 U e(1_u

2m
) U' + E pacos(rot + ex) ,

wi th m i nte ger and l a r ge (almost square characteristic func tion);

t he sys t err. of t wo nonlinear Ma t hi eu equations

u"
2

+ °lu

v"
2

+ °2v

3 2e( Au -;. Bu cos t + Cu + Duv ) ,

3 2
E(Ev + Fy cos t + Gv + Hu v)

the autonomous sys t em of two no~linear equa tions
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II ( 2 2) ,u + u - E l-u -v u

II (2 2) ,v + 2v - E l-u -v v

with

fl( - u, v, v ')

For i ns t ance, t he latter sys tem has, for lEI sufficiently small, t wo

cycle s gi ven by

u

and

~sin(rot + ~) + a(E)

2 + a(E) ,

v = a( E) ,

1 + aCe:) ,

u a( e:) v = ~sin(rot + ~) + a(e:)

1/2
2 + a( E) , 1/2

ro = 2 + a(e:)

J. K. Hale [21,24] proved! by the same method above, the existence

of families of periodic solutions and 01 cycles for systems (1)

under suitable symmetry relations .
I

af a number of Hale's theorems concerning families of periodic

sol utions of systems (1), we report here only one concerning autono-

mous systems (under sole Lipschitz hypotheses as proved in [6]).

This theorem guarantees the existence of a (n - ~ + 2)-parameter

family of per i odi c solutions (cycles) .
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Let us consider the autonomous system

2y" + a y
j j j

y'
j

j

j

1, •.• ,~ ,

~+l, ••• ,n, (6)

Lipschitzian with respect

!y' I ~ R, 0 < E ~ Eo.

= (Yl', ••• ,y'), f = (fl, ••• ,f ), where f is
~ . n l

to y, y' and continuous in E for Iyl ~ R,

( I ..ii) Let us assume, for f 1 only, that

and that either all f
j

, j = l, ••• ,n, are odd in (Yl' ••• 'y~), or f l

is even and f 2, ••• ,fn are odd in (Y2' ••• 'Y~,Y~). Suppose aleE) > 0,

j = l, ••• ,~, are continuous functions of E (or constants), with

Take ill = 0
1

( 0) , and let r be
o 2

any number 0 < r
2

< R. Then there exists an El, 0 < El < Eo' such

that~ for all E, Al, ~ , ••• ,~ , 0 < Al, ~l' ••• '~ < r 2, 0 < E <
, 1 n-IJ. n-~ -

E
l,

system (6) has a real periodic solution of the form
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j 2, ••• ,~

j ~ + l, ..• ,n

where Yl is odd or even in t, Y2' ••• 'Y are odd, y , ••• ,y are
~ ~+l n

even, where ill = ~e,Al,T}l, ••• ,T} ) is a continuous function of the
n-~

same parameters, ill = ill for E = 0, and t can be replaced by t + e,
o

the phase e being arbitrary.

The following examples, all derived from the statement above or

by analogous theorems (cfr. [21,24,6]), may illustrate the situa-

tion. For instance the simple equation

u" + u ef( U,U') ,

with f(O,O) = 0, and either f(u,-u) = f(u,u'), or f(-u,u') =
-1

-f(u,u'), h~s a family of cycles of the form u = Aill COS(illt + ~) +

-1
O(e), or u = AID sin(rot + ~) + O(e), with ill = ~A,e) = 1 + o(e), A,

~ arbitr~, lei sufficiently small. We may take for instance

2 '2
f = u + u + U , or f = luI + lu'l, or f = lulu'. As another

example we may consider the system

u" + U e( 1.-1 v'l)u' , v" + 2v = e(l-Iul)v' ,
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which has two families of cycles respectively of the forms

-1
u = A(I) cos«(I)t + ~) + O(e)

(I) c.r( A,e) = 1 + o( e) ,

v 0( e) ,

and
u = O( e) ,

-1
v = Am cos(~ + ~) + o(e) ,

(I) c.r(A,e)
1/2

= 2 + o( e) ,

A, • arbitrary, lei sufficiently small.

As a further example let us consider the third ' order equation

uti, 2 ,
+ cr U Ef(u,u',u",e) ,

where f(u,-u',u",e) .= -f(u,u',u",e). J. K. Hale proved that this

equation has a family of cycles of the form

with u(c
l,c2,e,-t)

= u(c ,e ,c,t), where crt can be replaced by
. 1 2

crt + ., cl' c2' • arbitrary, Icll, Ic2' ~ r
2

< R, and lei suffi-

ciently small. Thus, for lei sufficiently smal~, the third equation

above has a three-parameter ' family of cycles.

Also, t he question of the .asympt ot i c stability of the periodic
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solutions of system (1), and of the asymptotic orbital stabilit,y pf

cycles of autonomous systems, can be discussed by using essenti~y

the same technique, as shown in papers by Cesari [9], J. K. Hate

[20,26-28], R. A. Gambill [14-16], H. R. Bailey and R. A. Gambill

[1] •

A. Halanay in his book [18] described the method of successive

approximations mention~d above. More extensive accounts ~f the

research described in this Part I are in the books by J. K. Hale

[29] and by Cesari [10] . Finally, it should be mentioned here that

J. Mawhin, by the more general method we shall describe in Part III

for boundary value problems not necessarily of the perturbation type,

has improved some of the results for problemS of the perturbation

type which had been obtained by the present approach (see Part III

for references to Cesari's extended method and papers by Mawhin).

References for Part I

[1] H. R. Bailey and R. A. Gambill, On stability of periodic
solutions of weakly nonlinear differential equ~tion8, J. Math.
Mech. 6, 1957, 655-668.

[2] C. Banfi, Sulla determinazione delle soluzioni periodiche di
equazioni non lineari periodiche, Bo11ettino Unione Mat. Ita1.
(4) 1, 1968, 608-619.

[3] C•. Hanfi, Su un metodo di successive approsstJnazi0l?-i .per 10
studio delle soluzioni periodiche .di 'si s t emi debo1mente non

. lineari, Atti Accsd , ScI. Torino 100, 1968, 1065-1066.



- 22 -

Lamberto Cesar i

References for Part I (Continued)

[4] C. Banfi e G. Casadei, Calcolo di soluzioni periodiche di
equazioni differenziali non lineari, Calcolo, vol. 5, suppl.
1, 1968, 1-10.

[5 ]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

\
L. Cesari, Sulla stabilita delle soluzioni dei sistemi di
equazioni differenziali lineari a coefficienti periodici,
Mem. Accad. Italia (6) 11, 1941, 633-695.

L. Cesari, Existence theorems for periodic solutions of
nonlinear Lipschitzian differential systems and fixed point
theorems. Contributions to the theory of nonlinear oscil­
lations 5, 1960, 115-172 (Annals of Math. Studies, Princeton,
No. 45).

L. Cesari, Second order linear differential systems with
periodic L-intcigrable coefficients (with J. K. Hale). Riv.
Mat. Univ. Parma 5, 1954, '55-61.

L. Cesari, A new sufficient condition for periodic solution of
weakly nonlinear differential systems (with J. K. Hale).
Free. Am. Math. Soc. 8, 1957, 757-764.

L. Cesari, Boundedness of solutions of linear differential
systems with periodic coefficients (with H. R. Bailey), Arch.
Ratl. Mech. Anal. 1, 1958,' 246-271.

L. Cesari, Asymptotic behavior and stability problems in
ordinary differential equations, vii + 271. Ergebn. d. Math.,
No. 16, Springer Verlag 1959; 2d ed., 1963; 3d ed., 1971.
Russian ed , , MIR, Moscow 1964.

L. Cesari, Existence theorems for periodic solutions of
nonlinear differential systems. Symposium Differential Equa­
tions, Mexico City 1959. Boletin Soc. Mat. Mexicana 1960,
24-41.

.L. Cesari, Branching of cycles ' of autonomous nonlinear differ­
ential systems. Math. Notae Univ. Litoral, Rosario, 1, 1962,
231-247.



- 23 -

Lamberto Cesari

References for Part I (Continued)

[13] L. Cesari, Un nuovo criterio di stabilit~ per le soluzioni
delle equazioni differenziali lineari. Annali Scuola Normale
Sup. Pisa (2) 9, 1940, 163-186.

[14] R. A. Gambill, Stability criteria for linear differential
systems with periodic coefficients, Riv. Mat. Univ. Parma 5,
1954, 169-181.

[15] R. A. Gambill, Criteria for parametric instability for linear
differential systems with periodic coefficients. Riv. Mat.
Univ. Parma 6, 1955, 37-43.

[16] R. A. Gambill; A fundamental system of real solutions for
linear differential systems with periodic coefficients. Riv.
Mat. Univ. Parma 7, 1956, 311-319.

[17] R. A. Gambill and J. K. Hale, Subharmonic and ultraharmonic
solutions for weakly nonlinear systems, J. Ratl. Mech. Anal.
5, 1956, 353-398.

[18] A. Halanay, Differential Equations, Academic Press 1966,
particularly pp. 308-317.

[19] J. K. Hale, Evaluations concerning products of exponential and
periodic functions. Riv. Mat. Un. Parma 5, 1954, 63-81.

[20] J. K. Hale, On boundedness of the solutions of linear differ­
ential systems with periodic coefficients, Riv. Mat. Univ.
Parma 5, 1954, 137-167.

[21J J. K. Hale, Periodic solutions of nonlinear systems of dLffer­
ential equations, Riv. Mat. Univ. Parma 5, 1955, 281-311.

[22] J. K. Hale, On a class of linear differential equations with
periodic coefficients, Illinois J. Mat. 1, 1957, 98-104.

[23] J. K. Hale, Linear systems of first and second order differ­
ential equations with periodic coefficients. Illinois J. Math.
2, 1958, 586-591.



- 24 ' -

Lamberto Cesar i

References for Part I (Concluded)

[24] J. K. Hale, Sufficient conditions for the existence of peri­
odic soluti~ns of systems of weakly nonlinear first and second
order differential equations. J. Math. Mech. 7, 1958, 163-172.

[25] J. K. Hale, A short proof of a boundedness theorem for linear
differential systems with periodic coefficients, Arch. Ratl.
Mech. Anal. 2, 1959, 429-434.

[26] J. K. Hale, On the behaovior of the solutions of linear
periodic differential systems near resonance points. Contri­
butions to The Theory of Nonlinear Oscillations, vol. V,
pp. 55-89, Princeton Univ. Press, 1960.

[27] J. K. Hale, On the stability of periodic solutions of weakly
nonlinear periodic and autonomous differential systems,
Contributions to the Theory of Nonlinear Oscillations, vol. V,
pp. 91-113, Princeton Univ. Press, 1960.

[28] J. K. Hale, On the characteristic exponents of linear periodic
differential systems, Bol. Soc, Mat. Mexicana (2) 5, 1960,
58-66.

[29] J. K. Hale, Oscillations in Nonlinear Systems, McGraW-Hill
1963.

[30] C. Imaz, Sobre ecuaciones differenciales lineales periodicas
con un parametro pequeno, Bol. Soc. Mat. Mexicana ( 2) 6,
1961, 19-51.



- 25 -

Lamberto Cesari

II. PERIODIC SOLUTIONS OF NONLINEAR HYPERBOLIC
PARTIAL DIFFERENTIAL EQUATIONS

Here again, as in Part I, we describe anoth~r ~spect of the

same process of which we shall see a more general form in Part III

for boundary value problems. We shall consider here the question of

the possible periodic solutions of nonlinear differential equations

of the type

u
xy

f(x,y,u,u ,u ) ,
x y

u (1)

or of the systems of nonlinear wave equations

u
xx

u
yy

f(x,y,u,u ,u ) ,
x y

u

or of other systems of nonlinear hyperbolic partial differential

equations. Here again it was shown by Cesari [1-6] that, by taking

into consideration suitably relaxed problems, it is possible t o

prove, for '.he relaxed problems, general existence theorems, unique-

ness theorems, and theorems of continuous dependence upon the data.

The solutions of these relaxed problems are then solutions of the

or i gi nal problems whenever corresponding "bifurcation equations" can

be satisfied. J. K. Hale, D. Petrovanu, G. Hecquet, and others have

further developed this kind of argument in the present context.
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As an example, 'l et us consider the problem of the solutfons

u(x, y), of sys t em (1), periodic in x of some period L in a strip

-00 < x < +00, -a :s y :s a, with a >0 suf'f'LcLerrtIy small, and f also

periodic in x of period L. Cesari [1,5] found that a suitably re-

laxed problem is of the form

u
xy

f(x,y,u,u ,u ) - m(y) ,
:x; y

m(y)
-1 L

L f
O

fdx ,

and this corresponds to the projection operator P mapping any func-

tion v(x,y) periodi~ in x of period L, into its mean value Pv with

respect to x. The solution u(x,y) of the relaxed problem is uniquely

determined by Darboux data u(x,O) = u (x), u(O,y) = v (y) + U (0),
o 0 0

v (0) = O. Criteria are then given in order that, for a given u (x),
o 0

we can determine v (y), -a < y < a, for a > 0 sufficiently small, in
o --

order that the bifurcation equation m = 0 be satisfied. One of these

criteria was actually derived in [5] from a novel implicit function

theorem of the hereditary type based on functional analysis (Cesari

[4]) •

As another example, let us consider the problem of the solutions

u(x, y), (x,y,)EE
2,

periodic in x and y of a given period L, of system

(1) with f also periOdic in x and y of the same period. Cesari [3]

found that a suitably relaxed problem is of the form
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uxy

m(y)

f(x,y,u,u ,u ) - m(y) - n(x) - ~,x y

-1 L -1 L
L fa fdx, n(y) = .... L fa fdy, ~

-2 L L
L fa fa fdxdy,

corresponding to the projection operation P mapping any doubly peri-

odic function v(x,y) into Pv, the sum of the mean values of v with

respect to x, with respect to y, and with respect to (x,y).

Let us consider more closely the last mentioned problem. Let

and let R denote the set R = E2 x [u,p,q,eEn' lui s~, Ipl S M2,

Let u (x), v (y) be periodic functions of period L, con-
o. 0

tinuous with their first derivatives u'(x), v'(y), satisfying
o 0

vo(o) = 0, luo(o)! s N, lu~(x)1 S Nl, Iv~(y)1 S N2, and let f be con­

~inuous in r with .lf(x,y,u,p,q)I S K, and

If, in addition,

2Lb
l

< 1 , 2Lb
2

< 1 , (4)

then Cesari [3] proved, by application of Schauder's fixed point,.


