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A. Figa-Talamanca

Introduction

In these lectures I shall present some aspects of
the theory of random Fourier series on compact topological
groups. The results presented here are taken largely from
the papers of S. Helgason [8], A. Figa-Talamanca [4], [5],
A, Figa-Talamanca and D, Rider [6], [7] and D, Rider [14].
For the classical case these results are contained, in the
treatise of A, Zygmund [19] and in the monograph of
J. P. Kahane [11] as well as in the original papers which
are quoted there. There is some overlap between the exposition
given here and that given in the second volume of [9] by
E, Hewitt and K, Ross, However the point of view is different
and in some cases, aiming at a less complete exposition of the

subject matter, I have been able to shorten some of the proofs,

In Chapter I, I give an account, without proofs, of
some of the classical results. In Chapter II I begin with
a preliminary section in which I state the results from the
general theory of compact groups, that I need in the sequel.
In the succeeding sections I present extensions to the
noncommutative situation of the results stated in Chapter I.
Basically very little knowledge of probability theory is
needed to understand these lectures. I do not define the
notions of probability space, random variable and indepen-

dence. In order to treat the case of L° in section I7.5
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some more sophistication in probabilistic reasonings is
required, Chapter I of [11] is a convenient, concise ref-
erence for the probability methods needed in the theory of

Fourier series.,



I.1.

_ 5.
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CHAPTER I

Littlewood's theorem, Many problsms in the theory of

Fourier series can be formulated roughly as follows: Suppose
that f is a function (a measure, a distribution) defined on

[0,27) and let
. r .
) =g [ fxe™ax, n=0,%1, ..,
70

be its Fourier coefficients, How are the properties of f
N
reflected in properties of the sequence {f(n)}n= j: and

vice versa?

It is well known, for instance, that f € L2 if

and onlyiif ¢ I%(n)l2 <o, This theorem (which is called
the Riesz-Fisher theorem) constitutes in a sense a model of
characterization of a function space, in terms of the Fourier

coefficients of its elements.

It is natural to conjecture that some analogue of
this theorem should hold for LY spaces when p#2 . Asa

matter of fact this is not the case, that is: No condition

on the moduli Ig(n)' of the Fomrier coefficients of a

function f can be necessary and sufficient for f to be

a member of LY, when p#2.

This remarkable result is a consequence of a theorem

of J. E, Littlewood [12], proved more than 55 years ago:

+

DHEOREM I.1.1. Let <t |a|?<e and p>1, then there
= =N — —
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exist complex numbers 'fh of modulus one, such that

(1.1) r a ¥t

= <0
P T2
represents a function in L' ., Vice versa if = |a | =w,
n= -0

then there exist complex numbers 't of modulus one, such

that (1.1) is not the Fourier series of a function in .

This theorem is probably the first application (although
in implicit form) of random Fourier series to harmonic analysis.
Littlewood in his proof never mentions random variables or
probability, but many concepts relevant to the theory of

random Fourier series are developed in this important paper.

The probabilistic content of Littlewood!s theorem
became apparent five years later, when R,E.A,C, Paley and
A. Zygmund in a series of papers [13] investigated not only
the series

* inx
(1.2) n=F4n a, Yt
(where the +h are now interpreted as independent random
variables uniformly distributed on the unit circle), but
also the analogous series,

+ ™ + ©

inx inx
(1.3) T a e = ¢ +ae
n= o o )fn n=-o0_" D ’

where the ﬁz are independent random variables with

values +1 and -1 and mean zero, It is immaterial
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whether the ' ~or |, are indexed by the integers or the

positive integers.

In the next sections we shall discuss some of the
properties of these series which were discovered by Paley
and Zygmund and which are in a sense related to the theorem
of Littlewood. In section 3 I will present an application of
the results of Paley, Zygmund and Littlewood to lacunary series,
finally in section 4 I will present the results of P, Billard

(1] and [2],0n bounded and continuous random Fourier series,

I.2, The case of Al (p < ™) . Paley and Zygmund give the
the following much stronger version of Littlewood's theorem

(Theorem I.1.1.)

THEOREM I.2.1, The series (1.2) or (1.3) represent almost

surely a function in i if and cnly if they represent

almost surely a function in (. P,

po
In order to prove this theorem they establish two basic
lemmas concerning the independent random variables # ~ and
+h . It is convenient to realize Pﬁ and qh as functions
defined on the interval [0,1] , this can be done quite simply
as in [11, Chapter I]. For the sake of convenience I will
only state the two lemmas of Paley and Zygmund for the

functions ’/h . Entirely analogous results hold for the

functions ‘Jn .
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LEMMA 1.2,2, Let s be a positive integer, s > 1, then

1
. 1%s 8.S 2,8
fo za, @ 1“5t 44%5(z]a 7).

00
LEMMA I.2.3. Let zllanl?' <o, let M [0,1] be a set of
n=

positive measure and e > O . Then there exists a finite set of

indices F , such that

2 , 2
m(M) niF Ianl <(1+e€) &lnip angtn(t)l dt

The first lemma is basically already contained in the
work of Littlewood [12], at least for the functions &K].
It implies that for series of the type Zfa 4 , all the LF
norms, for p> 2 , are equivalent to the L2 norm and
specifies a very precise bound for the norm of the embedding
of this subspace of ¥ into L2 . From the lemma it also
follows easily that actually all the ¥ norms (1< p<x)

are equivalent for the series in question,

The second lemma originates in the work of Zygmund
on lacunary series [18]. It says essentially that if a series
T an‘Y; is square summable on a set of positive measure, then
it is square summable on [0,1]. This lemma is essential to
show that if the random Fourier series (1,2) and (1.3) are
in L1 with positive probability, they are actually in
12 with probability one. It is also used in the proof of
Billard's theorems on randomly continuous Fourier series (see

section 4).
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I will not give proofs of these lemmas here, nor will
I show how to obtain Theorem I.2.1 from them. The proofs can
be found i. Zygmund's treatise [19, v.I, p. 213]. The re-
sults which will be proved in the second chapter will actually

imply both the lemmas and the theorem,

Lemma I.2.2 can also be used to prove interesting
sufficient conditi ons for the series (1.2) and (1,3) to
represent almost surely continuous functions. (The link
between LT norms and continuous functions is provided by the
fact that if £ e L¥ and g € LY with 1/p+ 1/g=1, then
f * g, the convolution of f and g is continuous and
Ifxell, < ”fﬂp“gnq) . The theorem on randomly continuous

functions, also due to Paley and Zygmund is the following:

+

THEOREM I1.2.4, Let © |a |? (log|n[)**€ <= for some

e >0 then the series

t ™ inx
z an’fne ,
n= o

represents almost surely a continuous function with uniformly

convergent Fourier series.

This theorem is a consequence of the following lemma,

also due to Paley and Zygmund [13],
N inx
LEMMA I.2.5. Let Sy(x,t) = § aly(t)e™™ | Define

M (t) = S:p ,SN(x,t)l ,
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Then there exists an absolute constant ¢ such that
1 I N o7

| mylerae < cllog M ( ﬁlanl ).

[o] -

A proof of Lemma I.2.5 can be obtained directly from
Lemma I.2.2, In fact in Chapter II we will give a proof, due
to D, Rider [14] of an extension of I.2.5 based on a generaliza-

tion of I.2.2,

I.3. Applications to lacunary series. A sequence of positive

integers {nk} is said to be Hadamard lacunary if, for some

nx

A>1, nk+l/"k >N . A Fourier series Eanei is called

Hadamard lacunary, or simply lacunary if a, = 0 except for

Il

tn , where n is a Hadamard lacunary sequence. Lacunary
series have a number of interesting properties; we are concerned

here only with two of these properties:

I) Let E={+n]} and n](+]_/rxk >N > 1. Then there exists

a constant B, which only depends on A, such that

T |a.| < B sup | inx
nel’s:I nl - xp IIIEE ane ’

for every trigonometric polynomial of the form

inx
z ae .
neE

II) Let E={tn}, nk+l/nk27\.>l and 1< p<x,.

Then there exist positive constants Bp and Cp which

depend onlxg% A and p, such that .

21 . 1/
2,2 1 nx 2,2
T lanl ) <5 [o | £ ane1 lpdx} P< Bp( T Ianl )"

c (
P nek nek nek
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inx}

Property II is the analogue, with f{e instead

nek
of {¥,} or {¥]}, of Lemma I.2.2, Also I) expresses a
property which is shared by (¥} and {\;} . Indeed

= &Y
la, | = sup |z a4, (0] < 2 sup [z ayy (0]
for all finite sequence of complex numbers {an} .

A proof of II) can be obtained mimicking the proof of
Lemma I.2.2, However II) can also be deduced from I) using
random Fourier series or more specifically using Lemma I.2,2 and
this indirect proof yields more precise estimates of the con-
stants Bp and Cp . This was first noticed by Zygmund who
gave the indirect proof in the second volume of his treatise.
His reasoning was generalized by W, Rudin [15] and it is
Rudin's treatment of this subject that I shall present
(cfr. also [16]).

DEFINITION. Let E be a subset of the integers. Then E

is called a Sidon set if every trigonometric polynomial of the
inx

form T a, e
nek

depends on E ,

satisfies, for some B > 0 which only

(3.1)

z inx
a| <Bsu r ae .
HGEI n' - xp ,nEE n I

THEOREM I.3.1. Let E bg a Sidon set and B the constant
appearing in the inequality (3.1). Then for trigonometric

inx

polynomials of the form ¢ ae )
- nek
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1
inx 22
(3.2) Mg ae “gB\/;(z:]anl),for 2<p<w,
neE p nek
The proof of this theorem is based on an application of
the theory of random Fourier series. Later on in Chapter II,
I shall present a proof of an extension of I.3.l. to general

compact groups.

One interesting aspect of Budin's theorem is that no
subset of the integers is known which satisfies the conclusion
of the theorem and is not a Sidon set., It might very well be

that the property expressed by (3.2) characterizes Sidon sets.

I.4. The case of L” . Although we spoke already of

randomly continuous Fourier series, up to now we have only
considered direct applications of the LF inequalities

(p <) , expressed by I.2,2 and I.2.3, We shall consider
now results which are essentially different from those discussed
in the previous sections. These are Billard's results on
randomly continuous and randomly bounded Fourier series [1] and
[2].

THEOREM I.4.1. Suppose that

+ o
; inx
N
(4.1) T a ¥ (tle ,

n= 00

represents with probability one, a function in L® . Then,

almost surely; (4.1) represents a continuous function with

uniformly convergent Fourier series.
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This result is more recent than those stated in
section 2. It contains the solution of a problem posed in
the second edition of Zygmund's book [19, v. I, p.220] and
makes use of techniques described in the previous section.
In a sense Billard's theorem is a "natural™ result not for
the series (4.1), but for the series of the type

+ oo

.2 \ inx ,
(4.2) n___:_m a ¥, (t)e

and it is only with considerable effort that one can deduce
a result for the series (4.1) from the corresponding result

for (4.2).

I.5. More general random Fourier series. It is natural to

consider besides the series Eﬁfhanelnx and E‘fhanelnx )

also more general series such as
+ o©

(5.1) r Xel™
n= 0

where Xn are independent complex valued random variables,

defined on a probability space £L . It turns out that a

seemingly mild condition on the X namely that Xn and

n )
- X have the same probability distribution (i.e. the X
arebsymmetric), for each n , is sufficient to insure that the
substance of the results df the previous sections remain true.

This interesting observation was first made by Kahane [10].
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His argument coupled with Theorem I.2.1 and Theorem I.4.1

yields the following:

THEOREM I.5.1. Let X = be independent symmetric random

variables, then

1) if (5.1) represents with probability one an integrable

function, it represents with probability one a function

in N LP
p®

2) if (5.1) represents with probability one an element of

L°, then it represents with probability onme, a

continuous function.

I will present a proof of 1) only, based on Theorem I.2.1.
Let (5.1) represent an integrable function with probability
one, then because of the symmetry of the Xn , the series
+ ™ .
T+ X X
=0 0

represents an integrable function with probability one, for

every given choice of signs + or - . Thus if we define the
v '

random variables ‘Pn(w) on a space fL , to be indepen-

dent random variables with mean zero and values + 1 , the series
' :
(5.2) £f, (W)X (@)e'™

is in L} with L)L -probability one, for every w' enN.
Let M be the subset of Nxn’ consisting of all
rairs (W) for which (5.2) is in b, . By Fubini's
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theorem M has measure one therefore the set
Py ™ {w': (co,w' ) € M} has measure one for a set of W e (L
which has measure one. Thus by Theorem I.2,1 for a set of

W € SL of measure one (5.2) is in QD tf owith O

probability one., Applying again Fubinits theorem we obtain that
at least for fpm fixed w' e.Q..', (5.2) is in ﬁ LF
p>

with ._(L-probability one, Finally, since the Xn are
symmetric and ’!Pn(w' )X @) =+X (), we conclude that

(5.1) is in N P , With probability one,
pe
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CHAPTER II

I1I.1, Preliminaries., In this section we will review briefly
the general theory of Fourier series on compact grougs.
For a very thorough treatment of harmonic analysis on
compact group the reader is referred to [9].
Let G be a compact topological group, We let m
be the unique normalized Haar measure of G , that is a
positive Borel measure such that m(G) =1 and m(Ex) = m(E),
for every Borel set EC G and x € G . The integral

with respect to the Haar measure will be denoted by

ffdx.
G

A unitary representation of G , is a homo-

morphism U, mapping G into the group of unitary
operators of some Hilbert space -fg . We will only

consider representations which are strongly continuous, that

is U(xa)u —> U(x)u for every u e f%, if o x —>x.
A unitary representation is called irreducible if there
exists no proper subspace Y7L of 76 such that
U(x)7C YIC for every x € G, The follwing result is

basic in the theory of compact groups: if U is an

irreducible unitary representation of G into the group
of unitary operators of a Hilbert space fg , then the
dimension of 16 is a finite number d . This number is

called the degree of the representation U .
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Let U; and U, be two unitary representations of
G and let ‘451 and '132 be their associated Hilbert spaces.
If there exists a unitary map V of -61 into ‘gz such that
VU(x) = U(x)V for all x , then U and U, are called

unitarily equivalent., The relation of unitary equivalence is

an equivalence relation, We denote by L the set of
equivalence classes of irreducible (hence finite dimensional)
representations of G , defined by the relation of unitary
equivalence, If @€ and 19 isa representative

member of ¢, then the degree dd‘ of U0 only depends
on o . Similarly if tr denotes the ordinary trace of
operators on finite dimensional Hilbert spaces, the function

tr(U°’(x)) ='1rro_ (x) , only depends on o , The functions

tr(AU°—(x)), where A is an operator on the dd_-dimensional
space 1?0_, where UG—(x) operates, are called the

coordinate functions of U, Since tr isa unitary

invariant the set of coordinate functions does not change
if we consider a representation Ug_ equivalent to v

We may speak therefore of the coordinate functions of o~ .

Another important result is the following:

The set of coordinate functions of irreducible unitary

representations of G separate the points of G . In

other words if X,y € G and x #y , there exists a
unitary irreducible representation U , such that
tr(AU(x)) # tr(AU(y)) for some opeaator A acting on the

space where U(x) and U(y) are defined,
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A consequence of this result is that the algebra
generated by the functions of the type tr(AU%(x)) with
ocer and A an operator on ’%oq is dense in C(G) .
We shall see now that the vector space spanned by the coordinate
functions is already an algebra. For this we need the defini-
tion of tensor product of two finite dimensional representa-

tions.

Let U; and U, be two finite dimensional representa-
tions of G and -g 1 and *62 their associated Hilbert
spaces, of dimension dl and d2 respectively, Let

Upy ey Yy be a basis for 1 and Vi, «ee, V a

d2
basis for ‘gz . Let ‘61 ® gz be the Hilbert space of
dimension d;Xd, . We denote the elements of an orthonormal
basis in ‘81 @‘%2 by ® vi,i=1, ey dy;

i=l eeey 4y Define for x € G the unitary operator

U1 @ Uz(x) with the formula:

<y @ Uy (x)yy @vj, w @ v, > =< Up(x)ug,u > < Uplx)vs, vy >

where <,> denotes the inner product in each of the Hilbert
spaces considered, It is easy to see that, for each x ¢ G,

U @ U,(x) is a unitary operator on ﬂl ® '62 .

Similarly if A and B are operators on ‘6 ; and
@2 respectively, we define A @ B on gl ®‘62 as

follows:
<A @B u; ® Vi Yy @v, > =< Au;,u >< Bvj,v, >
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A computation shows that
tr(AUl(x))tr(BUz(x) = tr(A@BU:L @Uz(x)) .

In general the representation U, (x U, is not irreducible,
even if both U; and U, are irreducible. However U;(®U,

is finite dimensional and therefore it is equivalent to the

direct sum of irreducible representations in the following

sense: there exist mutually orthogonal subspaces M‘zl, ,m

of *Kl@ﬁz , whose sum is ‘616;)7‘)’2 and which are

invariant under the action of U; (® Up(x), x € G and such

p

that the restriction representations U;, i=1, <.y p
defined by U;(x) =10 x U, (x) are irreducible, This

means in particular that, with an appropriate choice of basis

for ‘61 @ﬁz

p
< Uy @ Uy (x)uy @u , uh®uk >—L2 < U ®u‘], uy @y > .

This implies that if A is an operator on 731@7?2 ,
then tr(AU1®U2(x)) is a linear combination of functions

L
of the type tr(BU;(x)), with UJ. irreducible representations,

Now denote by J(: the space of all linear combinations
of functions such as tr(AUd—(x)) where €I . In
other words @ is the linear space of all coordinate
functions. Then the remarks just made imply that % is an
algebra under pointwise multiplication. An application of
the Stone-Weierstrass theorem yields that @ is dense in

C(G) and therefore in LP(G) for p <o, The elements of

J(pare often called trigonometric polynomials.
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For o€ £ we have already introduced the notation
%, (x) = tr(U° (x)) . The function %, is called the
character of o6-. We have that: an element ¢7€ £ is completelv
determined by its character. That is if tr(U;(x)) = tr(U,(x))
for every x€ G, and U; and U, are irreducible representa-

tions of G, then Ul is equivalent to 02 .
Finally we mention the so-called orthogonality relations for

irreducible representations:

I) Let o, T€T and 6# T, let A and B be operators

on ‘go, and ‘f@- respectively, then

/G tr(AUo-(x))tr(BU?(x))dx =0

II) Let U be an irreducible representation of G and f
its associated Hilbert space. Let Upy eeey Uy be an

orthonormal basis in ﬂ . Then
1
. . = . .
fG< U(x)ul,uJ >< U!xiuh,uk > dx 3 81h83k

I) and II) together imply that if u‘{, coey ug are
o

orthonormal basis in the spaces fcr , then the set
1

V)
(a2

< UO(x)ugg,ug—x cezL,1<1i,j< dcrl forms an
orthonormal set of continuous functions in LZ(G). Furthermore
this set is complete because it spans ”ﬁ which is dense

in C(G) .
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It follows then that if f ¢ L2(G) and we define

6 — oy (o g
Cij(x) =< U (x)ui , uj >

and

A o
f(o‘)ji = [Gf(x)cij(x)dx = ./c;f(x) Cg—i(x"l)dx

then
P ¢? (x)
= 0)..C.(x
e i,5=l 7 Jjiige
in the sense that the series converges to f in L2 . Moreover
d
o A
fG[f(x)lzdx= 5o do,]f(o*)ijlz
oer i,;j=l

We now define f(c™) to be th A
e now define o o be the operator on e
given by the formula

4N
(1.1) £(o) = _/Gf(x)u"'(x'l)dx :
Thus with respect to the basis ug: ceey ui— , the
o

A
operator f(o~) is represented by the matrix

Ay = (/f\(o—)ij) . and

o f(o) ., ¢7(x) i £(o-)..€ (x) (A U° (x))
T L. Cix)= T 0)..C;.(x) =¢tr [ x)) .
i,j=1 i =1 i=1 a1 1) o
Furthermore d
2 o), |2 = tr(aah)
R ij oo °

i,5=

In conclusion we have that
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- o
(1.2) f(x) —o% 2dojcr(;\(ru (x))
and
2 X
(1.3) f(x)|“dx = ¢ d_tr(AA) .
[G, (| ces O rib

One should notice that (1.2) and (1.3) imply that a unitary

representation U is irreducible if and only if

.[Gltr(U(x))lzdx =1,

A

Pefine now f(o-) to be the Fourier coefficient of f at o7,
”

0f course f(o) is defined up to unitary equivalence, We will

also call the series in (1.2) the Fourier series of f .

Since (1.1) makes sense also if f € Ll(G), we will say
that a series

(1.4)  d_tr(a0%x)) ,
o€ [0} (o

represents a function f € Ll(G), if

A_= /f(x) Uo_(x'l)dx .
T ¢
For convenience we shall suppose from now on that a fixec
representative U° has been chosen for each o€ £ and that
a fixed basis ui; cees “gl,’ has been chosen in each E/% .
0

AN —
Thus we will identify the operators f(o~) and 0% (x) with

the matrices which represent them,

We recall now the definition of convolution between two

integrable functions on G . If f, g€ Ll(G) , then, by
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definition

f*g(x) = fo(xy'l)g(y)dy .

The value f*g(x) is defined and finite almost everywhere,

trg € L' and ¥l < Il Jeny . 1f £ e LF and

g€ LP'(l/P +1/P*=1) , then f*ge C and llf*glLo

< “fﬂpngﬂ P Finally if f ¢ L1 and g e R , then f*g ¢ 23
d Nfxgl £ .

and fif*gh € NFl)y flell,

An important property of convolution is the following:
if
-1
(1.5) A= | £(x)0%(x"*)dx
o '[G )
and
-1
B°,= ng(x)Uo-(x )dx ,
then
= 0~
AOBO.-— /Gf*g(x) U7(x¥*)dx

In particular, if y (x) =tr(0%(x)) and f € L}(G) , then
Zoff(x) = tr(AO_Uoﬂ(x) = f*) (x), where A is defined by (1.5).

Thus if ey = d{r . (1.2) can be written as f(x) =% f*eoix).

A central function in Ll(G) is an integrable function

’
g , such that f*g(x) = g¥f(x) for every f € L (G) .
Characters '7(0, are central functions. Conversely every
central function g has a Fourier series development of

the type
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(x)ny T g* =T =z (x)),
g(x)nu gre (x) R a,24(x) L ad tr(U7(x))

ocez

where a_ are complex numbers,

An approximate identity in Ll(G) is a net of integrable

functions {h_} , such that limh *f =f (in the L' norm),
a

and |l |l; <M. We shall use in the sequel the fact that there

exists && approximate identity in Ll(G) , consisting of

central trigonometric polynomials, that is consisting of

finite linear combinations of characters 7(0,.

Random Fourier series. Let {L be a probability space and

let Xo(‘")’ W EN, 6 €L, bea set of independent
random variables with values in the algebra of linear operators
on @o_ . A natural analogue of the series considered in

I.5 are the following series
(2.1) £ dtr(X U (x))
I Gt

where X varies in the compact group G . (Recall that I
is the space of (equivalence classes of) irreducible

representations of G)).

We would like to find conditions on the random
variables Xo,_ which will allow us to extend the results
stated in Chapter I. This means that we would like to find

conditions on the X - which will allow us to conclude that

1) if 2. tr(X 197 (x)) € 1! with probability one,
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then, almost surely it belongs to M P,
po

II) if zdd_tr(XO.Udﬁ(x)) € r° with probability one, then

it represents almost surely a continuous function,

It is possible to translate Kahane's argument, given in I.5, in the
following way. Let Gbﬂ be compact subgroups of QUdo ),

the group of unitary operators on h .. Let Cg’ =;‘1J£Go ,

then <€7 is a probability space with respect to its

Haar measure which is the product of the Haar measures of Gy o

Let Ao_ be a fixed d°:<do, matrix, for each o7, and define,
for V={V e i?3 XAV) =AYV _ . The series (2.1) becomes

then

2.2 sd_tr(h Vv U7 (x)).
( ) 0,620’ o 0

The following theorem can be proved using the argument of
Theorem I,.5.1:

THEOREM II.2.1, Suppose that the statements I) and II)

above are true for random Fourier series of the type (2.2).

Then I) and II) are true for the random Fourier series (2.1),

provided that each X is symmetric with respect to the group

Gy - That is provided that for each V € G, , X _ and

U,-Xs have the same probability distribution.

In view of Theorem II.2.1 we are led to investigate
the series (2,2), We restrict our problem then to the
problem of finding closed subgroups G of Wd,-) for which

the following statements are true



