TRAILBLAAANG MEDDICANE Erik Seedhouse

Sustaining Explorers During Interplanetary Missions

Trailblazing Medicine Sustaining Explorers During Interplanetary Missions

Trailblazing Medicine

Sustaining Explorers During Interplanetary Missions

Published in association with **Praxis Publishing** Chichester, UK

Erik Seedhouse, M.Med.Sc., Ph.D., FBIS Milton Ontario Canada

SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION

ISBN 978-1-4419-7828-8 e-ISBN 978-1-4419-7829-5 DOI 10.1007/978-1-4419-7829-5

Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011921112

© Springer Science + Business Media, LLC 2011

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Cover design: Jim Wilkie Cover image: © E-spaces and Robert A. Freitas Jr, 3danimatione-spaces.com and www.rfreitas.com and Philippe van Nedervelde Project copy editor: Christine Cressy Typesetting: BookEns, Royston, Herts., UK

Printed on acid-free paper

Springer is part of Springer Science + Business Media (www.springer.com)

Contents

Pro	eface	ix
Ac	knowledgments	xi
Ab	out the author	xv
Lis	st of figures	xvii
Lis	st of tables	xix
Lis	st of panels	xxi
Lis	st of abbreviations and acronyms	. xxiii
Section I Space Medicine		
1	Medicine onboard the International Space Station	3
	Radiation	6
	Bone loss	9
	Muscle atrophy	10
	Behavioral health and fatigue	11
	Balance	12
2	Interplanetary health care	15
	Medical capabilities	15
	Medical strategies	19
	The interplanetary flight surgeon	20
	In-flight health care	27
	Anesthesia	32
	Airway management	32
	Surgery	33
	Rehabilitating astronauts	35
	References	37
3	Medical qualification for exploration class missions	39
	Medical selection of astronauts	39
	Genetic screening	47
	Types of genetic testing	49
	Precautionary surgery	49

	Appendicitis	52
	Appendectomy	52
	Pre-mission medical selection	53
	References	53
G		
Sec	tion II Exploration Class Medical Challenges.	55
4	Radiation	57
	Radiation types.	57
	Measuring radiation	59
	Radiation damage.	60
	Radiation exposure guidelines	64
	Countermeasures	66
	Operations	66
	Shielding	66
	Biological	67
	Nanotech	68
	Installation	73
	References	75
5	Rone loss	77
5	Effect of microgravity on the skeletal system	78
	Countermeasures to hone demineralization	82
	Artificial gravity	86
	Joosten's spinning spaceships	89
6	Behavior and performance	91
U	Shackleton	94
	Nansen	96
	Internlanetary stressors	00
	Mission operations	09
	Post-mission mental health care	12
Sec	tion III Future Developments1	13
7	Bioethics, sex, and cloning	15
•	The survivor scenario	15
	The terrorist attack scenario	17
	The injured crewmember scenario	17
	The solutions	19
	No sex please, we're astronauts	21
	Pulling the plug	27
	The one-way trip option	27
	Gattaca	31
	Cloning	34
	Cloning ethics	38

8	Robotic surgery and telemedicine	141
	Telemedicine	141
	Supervisory-controlled systems	144
	Telesurgery	145
	Autonomous	148
	Nanobots	150
	Trauma pods	152
	Medical monitoring	155
9	Stasis	159
	Animal hibernation.	162
	Human hibernation.	165
	Entry	166
	Hibernation period	166
	Exit	167
	Stasis monitoring	170
	Life support	171
4 m	andiv. The Internlanetary Righting Manual	173
Ind		179
LIIU	V2x	117

Preface

In 2009, with the International Space Station (ISS) declared fully operational, NASA and its partners ushered in a new era of spaceflight: permanent human presence in low Earth orbit (LEO). As the culmination of decades of manned spaceflight activities, the ISS focuses attention on what has been learned to date and on what must still be learned before humans can embark on future exploration endeavors. What we may discover during the forthcoming exploration of the solar system may shape the future of humanity, but before exploration class missions (ECMS) can leave LEO, we must be sure the astronauts will survive, which is why space medicine is the key to the future of humans in space.

Space medicine has undergone a gradual evolution, from developing and implementing selection and retention standards to minimizing the probability of disease in astronauts in space, to providing clinical support for short-duration missions and, most recently, to supporting a permanent human presence in space onboard the ISS. The ISS not only serves as an orbiting laboratory and technology development platform; it also provides clinicians with a unique opportunity to conduct research to optimize crew safety and performance – factors critical in reducing the biomedical risk of extended space missions.

Missions to Mars and beyond will test space medicine to the extreme. First, there is the question of how to protect astronauts from radiation that can pepper an astronaut's body like machine-gun fire. While mission planners are confident they can protect astronauts by using polyethylene shielding, there is a second kind of radiation for which there is no protection: cosmic rays possess too much energy for shielding to be effective. They pass through tissue, leaving cells mutated or dead, which means understanding their biological effects will be a priority. To protect themselves, astronauts may have to take anticancer drugs or, as suggested in this book, be infused with nanobots capable of repairing the damage inflicted by the radiation.

In addition to being fried by radiation, spacefarers embarking upon ECMs also face weakened muscles and significant bone loss. The obvious countermeasure to keep the muscles and bones fit is exercise, and the message to long-duration astronauts is clear: do the exercise and you will be okay – don't and you'll be carried

off the spacecraft. However, even with rigorous daily exercise, astronauts still lose bone mass and scientists don't know when or if the body stops losing bone. If bone loss can't be prevented, there is the real risk that astronauts landing on some distant planet or moon will fracture bones. To counteract the bone loss, it has been suggested that astronauts take drugs normally given to osteoporosis patients, while another idea is to use artificial gravity to provide astronauts with doses of gravity to counteract the effects of weightlessness. These interventions and others, many of which are discussed in this book, will be vital in preparing for Mars missions and beyond. Chapter by chapter, this book examines the future of space medicine as it relates to human space exploration and describes what is necessary to keep a crew alive in space, how it is done today and how it will be accomplished in the future.

Acknowledgments

In writing this book, the author has been fortunate to have had five reviewers who made such positive comments concerning the content of this publication. He is also grateful to Maury Solomon at Springer and to Clive Horwood and his team at Praxis for guiding this book through the publication process. The author also gratefully acknowledges all those who gave permission to use many of the images in this book, especially scientists Dr Robert Freitas and Philippe van Nedervelde.

The author also expresses his deep appreciation to Christine Cressy, whose attention to detail and patience greatly facilitated the publication of this book, to Jim Wilkie for creating the cover of this book, and to Stewart Harrison, who sourced several of the references that appear in this book. Thanks also to Dr Gary Gray for his insight into the medical challenges of interplanetary missions.

Once again, no acknowledgment would be complete without special mention of our cats, Jasper, MiniMach, and Lava, who provided endless welcome (and occasionally unwelcome!) distraction and entertainment.

To Roald Amundsen, Sir Ernest Shackleton, Fridtjof Nansen, and the polar explorers who accepted the dangers and challenges of human endeavor and to the trailblazers of the future.

About the author

Erik Seedhouse is an aerospace scientist whose ambition has always been to work as an astronaut. After completing his first degree in Sports Science at Northumbria University, the author joined the legendary 2nd Battalion the Parachute Regiment, the world's most elite airborne regiment. During his time in the "Para's", Erik spent six months in Belize, where he was trained in the art of jungle warfare and conducted several border patrols along the Belize–Guatemala border. Later, he spent several months learning the intricacies of desert warfare on the Akamas Range in Cyprus. He made more than 30 jumps from a Hercules C130 aircraft, performed more than 200 abseils from a helicopter, and fired more light anti-tank weapons than he cares to remember!

Upon returning to the comparatively mundane world of academia, the author embarked upon a master's degree in Medical Science at Sheffield University. He supported his master's degree studies by winning prize money in 100 km ultradistance running races. Shortly after placing third in the World 100 km Championships in 1992 and setting the North American 100 km record, the author turned to ultradistance triathlon, winning the World Endurance Triathlon Championships in 1995 and 1996. For good measure, he also won the inaugural World Double Ironman Championships in 1995 and the infamous Decatriathlon, the world's longest triathlon, an event requiring competitors to swim 38 km, cycle 1,800 km, and run 422 km. Non-stop!

Returning to academia once again in 1996, Erik pursued his Ph.D. at the German Space Agency's Institute for Space Medicine. While conducting his Ph.D. studies, he still found time to win Ultraman Hawaii and the European Ultraman Champion-ships as well as completing the Race Across America bike race. Due to his success as the world's leading ultradistance triathlete, Erik was featured in dozens of magazines and television interviews. In 1997, *GQ* magazine nominated him as the "Fittest Man in the World".

In 1999, Erik decided it was time to get a real job. He retired from being a professional triathlete and started his post-doctoral studies at Vancouver's Simon Fraser University's School of Kinesiology. In 2005, the author worked as an astronaut training consultant for Bigelow Aerospace in Las Vegas and wrote

Tourists in Space, a training manual for spaceflight participants. He is a Fellow of the British Interplanetary Society and a member of the Aerospace Medical Association. Recently, he was one of the final 30 candidates of the Canadian Space Agency's Astronaut Recruitment Campaign. Erik currently works as a manned spaceflight consultant, triathlon coach, and author. He is the Training Director for Astronauts for Hire (*www.astronautsforhire.org*) and plans to travel into space with one of the private spaceflight companies.

In addition to being a triathlete, sky-diver, pilot, and author, Erik is an avid scuba-diver and mountaineer and is currently pursuing his goal of climbing the Seven Summits. *Trailblazing Medicine* is his seventh book. When not writing, he spends as much time as possible in Kona on the Big Island of Hawaii and at his real home in Sandefjord, Norway. Erik lives with his wife and three rambunctious cats – Jasper, Mini-Mach, and Lava – on the Niagara Escarpment in Canada.

Figures

1.1	International Space Station	. 5
1.2	Galactic cosmic rays	6
1.3	Matroshka	. 7
1.4	Advanced Resistive Exercise Device (ARED)	10
2.1	A simple algorithm for tooth extraction	19
2.2	Kidney stones	23
2.3	Crewmember working in an extreme environment.	27
2.4	Seawolf class submarine, USS Connecticut (SSN-22)	28
2.5	Zero-G intubation performed during parabolic flights conducted on	
	an Airbus 300	33
3.1	Sir Ernest Shackleton	44
3.2	Lisa Nowak	46
3.3	Ethan Hawke in a scene from <i>Gattaca</i>	48
3.4	Leonid Rogozov performing his auto-appendectomy in the Antarctic	50
4.1	The Sun showing a C3-class solar flare, a solar tsunami, and multiple	
	filaments of magnetism lifting off the stellar surface	59
4.2	A blood sample from an ISS astronaut that has been damaged	
	by space radiation	62
4.3	Cell rover	69
4.4	Dendrimer complex docking on cellular folate receptors	70
4.5	Respirocyte in a blood vessel surrounded by red blood cells	71
5.1	Osteoporosis is an occupational hazard for long-duration astronauts	79
5.2	AMPDXA	81
5.3	Combined Operational Load-Bearing External Resistance Treadmill	
	(COLBERT)	83
5.4	Sunita Williams	85
5.5	Artificial gravity	87
5.6	NASA's artificial gravity program	88
5.7	Promising research in the area of artificial gravity	90
6.1	MARS500 test crew	92
6.2	MARS500 facility	93

6.3	Shackleton's ship, the <i>Endurance</i> , trapped in ice	95
6.4	Launching the James Caird from the shore of Elephant Island,	
	April 24th, 1916	96
6.5	Fridtjof Nansen	97
6.6	Nansen's ship, the Fram	98
6.7	The hut that Nansen and Johansen used as their winter quarters	99
6.8	Cramped living space during exploration class missions	101
6.9	Concordia research station	103
6.10	Shackleton's party, left behind on Elephant Island	105
6.11	The Skylab-4 crew	106
7.1	Artists rendition of Callisto	116
7.2	Entry, descent, and landing (EDL)	117
7.3	Jan Davis	123
7.4	Captain Oates.	128
7.5	K2	131
7.6	Sam Bell (played by Sam Rockwell), from <i>Moon</i>	135
7.7	Sam Bell and his clone, from Moon	137
8.1	Telemedicine	142
8.2	Dr Mika Sinanan and Dr Thomas Lendvay collaboratively	
	teleoperating Raven IV at the Bionicas Lab, UCSC	144
8.3	NASA Extreme Environment Mission Operations (NEEMO)	146
8.4	Aquarius undersea laboratory	147
8.5	Raven IV	148
8.6	Raven	149
8.7	Conceptual image of the Trauma Pod being lifted into the mobile unit	153
8.8	Conteptual Trauma Pod surgical tools poised for operation	154
8.9	The revolutionary Bio-Suit	156
9.1	Hypersleep, Hollywood style	160
9.2	Variable Specific Impulse Magnetoplasma Rocket (VASIMR)	162
9.3	Black bear	163
9.4	Arctic ground squirrel	164

Tables

1.1	Medical risks during exploration class missions
2.1	Classification of illnesses and injuries in spaceflight 16
2.2	NASA medical training for International Space Station crewmembers . 16
2.3	Exploration class mission medical supplies 17
2.4	Levels of prevention
2.5	In-flight medical events for US astronauts (STS-1 through STS-89) 29
2.6	Major health and medical issues during exploration class missions 29
2.7	Post-flight rehabilitation plan 35
3.1	Exploration class medical examinations and parameters 40
4.1	Short-term effects on humans of severe radiation
4.2	Radiation levels causing excess cancer risk
4.3	Chemical composition of candidate shielding materials 67
6.1	Behavioral stressors of long-duration spaceflight 100
6.2	Comparison of psychologically relevant factors
8.1	Concept of telemedical support
9.1	Effect of stasis on the life-support-system requirements
9.2	Physiological rates of black bears and arctic ground squirrels 165