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Preface

Roughly speaking a convolution operator T on a group G is a linear operator on
complex functions ' W G ! C that commutes with left translations

g.Tf / D T .gf /:

Typically convolution by fixed functions gives rise to convolution operators.
To bemore precise, one has to specifyG and the underlying function space for T .

One may suppose that G is a locally compact group with Haar measure m; and
choose T to be a continuous linear endomorphism of Lp.G/ D Lp.GIm/; where
p > 1 is some fixed real number. It’s these convolution operators that will be the
subject of this book, individual cases of them as well as, for given p and G; the
space CVp.G/ of all of them.
The set CVp.G/ is a sub Banach algebra of the Banach algebra of all continuous

linear endomorphisms of Lp.G/. If G is abelian, it is possible to define the Fourier
transform of every T in CV2.G/. The Fourier transform is a Banach algebra
isometry of CV2.G/ onto L1.bG/. Here, bG denotes the Pontrjagin dual of G.
Moreover, CVp.G/ � CV2.G/; this permits to define the Fourier transform of
every T in CVp.G/.
The case of G D Rn involves results of classical Fourier analysis. For instance,

the fact that the Heaviside function is the Fourier transform of some T 2 CVp.R/
implies Marcel Riesz’s famous theorem on the convergence in Lp of Fourier series.
This convergence still holds in two variables for square summation, but not for
circular summation if p 6D 2. This reflects the fact that the indicator function of
any square is the Fourier transform of some T 2 CVp.R2/ but not the indicator
function of the disk except if p D 2.
In this book, we will be mainly concerned with the investigation of CVp.G/ for

noncommutative groups.
If k 2 Lp.G/ and l 2 Lp0.G/, then k � Ll 2 C0.G/ with kk � Llk1 � kkkpklkp0 .
Forming series of such functions leads to the very important Figà-Talamanca

space Ap.G/ contained in C0.G/. Ap.G/ is an algebra for the pointwise product.

v



vi Preface

If it is given a norm based on kkkpklkp0 , it becomes a Banach algebra. There is
a natural duality between CVp.G/ and Ap.G/ for a large class of locally compact
groups. This duality holds for all locally compact groups if p D 2. It is conjectured
that it holds even for all p. If G is abelian, then A2.G/ turns out to be the space of
Fourier transforms of L1.bG/. Here, again the Fourier transform is a Banach algebra
isometry of L1.bG/ onto A2.G/.
To every integrable function onG; and more generally to every boundedmeasure

on G; there corresponds by convolution an operator in CVp.G/. For finite groups
all of CVp.G/ is obtained in this manner. It is not the case for infinite groups like
Z; R; T and probably for all infinite groups. Then we may ask whether every
convolution operator may be approximated by operators associated to bounded
measures, and in which topology. For p D 2 the answer is yes under the weak
operator topology. This result was obtained by Murray and von Neumann for
discrete groups, by Segal for unimodular groups and finally by Dixmier for general
locally compact groups. The duality betweenCVp.G/ andAp.G/ permits to answer
positively for p 6D 2 for all amenable groups.
Let I be an ideal of the algebraAp.G/. The set of points ofG where all functions

in I vanish will be called the cospectrum of I . An elegant formulation of the
celebrated tauberian theorem of Wiener is: if G is an abelian group every ideal
of A2.G/ with empty cospectrum is necessarily dense in A2.G/. In this book, we
will show that this statement holds for every group and also every p > 1. The fact
that the theorem of Wiener is verified on arbitrary groups is highly surprising: there
are papers suggesting the impossibility of such an extension for the group of two by
two invertible matrices of complex numbers!
There is a hudge amount of literature concerning the non-commutative version of

the Plancherel theorem and the inversion formula for C1 functions with compact
support on Lie groups. Such questions are, for commutative groups, very simple. An
achievement of this book is the extension to non-commutative groups of theorems
which are deep and difficult even for Z; T or R.
An important part of this monograph deals with the relation between CVp.H/

and CVp.G/, where H is a closed subgroup of G. Let i be the inclusion map
of H into G. Then i induces a canonical map, also denoted i; of CVp.H/ into
CVp.G/. For G D R and H D Z; this is a famous result due to Karel de Leeuw
(1965), and to Saeki (1970) forG abelian andH arbitrary closed subgroup. It is also
possible to characterise the image of i in CVp.G/ and to obtain in this way non-
commutative analogs of a result of Reiter (1963) concerning the relations between
L1.bG/ and L1.bH/ and also to the fact that H is a set of synthesis in G (1956).
The characterisation in CVp.G/ of the image of CVp.H/ under the map i , is a deep
result due to Lohoué (1980). A large part of Chap. 7 is devoted to a detailed proof
of Lohoué’s result. As a consequence we obtain the extension of the Kaplansky–
Helson theorem to non-abelian groups and to p 6D 2: for x in a arbitrary locally
compact group G; every ideal of Ap.G/ having the cospectrum fxg is dense in the
set of all functions vanishing in x.



Preface vii

In the last chapter, we prove that for amenable groups CVp.G/ is contained in
CV2.G/: this statement, compared to the commutative case, requires an entirely
new approach.
The development of harmonic analysis on non-commutative groups is not just a

straightforward generalization of the commutative case. It requires new ideas but it
also gives rise to new problems which are far from being solved. For instance, the
approximation theorem for non-amenable groups and for p 6D 2 is still out of reach.
The investigation of the noncommutative case gives a better understanding of the
commutative case! For example, instead of studying the relations between L1.bG/
and L1.bH/; it is more conceptual and more fruitfull to investigate the relations
between the algebras CV2.G/ and CV2.H/.
A large part of the results presented appeared here for the first time in a

book’s form. The presentation is selfcontained and complete proofs are given. The
prerequisities consists mostly with a familiarity with the books of Hewitt and Ross
[66,67]. (Chaps. 4, 6, 8 and 10), Reiter and Stegeman [105] and Rudin [107]. Notes
at the end of the volume contain additional information about results of the text.
We wish to acknowledge our indebtedness to Professor Henri Joris, who read

the proofs and helped to remove some errors and obscurities. His comments have
stimulated us to improve the text in several places. Those errors which do appear in
the text are, of course, my own responsibility. Thanks are also due to Professor Noël
Lohoué and many colleagues for encouragement and help. We would like to thank
especially Professor Gerhard Racher for improvements and suggestions in relation
with chapter height.
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Chapter 1
Elementary Results

We give the basic properties of the Banach algebra CVp.G/. For a locally compact
abelian group G we show that CV2.G/ is isomorphic to L1.bG/ and define the
Fourier transform of every element of CVp.G/.

1.1 Basic Notations and Basic Definitions

1.1.1 Radon Measures and Integration Theory

Let X be a topological space and Y a topological vector space. We denote by
C.X IY / the vector space of all continuous maps of X into Y and by C00.X IY /
the subspace of all maps having compact support. We put C.X/ D C.X IC/ and
C00.X/ D C00.X IC/. We denote by C0.X/ the subspace of all elements of C.X/
vanishing at infinity.
Suppose that X is a locally compact Hausdorff space and that � is a complex

Radon measure on X . For ' an arbitrary map of X into Œ0;1�
�Z

X

'.x/d j�j.x/

denotes the upper integral in the sense of Bourbaki ([6], p. 112, Chap. IV, Sect. 4.1,
no. 3, Définition 3.) We write L1.X;�/ for theC-vector space of all ' 2 CX which
are �-integrable. For ' 2 L1.X;�/ the integral of ' with respect to � is denoted
�.'/ or Z

X

'.x/d�.x/:

A. Derighetti, Convolution Operators on Groups, Lecture Notes of the Unione
Matematica Italiana 11, DOI 10.1007/978-3-642-20656-6 1,
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2 1 Elementary Results

For f 2 CX or Œ�1;1�X locally �-integrable we denote by f� the Radon
measure defined by

.f�/.'/ D �.f '/

for every ' 2 C00.X/.
If 1 < p < 1 Lp.X;�/ is the C-vector space of all ' 2 CG such that ' is

�-measurable and j'jp is �-integrable. If f 2 CX we denote by Œf � the set of all
g 2 CX with g.x/ D f .x/ �-almost everywhere and by Pf the set of all g 2 CX

with g.x/ D f .x/ locally �-almost everywhere.
Suppose 1 � p < 1 . For f 2 CX or for an arbitrary map of X into Œ�1;1�

we put

Np.f / D
0@ �Z
X

j'.x/jpd j�j.x/
1A1=p :

Np is a semi-norm on Lp.X;�/. With respect to this semi-norm Lp.X;�/ is
complete. For f 2 Lp.X;�/ we set

kŒf �kp D Np.f / and Lp.X;�/ D
n
Œf �
ˇ̌̌
f 2 Lp.X;�/

o
which is a Banach space for the norm kkp .
For an arbitrary map f of X into Œ�1;1� we put

M1.f / D inf
n
˛ 2 Œ�1;1�

ˇ̌̌
f .x/ � ˛ locally �-almost everywhere

o
:

For f 2 CX we setN1.f / D M1.jf j/. For f a bounded complex function we set

kf ku D sup
n
jf .x/j

ˇ̌̌
x 2 X

o
:

LetM1.X;�/ be the C-subspace of CX of all functions which are �-measurable
and bounded andL1.X;�/ theC-subspace ofCX of all functions which are locally
�-almost everywhere equal to a function ofM1.X;�/. Then N1 is a semi-norm
on L1.X;�/, with respect to this semi-norm L1.X;�/ is complete. By definition

L1.X;�/ D
n Pf ˇ̌̌f 2M1.X;�/

o
:

With the norm
k Pf k1 D N1.f /;

L1.X;�/ is a Banach space. We denote by M1
00 .X;�/ the subspace of all

f 2M1.X;�/ with compact support.
Finally letM1.X/ be the space of all complex bounded Radon measures on X .

For � 2M1.X/ we put
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k�k D sup
n
j�.'/j

ˇ̌̌
' 2 C00.X/; k'ku � 1

o
:

Then kk is a norm onM1.X/.
Let 1 � p < 1 we put p0 D p=.p � 1/ if p > 1 and p0 D 1 if p D 1. For

f 2 Lp.X;�/ and g 2 Lp0.X;�/ we set
˝
Œf �; Œg�

˛ D Z
X

f .x/g.x/d�.x/

if p > 1, and if p D 1

˝
Œf �; Pg˛ D Z

X

f .x/g.x/d�.x/:

The function
˝
;
˛
is a sesquilinear form on Lp.X;�/ � Lp0.X;�/.

Let L.Lp.X;�// be the linear space of all continuous endomorphisms of
Lp.X;�/. For T 2 L.Lp.X;�//, jjjT jjjp is the bound of the operator T :

jjjT jjjp D sup
n
kTf kp

ˇ̌̌
f 2 Lp.X;�/; kf kp � 1

o
:

For the composition of the operators, L.Lp.X;�// is a Banach algebra.
For V a topological vector space, V 0 denotes the dual of V . If .V; kkV / is a

normed vector space, and if F 2 V 0 we put

kF kV 0 D sup
n
jF.v/j

ˇ̌̌
v 2 V; kvkV � 1

o
:

This norm makes V 0 into a Banach space.

1.1.2 Locally Compact Groups

LetG be a group. For a non-empty set Y , ' a map ofG into Y , a and x 2 G we put

L'.x/ D '.x�1/; a'.x/ D '.ax/ and 'a.x/ D '.xa/:

Let now be G a locally compact group. We always suppose that the topology of
G is Hausdorff. We recall that there is a nonzero positive Radon measuremG on G
such that

mG.'/ D mG.a'/ D mG.'a/�G.a/ D mG

� L' L�G

�
for every ' 2 C00.G/ and every a 2 G. Here �G is a continuous homomorphism
of G into the multiplicative group .0;1/. Up to a multiplicative real number, the
measuremG is unique. The measuremG is called a left invariant Haar measure ofG.
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The function�G does not depend of the choice of the measuremG . This function is
called the modular function of G. If G is compact we suppose that mG.1G/ D 1.
Let us present some basic examples.

(a) If G D T

mT .'/ D 1

2�

2�Z
0

'.ei� /d�

for ' 2 C.T /.
(b) For G D R we may choose

mR.'/ D
1Z

�1
'.x/dx

for every ' 2 C00.R/.
(c) Take now an arbitrary group G. Consider on G the discrete topology. This

locally compact group is denoted Gd . Suppose at first that G is finite. Then
C00.Gd / D CG . We have

mGd .'/ D
1

jGj
X
x2G

'.x/

for every ' 2 C.Gd/. If G is infinite then C00.Gd / is the subspace of CG of all
functions having a finite support and we may choose

mGd .'/ D
X
x2G

'.x/

for every ' 2 C00.Gd /.
In all these examples�G D 1.

(d) Let G be the group of matrices �
x y

0 x�1
�

where x; y 2 R; x 6D 0, with the topology induced by R2. Then we may choose

mG.'/ D
1Z

�1

1Z
�1

'.x; y/

x2
dxdy:

One has

�G

 �
x y

0 x�1
�!

D 1

x2
:

In the examples (a), (b) and (d), the integral on the right hand side is the Riemann
integral.



1.1 Basic Notations and Basic Definitions 5

Let again G be any locally compact group. For ' 2 CG we set

'.x/ D '.x/; Q'.x/ D '.x�1/ and '�.x/ D '.x�1/�G.x
�1/:

Let be� a complex Radon measure onG. Then we define the three Radon measures
L�, � and Q� by

L�.'/ D �. L'/; �.'/ D �.'/ and Q�.'/ D �. Q'/

where ' 2 C00.G/. For f 2 CG and 1 � p <1 we also put

�p.f /.x/ D f .x�1/�G.x
�1/1=p:

For f mG-integrable we set

mG.f / D m.f / D
Z
G

f .x/dx;Lp.G/ D Lp.G;mG/;L
p.G/ D Lp.G;mG/

.1 � p � 1/

and
M1

00 .G/ DM1
00 .G;mG/:

For f 2 CG we put:

Œf �LD Œ Lf � and for 1 � p <1 �pŒf � D Œ�pf �;

for a 2 G we also put

aŒf � D Œaf � and Œf �a D Œfa�:

Clearly �p is an isometric involution of the Banach space Lp.G/ for 1 � p <1.

1.1.3 Convolution of Measures and Functions

Formally the convolution � � 	 of the two Radon measures � and 	 on the locally
compact groupG is defined by

.� � 	/.f / D
Z

G�G
f .xy/d�.x/ d	.y/

whenever the double integral converges absolutely for all f 2 C00.G/. This is the
case for example if one of the two given measures has compact support, or if both
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of them are bounded. For � D gm we have

.gm � 	/.f / D
Z

G�G
f .xy/g.x/dxd	.y/ D

Z
G

0@Z
G

f .xy/g.x/dx

1A d	.y/
D
Z
G

�G.y
�1/

0@Z
G

f .x/g.xy�1/dx

1A d	.y/ D ..g � 	/m/.f /

where we define

.g � 	/.x/ D
Z
G

g.xy�1/�G.y
�1/d	.y/:

Similarly we get � � hm D .� � h/m if we define

.� � h/.y/ D
Z
G

h.x�1y/d�.x/:

Putting here � D gm we set g � h D gm � h and thus

.g � h/.y/ D
Z
G

g.yx/h.x�1/dx D
Z
G

g.yx�1/h.x/�G.x
�1/dx:

We refer to [10] Chapter 8 for a detailed exposition of these questions.

1.1.4 Amenable Groups

A locally compact group G is said to be amenable if there is a linear functionalM
on the vector space Cb.G/ of all continuous bounded complex valued functions on
G such that M.'/ > 0 if ' > 0, M.1G/ D 1 and M.a'/ D M.'/ for every
a 2 G.
We only recall that compact, abelian or solvable groups are amenable. But

SL2.R/, the group of two by two real matrices with determinant one, and the free
group F2 of two generators are not amenable. Every closed subgroup of an amenable
group is amenable. IfG is a locally compact group andH a closed normal subgroup,
and if H and G=H are amenable, then so is G.
They are many properties equivalent to the amenability.We will use the following

one: for every " > 0 and for every compact subsetK of G there is s 2 C00.G/ with
s > 0,N1.s/ D 1 and N1.ks� s/ < " for every k 2 K . We refer to Chap. 8 of [105]
for detailed proofs of all these assertions.


