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Why, sir, if you are to have but one book with you on a journey, let it be a book
of science. When you have read through a book of entertainment, you know it,
and it can do no more for you; but a book of science is inexhaustible. . . .

—James Boswell
Journal of a Tour to the Hebrides with Samuel Johnson



Prologue ix

Chapter 1 Asking the Right Questions 1

Chapter 2 Irrationality and Its Consequences 37

Chapter 3 The Power of a Little Algebra 75

Chapter 4 Witchcraft 121

Chapter 5 Odds and Ends 191

Epilogue 249

Chapter Notes 251

Acknowledgments 255

Contents

vii



You may think of the dialogue you are about to read, as I often did
while writing it, as being between a “master” and a “pupil”—the
master in his middle years, well-versed in mathematics and as devoted
and passionate about his craft as any artist is about his art; the pupil
on the threshold of adulthood, articulate in speech, adventuresome
of mind, and enthusiastically receptive to any knowledge the more
learned teacher may care to impart.

Their conversation—the exact circumstances of which are never
described—is initiated by the master, one of whose tasks is to per-
suade his disciple that the concept of number is more subtle than
might first be imagined. Their mathematical journey starts with the
teacher guiding the student, by way of questions and answers, through
a beautifully simple geometrical demonstration (believed to have
originated in ancient India), which establishes the existence of a
certain number, the understanding of whose nature is destined to
form a major part of the subsequent discussion between the enquir-
ing duo.

Strong as the master’s motivation is to have the younger person
glimpse a little of the wonder of mathematics, stronger still is his
desire to see that his protégé gradually becomes more and more adept
at mathematical reasoning so that he may experience the pure pleas-
ure to be had from simply “finding things out” for himself. This joy
of discovery is soon felt by the young learner, who having embarked
upon an exploration, is richly rewarded when, after some effort, he
chances upon a sequence of numbers that he surmises is inextricably
linked to the mysterious number lately revealed by the master.
Enthralled by this fortunate occurrence, he immediately finds himself
in the grip of a burning curiosity to know more about this number
and its connection with the sequence that has already captivated him.
Thus begins this tale told over five chapters.

I have made every effort to have the first four chapters as self-
contained as possible. The use of mathematical notation is avoided
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whenever words can achieve the same purpose, albeit in a more
lengthy manner. When mathematical notation is used, nothing
beyond high school algebra of the simplest kind is called on, but in
ways that show clearly the need for this branch of mathematics. While
the algebra used is simple, it is often clever, revealing that a few tools
handled with skill can achieve a great deal. If readers were to appre-
ciate nothing more than this aspect of algebra—its power to prove
things in general—then this work will not have been in vain.

Unfortunately, to have the fifth chapter completely self-contained
would have meant sacrificing exciting material, something I didn’t
wish to do, preferring to reward the reader for the effort taken to reach
this point, when it is hoped he will understand enough to appreciate
the substance of what is being related.

Throughout the dialogue, so as to distinguish between the two
speakers, the following typographical conventions are used:

The Master’s Voice—assured, but gently persuasive—is set in
this mildly bold typeface, and is firmly fixed at the left edge of
the column.

The Pupil’s Voice—deferential, but eager and inquiring—is set
in this lighter font, and is moved slightly inward from the
margin.

The best conversations between teachers and students are both serious
and playful, and my hope is that the readers of this book will sense
that something of that spirit, of real learning coupled with real pleas-
ure, coexist in this dialogue.

David Flannery
September, 2005
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I’d like you to draw a square made from four unit squares.

A unit square is one where each of the sides is one unit long?

Yes.

Well, that shouldn’t be too hard.

Will this do?

Perfect. Now let me add the following diagonals to your
drawing.

You see that by doing this a new square is formed.

I do. One that uses a diagonal of each of the unit squares for its
four sides.
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Let’s shade this square and call it the “internal” square.

Now, I want you to tell me the area of this internal square.

Let me think. The internal square contains exactly half of each
unit square and so must have half the area of the large square.
So it has an area of 2 square units.

Exactly. Now, what is the length of any one of those diagonals
that forms a side of the internal square?

Off-hand I don’t think I can say. I know that to get the area of
a rectangular region you multiply its length by its breadth.

“Length by breadth,” as you say, meaning multiply the length
of one side by the length of a side at right angles to it.

So, for a square, this means that you multiply the length of one
side by itself, since length and breadth are equal.

Yes.

But where does this get me? As I said, I don’t know the length
of the side.

As you say. But if we let s stand for the length of one of the
sides, then what could you say about s?

I suppose there is no way that we could have this little chat
without bringing letters into it?

There is, but at the cost of the discussion being more 
longwinded than it need be. Incidentally, why did I chose the
letter s?

Because it is the initial of the word side?

Precisely. It is very common to use the initial of the word
describing the quantity you’re looking for.

So s stands for the length of the side of the internal square. I
hope you are not going make me do algebra.

Just a very small amount—for the moment. So can you tell me
something about the number s?

When you multiply s by itself you get 2.
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Exactly, because the area of the internal square is 2 (squared
units). Do you recall that s ¥ s is often written as s2?

I do. My algebra isn’t that rusty.

So you are saying that the number s “satisfies” the equation:

s2 = 2

In words, “s squared equals two.”

Okay, so the number s when multiplied by itself gives 2. Doesn’t
this mean that s is called the square root of 2?

Well, it would be more accurate to say that s is a square root
of 2. A number is said to be a square root of another if, when
multiplied by itself, it gives the other number.

So 3 is a square root of 9 because 3 ¥ 3 = 9.

As is -3, because -3 ¥ -3 = 9 also.

But most people would say that the square root of 9 is 3.

True. It is customary to call the positive square root of a
number its square root. And since s is the length of the side of
a square, it is obviously a positive quantity, so we may say . . .

. . . that s is the square root of 2.

Sometimes, we simply say “root two,” it being understood that
it’s a square root that is involved.

And not some other root like a cube root?

Yes. Now the fact that 3 is the square root of 9 is often expressed
mathematically by writing = 3.

I’ve always liked this symbol for the square root.

It was first used by a certain Christoff Rudolff in 1525, in the
book Die Coss, but I won’t go into the reasons why he chose it.

Can we say goodbye to s and write in its place from now on?

If we want to, but we’ll still use s if it serves our purposes.

So we have shown that the diagonal of a unit square is in
length.

Indeed we have. This wonderful way of establishing the exis-
tence of the square root of 2 originated in India thousands of
years ago.

You’d have to say that it is quite simple.

Which makes it all the more impressive.

So what number is ?

As the equation s2 = 2 says, it is the number that, when multi-
plied by itself, gives 2 exactly. This means no more or no less
than what the equation

2
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says it means: is the number that when multiplied by itself
gives 2.

I know, but what number does actually stand for? I mean
= 4, and 4 is what I would call a tangible number.

I understand. You have given me a concrete value for ,
namely the number 4. You want me to do the same for , that
is, to show you some number of a type with which you are
familiar, and that when squared, gives 2.

Exactly. I’m simply asking what the concrete value of s is, that
makes s2 = 2.

I can convince you quite easily that is not a natural number.

The natural numbers are the ordinary counting numbers, 1,2,3,
and so on.

Precisely.

Even though 2 itself is a natural number? The natural numbers
9 and 16 have square roots that are also natural numbers.

That’s true, they do.

But you are saying that 2 doesn’t.

I am. One way of seeing this is to write the first few natural
numbers in order of increasing magnitude in a line,and beneath
them on a second line write their corresponding squares:

1 2 3 4 5 6 7 . . .

1 4 9 16 25 36 49 . . .

The three dots, or ellipsis, at the end of a line means that the
pattern continues without stopping.

Well, I can see straight away that the number 2 is missing from
the second row.

As are

3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, . . .

I would say that there are a lot more numbers missing than are
present.

Yes, in a sense “most” of the natural numbers are absent from
this second line. The numbers 1, 4, 9, 16, . . . that appear on it
are known as the perfect squares.

And those numbers that are missing from this line are not
perfect squares?

Correct: 49 is a perfect square but 48 is not.

I think I see now why there is no natural number squaring to
2. The first natural number squares to 1 while the second
natural number squared is 4, so 2 gets skipped over.

2

2
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That’s about it.

All right. It is fairly obvious, now at any rate, that there is no
natural number that squares to 2, but surely there is some frac-
tion whose square is 2?

By fraction, you mean a common fraction where one whole
number is divided by another whole number?

That’s what I mean, 7–
5
, for example. Are there other types of

fractions?

There are, but when we say “fraction” we mean one whole
number divided by another one. The number being divided is
the numerator and the one doing the dividing is called the
denominator.

The number on the top is the numerator and the number on
the bottom is the denominator.

That’s it exactly. In your example, the whole number 7 is the
numerator while the whole number 5 is the denominator.

Now mustn’t there be some fraction close to this one that
squares to give 2 exactly?

Why did you say close to this one?

Because my calculator tells me that 7–
5

is 1.4 in decimal form; and
when I multiply this by itself I get 1.96, which is fairly close to
2.

Agreed. Let me show you how we can see this for ourselves
without a calculator but using a little ingenuity instead.

Since

we can say that the fraction 7–
5

when squared underestimates 2
by the amount 1—

25
.

And according to my calculator 1—
25
= 0.04, which is just 2 - 1.96.

By the way, why did you put the exclamation point over the
second equals sign?

To indicate that the step being taken is quite a clever one.

It certainly wouldn’t have occurred to me, which I know is not
saying much.

7

5

49

25

50 1

25
50

25

1

25

2
1

25

2
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Well, I don’t lay any claim to originality for taking this step. I
have seen many similar such tricks used by others in the past
and, after all, I knew what it was I wanted to show.

At least I can see why it’s clever.

Good. Why?

By writing the numerator 49 as 50 - 1, you were able to divide
the 50 by 25 to get 2 exactly and the 1 by 25 to get 1—

25
as the

measure of the underestimate.

A useful trick if you’re stranded on a desert island without any
calculating devices other than your own poor head.

Pure do-it-yourself mathematics! I suppose using a calculator
to get the value of something you wouldn’t be able to calculate
for yourself is a form of cheating?

Do you mean like asking for the decimal expansion of , for
example?

Well, something like that. I wouldn’t have a clue how to get 
the decimal expansion of using my own very limited 
powers.

I’m sure you do your mental abilities an injustice. If we know
and understand how to get a decimal expansion of a number
“by hand,” then we don’t contravene the DIY philosophy if we
use a calculator to save labor.

Are you saying that because I know how to get the decimal
expansion of 7–

5
or 3—

11
by long division, even though I wouldn’t

like to be pressed on why the procedure works, I may use 
a calculator to avoid the “donkey work” involved with such 
a task?

I think we’ll let this be a policy. We’ll assume that if we were
put to it we could explain to ourselves and others the “ins and
outs” of the long-division algorithm.

Of course, completely!

Decimal expansions, or “decimals” as we often say for short,
have certain advantages, one being that they convey the mag-
nitude of a number more readily than their equivalent frac-
tions do. When a number is expressed in decimal form, it is
easy to say geometrically where it is located on the number
line. No matter how long the decimal expansion of a number
may be, we still know between which two whole numbers it lies
on this number line:

2

2
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So we can see quite easily from 1.4 that it is a number between 1
and 2, whereas it is not as easy to see this from the fraction 7–

5
.

The fraction 7–
5

is perhaps too simple. It is not too difficult to
mentally determine the two whole numbers between which it
is located on the number line, but who can say without resort-
ing to a calculation where the fraction is positioned on the
same line?

I see the point, or should I say I do not see the (decimal) point!

Hmm! Speaking of the fraction 7–
5
, you might like to get a box of

matches and construct a square with five matches on each side.

Does this mean that the five matches between them make up
the unit-length?

You can certainly think of it this way, if you like. Now you’ll
find that seven matches will fit along the diagonal:

These seven matches do not stretch the full length of the diag-
onal since 7–

5
underestimates .

That they don’t is barely visible.

True, but the gap is there.

This is a rather neat way of visualising 7–
5

as an approximation
to .

Yes it is, isn’t it? Looked at another way it says that the ratio 
7 : 5 is close to the ratio : 1. Now, where were we?

Looking for a fraction that squares to 2.

Indeed, so let’s continue the quest. Any further thoughts?

There must be some fraction a little bit bigger than 7–
5

that
squares to give 2 exactly.

Well, there are lots of fractions just a little bit bigger than 7–
5
.

2

2

2
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The symbol < means

“less than.”

I know. Isn’t there an infinity of fractions between 1.4 and 1.5
alone?

Yes, but that this is so we can leave for another time. Why do
you mention 1.5?

Simply because (1.4)2 = 1.96 is less than 2 while (1.5)2 = 2.25 is
greater than 2.

So?

Doesn’t this mean that the square root of 2 lies between these
two values?

It does. In fact since 1.5 = 3–
2

we may write that

Let me display this arithmetic “inequality” on the number line:

Notice that I have placed to the right of 1.4 and closer 
to 1.4 than to 1.5 because 3–

2
squared overestimates 2 by 1–

4
, which

is much more than the 1—
25

by which 7–
5

squared underestimates
.

But how do you locate on the number line if you don’t know
what fraction it is?

A good question. The answer is that you do so geometrically.

I’d like to see how.

It’s easy to construct a unit square geometrically on the inter-
val that stretches between 0 and 1:

2
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Now imagine the diagonal with one end at 0 and of length 
being rotated clockwise about the point 0 until its other end
lies on the number line.

At a point from 0. Very smart.

Of course, this is an ideal construction where everything can
be done to perfection.

I understand. It is the method that counts.

Yes.

An Exploration

But to return to the point I was making: surely among the infin-
ity of fractions lying between 1.4 and 1.5 there is one that
squares to give 2 exactly.

Well if there is, how do you propose finding it?

That’s what is bothering me.

I’m sure you’ll agree that it’s not wise to begin checking frac-
tion after fraction in this infinity of fractions without having
some kind of plan.

Absolutely, it could take forever. What would you suggest?

Thinking about the problem a little to see if we can find some
systematic way of attacking it.

Sounds as if we are about to go into battle.

A mental battle. Let us begin our campaign by examining the
implications of expressing the number as a fraction.

This could get interesting. What are you going to call this 
fraction?

Well, since we don’t know it, at least not yet, we must keep our
options open. One way of doing this is to use distinct letters, one
to stand for its numerator and the other for its denominator.

Here comes some more algebra.

Only a little, used as scaffolding as it were, just to get us started.

Well, I’ll stop you if I think I’m losing the drift of the discussion.

Let’s call the numerator of the fraction m and the denom-
inator n.

So if the fraction were 7–
5
, which I know it is not, then m would

be 7 and n would equal 5.

Or put slightly differently, if m = 7 and n = 5 then

I’m with you.

m

n
=

7

5

2

2

2
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Now if

then

Agreed?

I think so. You are simply squaring both sides of the original
equation.

I am, and I do so in this elaborate manner to highlight the pres-
ence of ¥ .

Which by definition is 2.

Yes, a simple but vital use of the defining property of , which
allows us to write that

We can turn this equation around and write

to put the emphasis on the fraction . What is the equation
saying about ?

That its square is 2.

Exactly. And since

we can say that

or that

m2 = 2n2

So this equation is a consequence of writing as ?

It is indeed. Now let us see what we can learn from it.

I’ll leave this to you.

m

n
2

m

n

2

2
2=

m

n

m

n
Ê
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ˆ
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m
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n
Ê
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I’m sure it won’t be long before you join in. For one thing,
m2 = 2n2 tells us is that if we are to find a fraction that is equal
to , then we must find two perfect squares, one of which is
twice the other.

What are perfect squares again? Oh, I remember, 1, 4, 9, 16, . . .

That’s right, a perfect number is one that is the square of a
natural number.

Well, this is a task that I can definitely undertake.

Be my guest.

Why don’t I make out a list of the first twenty squares along
with their doubles and see if I can find a match between some
square and the double of some other square.

An excellent plan. Nothing like a bit of “number crunching,” as
it’s called, to really get one thinking.

Of course, I’m going to use a calculator just to speed things up.

Naturally. Nobody doubts that you can multiply one number
by itself.

Here’s the table I get:

Natural Number Number Squared Twice Number Squared

1 1 2

2 4 8

3 9 18

4 16 32

5 25 50

6 36 72

7 49 98

8 64 128

9 81 162

10 100 200

11 121 242

12 144 288

13 169 338

14 196 392

15 225 450

16 256 512

17 289 578

18 324 648

19 361 722

20 400 800

2
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The three columns show, in turn, the first twenty natural
numbers, their squares, and twice these squares.

Great. We can think of the second column as corresponding to
m2 numbers and the third column as corresponding to
numbers of the form 2n2.

I’m not sure I understand what you are saying here.

I’ll explain by example. We may think of the number 196 in the
second column as being an m2 number, where m = 14, while we
may consider the number 450 in the third column as being a
2n2 number, where n = 15.

Let me test myself to see if I have got the idea. I can think of 16
in the second column as an m2 number with m = 4, while I can
think of the 648 in the third column as corresponding to 2n2,
with n = 18, because 2(18)2 = 648. Do I pass?

With honors. Now if you can find an entry in the second
column that matches an entry in the third column, you will
have found values for m and an n which make m2 = 2n2 and so
you’ll have a fraction equal to .

As easy as that? So fingers crossed as I look at each entry of the
second column of this table and then look upwards from its
location along the third column for a possible match.

Of course! A time-saving observation. As you say, you need
only look upwards because the corresponding entries in the
third column are bigger than those in the second.

Unfortunately, I can’t find a single entry in the second column
that is equal to any entry in the third column.

So the second and third columns have no element in common.

Not that I can see. I’m going to experiment a little more by 
calculating the next ten perfect squares along with their
doubles.

Good for you.

This time I get:

Natural Number Number Squared Twice Number Squared

21 441 882

22 484 968

23 529 1058

24 576 1152

25 625 1250

26 676 1352

27 729 1458

2m

n
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Natural Number Number Squared Twice Number Squared

28 784 1568

29 841 1682

30 900 1800

I realize that this is not much of an extension to the previous
table.

Maybe, but perhaps you’ll get a match this time.

I’m scanning the second column to see if any entry matches
anything in the previous third column or the new third column.

Any luck?

I’m afraid not. However, I notice that there are some near misses
in the first table.

What do you mean by “near misses”?

There are entries in the second column that are either just 1 less
or 1 more than an entry in the third column.

I’m more than curious; please elaborate.

Well, take the number 9 in the second column. It is 1 more than
the 8 in the third column.

True. Any others?

There’s a 49 in the second column that is 1 less than the 50
appearing in the third column.

Again, true. Any more?

Yes. There’s a 289 in the second column and a 288 in the third
column.

Again, as you observed, with a difference of 1 between them.
Did you find any more examples?

Not that I can see in these two tables, except, of course, at the
very beginning. There’s a 1 in the second column and a 2 in the
third column.

Indeed there is.

But I don’t know what to make of these near misses.

However, you seem to have hit upon something interesting,
exciting even, so let’s take a little time out to mull over your
observations.

Fine by me, but you’ll have to do the thinking.

Why don’t we look at the case of the 9 in the second column
and the 8 in the third column. What is the m number corre-
sponding to this 9 in the second column, and what is the n
number corresponding to the 8 in the third column?

Let me think. I would say that m = 3 and that n = 2.

ASKING THE RIGHT QUESTIONS 13
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And you’d be right. Your observation tells us that

m2 = 2n2 + 1

where m = 3 and n = 2.

Because 32 = 2(2)2 + 1?

Exactly. Now let us move on to the case of the number 49 in
the second column and the 50 in the third column.

Here the m = 7 and n = 5 since 2(5)2 = 2(25) = 50.

This time

m2 = 2n2 - 1

where m = 7 and n = 5.

Can I try the next case?

By all means.

The number 289 corresponds to m = 17 since in this case m2 =
289. On the other hand, the number 288 corresponds to n = 12
since 2(12)2 = 2(144) = 288.

No argument there.

This time

m2 = 2n2 + 1

where m = 17 and n = 12.

So we’re back to 1 over.

There seems to be an alternating pattern with these pairs of near
misses.

There does indeed. For the sake of completeness, you should
look at the first case.

You mean the case with 1 in the second column and 2 in the
third column?

None other; the smallest case, so to speak.

Okay. Here m = 1 and n = 1.

And what is the value of m2 - 2n2 on this occasion?

This time

m2 = 2n2 - 1

Does this fit the alternating pattern?

It does.

Which is great.

But returning to the original reason for constructing the tables,
I haven’t found a single square among the first thirty perfect
squares that is equal to twice another square.

14 CHAPTER 1



True, and that means that, as of yet, you haven’t found a frac-
tion that squares to 2. But, on the other hand, you have found
a number of very interesting fractions.

I have? I would have thought that I’ve only found pairs of
natural numbers that are within 1 of each other.

In a sense, you could say that. But you actually have discovered
fractions with the property that the square of their numerator
is within 1 of double the square of their denominator.

I’m afraid you’ll have to elaborate.

Of course. You remember we said, when you observed that 9
in the second column was 1 greater than the 8 in the third
column, that the 9 corresponded to m2 where m = 3, while the
8 corresponded to 2n2 where n = 2?

I do.

Furthermore, m2 - 2n2 = 1, in this case.

That’s correct.

Suppose now that we form the fraction

Then can’t we say that the equation m2 - 2n2 = 1 tells us that
this fraction is such that the square of its numerator is 1 more
than twice the square of its denominator?

It seems to. I’ll have to think a little more about this. Yes:
32 = 9 and 2(2)2 = 8.

Try another one. Ask yourself, “What fraction is associated
with the observation that the 49 in the second column is 1 less
than the 50 in the third column?”

Okay. Here m = 7 and n = 5, so the fraction is 7–
5
, right?

Absolutely. Now what can you say about the numerator and
denominator of this fraction?

That the square of the numerator is 1 less than twice the square
of its denominator.

Exactly.

I think I understand now. You are saying that every time we
observe the near miss phenomenon we actually find a special
fraction.

Yes. You looked for a fraction whose numerator squared would
match twice its denominator squared; you didn’t find one, but
instead you found fractions whose numerators squared are
within 1 of twice their denominators squared.

That’s a nice way of looking at it.

m

n
=

3

2

m

n

ASKING THE RIGHT QUESTIONS 15



Often when you look for something specific you chance upon
something else.

So I suppose you could say that I found the next best 
thing.

I think we can say this, and not a bad reward for your labors.

Actually, I’m really curious to know if there are any more than
just these four misses and to see if the plus or minus pattern
continues to hold.

Let’s hope so. Why don’t we do a little more exploring?

I’d be happy to but shouldn’t we stick to our original mission
of finding a difference of exactly 0?

Very nicely put. Finding an m and n such that m2 = 2n2 means
that the difference m2 - 2n2 would be 0.

Thanks.

However, I think we’ll indulge ourselves and investigate your
observation about near misses a little further, particularly as it
looks so promising.

Okay. I’ll extend my tables and then go searching.

You could do that, but it might be an idea to look more care-
fully at what you have already found.

Like good scientists would.

As you say. Begin by cataloguing the specimens found to date
and examine them carefully for any clues.

Will do.

Time to Reflect

Beginning with the smallest, and listing them in increasing
order, the fractions are

Not many as of yet, but tantalizing.

What secrets do they hold, if any?

Indeed. Can you spot some connection between them?

Just like one of those sequence puzzles, “What is the next
number in the sequence?” except here it looks harder because
these are fractions and not ordinary numbers.

A puzzle certainly, but one we have encountered quite naturally.

And not just made up for the sake of it.
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Yes, something like that.

I hope this is an easy puzzle.

It is always best to be optimistic so I advise that you say to your-
self, “This is sure to be easy,” and look for simple connections.

Optimism it is then, but where to start?

It is often a good idea to begin by examining a pair of terms
some way out along a sequence rather than at the very begin-
ning of it.

Right. On that advice I’ll see if I can spot a connection between

and if I think I have found one, I’ll check it on the earlier 
fractions.

Very sensible. Happy hunting!

I think I’ll begin by focusing on the denominator 12 of the 
fraction 17—

12
.

Following a very definite line of inquiry, as they say.

I think I have spotted something already.

Which is?

That 12 = 7 + 5, the next denominator looks as if it might be
the sum of the numerator and denominator of the previous
fraction.

If it’s true, it will be a big breakthrough. I must say that was
pretty quick.

I must check the earlier terms of the sequence

to see if this rule holds also for their denominators.

Fingers crossed, then.

I obviously cannot check the first fraction, 1–
1
.

Why not?

Because there is no fraction before it.

A good point.

But the second fraction, 3–
2
, has denominator 2, which is just 1 +

1, the sum of the numerator 1 and denominator 1 of the first
fraction 1–

1
. This is getting exciting.
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That’s great. How about the third fraction 7–
5
?

Right, Mr. 7–
5
, let’s see if you fit the theory.Your denominator is 5, is

it not? Indeed it is, and the sum of the numerator and denomina-
tor of the previous fraction, 3–

2
, is 3 + 2, which I’m happy to say is

none other than 5.This is fantastic! Who would have thought?

Great again! Now is there an equally simple rule for the 
numerators?

I hope so, because discovering that rule for the denominators
gave me a great thrill.

We couldn’t ask for more than that.

Right, back to the drawing board. So is there a connection
between the numerator 17 of the fraction 17—

12
and the numbers 7

and 5 from the previous fraction 7–
5
?

It would be marvelous if there were.

If I’m not mistaken, there is. It’s simply that 17 = 7 + (2 ¥ 5).

Well spotted, though not quite as simple as the rule for the 
denominators.

No, but still easy enough.

Once you see it. How do you interpret this rule?

Doesn’t it say that the next numerator is obtained by adding the
numerator of the previous fraction to twice the denominator of
the previous fraction?

Indisputable. You had better check this rule on the other 
fractions.

It works for the fraction 3–
2

since 3 = 1 + (2 ¥ 1), and it also works
for 7–

5
since 7 = 3 + (2 ¥ 2).

This is wonderful. So how would you summarize the overall
rule, which allows one to go from one fraction to the next?

Well, the general rule obtained by combining the denominator
rule and the numerator rule seems to be:

To get the denominator of the next fraction, add the
numerator and denominator of the previous fraction; to
get the numerator of the next fraction, add the numera-
tor of the previous fraction to twice its denominator.

Well done! And a fairly straightforward rule, at that.

Isn’t it amazing?

Indeed it is. After all, there was no reason to believe that there
had to be any rule whatever connecting the fractions, but to
find that there is one and that it’s simple is remarkable.

I must now apply this general rule to 17—
12

to see what fraction
comes out and to see if it has the property that its top squared
minus twice the bottom squared is either 1 or -1.
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Let’s hope that the property holds.

According to the rule, the next fraction has a denominator of
17 + 12 = 29 and a numerator of 17 + 2 ¥ 12 = 41, and so is 41—

29
.

Good. And now what are we hoping for?

Based on the pattern displayed by the previous four fractions,
that (41)2 - 2(29)2 will work out to be -1.

Perform the acid test.

Here goes:

412 - 2(29)2 = 1681 - 2(841) = 1681 - 1682 = -1

This is fantastic!

So now you have found another example of a perfect square
that is within 1 of twice another perfect square—the whole
point of this investigative detour—without having to go to the
bother of extending your original tables.

That’s true. Our more thorough examination of the four cases
we found seems to have paid off.

A little thought can save a lot of computing.

I know that I couldn’t have spotted this example with my tables
because they give only the first thirty perfect squares along with
their doubles; but can we be sure that there is not an m value
between 17 and 41 that gives a square that is within 1 of twice
another perfect square?

An excellent question. At the moment we can’t be sure without
checking. However, if there is such an m value, then it corre-
sponds to a fraction that doesn’t fit in with the above rule.
Of course,this doesn’t exclude the possibility of there being such
a value.However, if you check,you won’t find any such value.

I must calculate the next fraction generated by the rule to see if
it also satisfies the plus or minus 1 property, to give it a name.
Applying the rule to 41—

29
gives 41 + 29 = 77 as the next denomi-

nator and 47 + (2 ¥ 29) = 99 as the numerator.

So 99—
70

is the next fraction to be tested.

I predict that m2 - 2n2 = 1 in this case. The calculation

992 - 2(70)2 = 9801 - 2(4900) = 9801 - 9800 = 1

verifies this. Great!

Bravo! What now?

Obviously, we can apply the rule over and over again and so
generate an infinite sequence beginning with
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