Hartwig Siebner - Ulf Ziemann (Hrsg.)

Das TMS-Buch

Handbuch der transkraniellen Magnetstimulation

Hartwig Siebner Ulf Ziemann (Hrsg.)

Das TMS-Buch

Handbuch der transkraniellen Magnetstimulation

Mit 147 zum Teil farbigen Abbildungen und 40 Tabellen

Prof. Dr. med. Hartwig Roman Siebner

Klinik für Neurologie Universitätsklinikum Schleswig-Holstein Campus Kiel Schittenhelmstraße 10 24105 Kiel

Prof. Dr. med. Ulf Ziemann

Klinik für Neurologie Klinikum der Johann-Wolfgang-Goethe-Universität Frankfurt am Main Schleusenweg 2-16 60528 Frankfurt am Main

ISBN-13 978-3-540-71904-5 Springer Medizin Verlag Heidelberg

Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom 9. September 1965 in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgesetzes.

Springer Medizin Verlag.

springer.de

© Springer Medizin Verlag Heidelberg 2007

Die Wiedergabe von Gebrauchsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, daß solche Namen im Sinne der Warenzeichen- und Markenschutzgesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Produkthaftung: Für Angaben über Dosierungsanweisungen und Applikationsformen kann vom Verlag keine Gewähr übernommen werden. Derartige Angaben müssen vom jeweiligen Anwender im Einzelfall anhand anderer Literarturstellen auf ihre Richtigkeit überprüft werden.

Planung: Renate Scheddin Projektmanagement: Renate Schulz Lektorat: Dr. Astrid Horlacher, Nußloch Layout und Einbandgestaltung: deblik Berlin Satz: medionet Prepress Services Ltd.

SPIN: 11739128

Vorwort

Die transkranielle Magnetstimulation ermöglicht die schmerzlose und nichtinvasive Reizung der menschlichen Hirnrinde. Seit ihrer Einführung im Jahr 1985 durch Dr. Reza Jalinous, Prof. Ian Freeston und Prof. Anthony Barker an der Universität Sheffield haben die Techniken der transkraniellen Hirnstimulation eine fast revolutionäre Entwicklung genommen. Aus der klinisch-neurophysiologischen Routinediagnostik zentralmotorischer Leitungs- und Erregbarkeitsstörungen ist die transkranielle Magnetstimulation nicht mehr wegzudenken, wobei sich die Untersuchungstechniken in den letzten 15 Jahren immer weiter ausdifferenziert haben. Neben ihrer Bedeutung in der neurophysiologischen Funktionsdiagnostik hat die transkranielle Magnetstimulation eine herausragende Bedeutung in der experimentellen Hirnforschung gewonnen. Die transkranielle Magnetstimulation kann z.B. eine passagere Funktionsstörung in einem umschriebenen Kortexareal induzieren. Dieser Läsionseffekt kann durch psychophysische Messungen charakterisiert werden und lässt wichtige Rückschlüsse über die funktionelle Relevanz des stimulierten Kortexareals zu. Auch die Kombination von transkranieller Magnetstimulation und anderen funktionellen Untersuchungsverfahren wie dem EEG oder dem funktionellen MRT hat die Anwendungsmöglichkeiten der transkraniellen Magnetstimulation in den letzten Jahren erheblich erweitert. Ein weiteres wichtiges Feld liegt in den Möglichkeiten zur anhaltenden Neuromodulation durch die Induktion von Erregbarkeitsveränderungen im stimulierten Hirngewebe und den damit verknüpften potenziell therapeutischen Anwendungen.

Dieses Buch bietet in 62 Kapiteln einen aktuellen Überblick über alle wichtigen Themen – von einer Einführung in Physik und Physiologie der transkraniellen Magnetstimulation über Reizprotokolle (Kochrezepte), intraoperatives Monitoring, Einsatzmöglichkeiten in der Hirnforschung bis hin zur therapeutischen Neuromodulation. Hierdurch werden Neurologen, Psychiater, Neurochirurgen, Psychologen, medizinisch-technische Assistenten und Neurowissenschaftler gleichermaßen angesprochen. In zahlreichen Exkursboxen werden die neurophysiologischen Grundlagen zusammengefasst, um Einsteigern eine thematische Einführung zu geben.

DAS TMS-Buch ist Bernd-Ulrich Meyer gewidmet, der 2001 mit seiner Familie bei einem tragischen Unfall ums Leben kam. Bernd-Ulrich Meyer hat vor 15 Jahren beim Springer-Verlag das erste umfassende deutschsprachige Werk mit dem Titel »Die Magnetstimulation des Nervensystems« herausgegeben und die Entwicklung der transkraniellen Hirnstimulation von Beginn an maßgeblich vorangetrieben.

Wir freuen uns besonders darüber, dass praktisch alle im deutschsprachigen Raum wissenschaftlich tätigen Arbeitsgruppen an der Erstellung der einzelnen Kapitel mitgewirkt haben. Damit wird die ausgezeichnete Qualität und international herausragende Stellung deutschsprachiger Arbeitsgruppen auf allen Feldern der transkraniellen Hirnstimulation hervorgehoben. Wir möchten uns für die hervorragenden Beiträge bei allen Koautoren und für die stets sehr angenehme Zusammenarbeit bei Frau Schulz und Frau Scheddin vom Springer-Verlag herzlich bedanken.

Kiel und Frankfurt, im Sommer 2007 Hartwig Siebner und Ulf Ziemann

Inhaltsverzeichnis

1	Grundlagen		3	Grundlagen	27
	110 marking all and a 110 marks along the sale Ball.	_		Hartwig Roman Siebner, Ulf Ziemann	
1	Hirnstimulation – Historischer Überblick .	3	3.1	Einführung	28
	Christian W. Hess		3.2	Allgemeine Betrachtungen	28
1.1	Historischer Überblick	4	3.2.1	Die periphere elektrische Neurostimulation	28
1.1.1	Entwicklung der motorischen Kortexreizung in		3.2.2	Neuroanatomische Grundlagen	31
	Tierexperimenten	4	3.2.3	Ankopplung des elektrischen Feldes an die	
1.1.2	Erste elektrische Reizversuche am menschlichen			kortikale neuronale Aktivität	33
	Gehirn	5	3.3	Transkranielle Stimulation des primären	
1.2	Der Beginn der Magnetstimulation nervöser Struk	:-		motorischen Kortex	35
	turen	7	3.3.1	Transkranielle elektrische Stimulation des	
1.2.1	Frühe Versuche mit alternierenden			primären motorischen Handareals	37
	Magnetfeldern	7	3.3.2	Transkranielle Magnetstimulation des	
1.2.2	Magnetstimulatoren für Einzelreize	7		primären motorischen Handareals	38
1.3	Die Einführung der TMS in die klinische		3.3.3	Transkranielle Magnetstimulation des	
	Neurologie	8		primären motorischen Beinareals	42
1.3.1	Technische Entwicklung der		3.3.4	Kortikospinale Aktivierung der spinalen	
	Magnetstimulation	8		Motoneurone	42
1.3.2	Klinische Entwicklung der Magnetstimulation		Literatu	r	44
	zu diagnostischen Zwecken	9			
1.3.3	Hemmende Phänomene und Untersuchungen		4	Sicherheitsaspekte und Anwendungs-	
	zur kortikalen Erregbarkeit	12		richtlinien	47
1.4	Therapieversuche mit rTMS	13		Walter Paulus, Hartwig Roman Siebner	
1.5	Gleichstromreizung des Kortex	14	4.1		40
Literatur		14	4.1	Sicherheitsaspekte	48
			4.1.1	Epileptische Anfälle	48
2	Hirnstimulation – Technische Grundlagen	17	4.1.2	Akute sensorische Effekte	50
	Thomas Weyh, Hartwig Roman Siebner		4.1.3	Akute kognitive Effekte	50
2.1	, -	10	4.1.4	Unerwünschte Langzeitwirkungen	51
2.1	Einführung	18	4.2	Anwendungsrichtlinien	52
2.2	Magnetische und elektrische Felder	18	4.2.1	TMS im Einzelreiz- oder Doppelreizmodus	52
2.2.1	Grundlagen – das magnetische Feld	18	4.2.2	Repetitive TMS	52
2.2.2	Zeitabhängige Magnetfelder – das elektrische	10	4.3	Transkranielle Gleichstromstimulation	54
222	Feld	18	Literatui	r	55
2.2.3	Optimale Pulsdauer bei der Magnetstimulation	19			
2.3	Aufbau von Stimulationsgeräten	19		Routinediagnostik:	
2.3.1	Monophasische Magnetstimulatoren	20		Kochrezepte	
2.3.2	Biphasische Magnetstimulatoren	21		Kociliezepte	
2.3.3	Repetitive Magnetstimulatoren	21	_		
2.3.4	Angabe der Reizstärke	21	5	Motorisch evozierte Potenziale –	
2.3.5	Geräte für Mehrfachpulse	21		Eine Einführung	59
2.4	Stimulationsspulen	22		Alain Kaelin-Lang	
2.4.1	Feld – Feldgradient	22	5.1	Einleitung	60
2.4.2	Spulenfeld – Spulengeometrie	23	5.2	Allgemeine Vorgehensweise bei der Ableitung	
2.4.3	Reizwirkung der Spulen – Tiefenreichweite	24		des MEP	60
2.4.4	Spulenverluste – Spulenerwärmung	24	5.2.1	Schritt 1: Anbringen der	
2.4.5	Akustisches Artefakt bei Spulen	25		Oberflächenelektroden	60
2.5	Sicherheitsaspekte der transkraniellen		5.2.2	Schritt 2: Technische Einstellungen am	
	Magnetstimulation	25		Ableitegerät	61
Literatur	٠	26	5.2.3	Schritt 3: Platzierung der Stimulationsspule	
			- · · · -	über dem motorischen Kortex	63
			5.2.4	Schritt 4: Wahl der Reizintensität	63
			5.2.5	Schritt 5: Willkürliche Anspannung des	
				Zielmuskels	64

VIII

5.2.6 5.2.7	Schritt 6: Aufzeichnung der MEP Schritt 7: Ausmessen des MEP und Berechnung	65	8.2	Radikuläre und distale Stimulation des unteren Motoneurons	92
5.3	des Amplitudenquotienten	66 67	8.2.1 8.2.2	F-Wellen-Methode	93
5.3.1	Entladungsverhalten einzelner motorischer	67	0.2.2	Nervenwurzeln	93
5.3.2	Einheiten	67	8.2.3	Transkutane elektrische Stimulation der lumbalen Nervenwurzeln	93
	oder Muskelkraft	68	8.3	Ableittechnik	94
Literatur	·	68	8.4	Normwerte	95
_	Destination of the second of the second of the second		8.4.1	Distale periphere Stimulation mit der	0.5
6	Bestimmung der zentralmotorischen Leitungszeit	71	8.4.2	F-Wellen-Methode	95
	Florian Müller, Ulf Ziemann	, ,	0.4.2	Nervenwurzeln	96
6.1	Bestimmung der kortikomuskulären		8.4.3	Proximale elektrische Stimulation der lumbalen	
0.1	Leitungszeit	72		Nervenwurzeln	96
6.1.1	Schritt 1: Auffinden des optimalen Reizortes	-	8.5	Fallbeispiel	97
0.1.1	über dem Motorkortex	72	Literatur	٠	97
6.1.2	Schritt 2: Bestimmung der erforderlichen		_		
	Reizstärke	72	9	Motorisch evozierte Potenziale der	00
6.1.3	Schritt 3: Vorinnervation des Zielmuskels	72		kranialen Muskeln	99
6.1.4	Schritt 4: Messwiederholungen und			Peter P. Urban	
	Auswertung	73	9.1	3	100
6.2	Bestimmung der peripheren motorischen	73	9.2	Stimulation der Gesichtsmuskulatur (N. fazialis) Indikationen und Möglichkeiten	
6.2.1	Leitungszeit	73 73	9.2.1 9.2.2	5	100
6.2.2	Bewertung der Methoden	73 74	9.2.2	Zentrale Fazialisparese	
6.2.3	Praktisches Vorgehen	75	9.2.4	Periphere Fazialisparese	
6.3	Berechnung der zentralmotorischen	, ,	9.3	Fallbeispiele	
	Leitungszeit	75	9.4	Stimulation der Zungenmuskulatur	
6.4	Spezialuntersuchungen: fraktionierte				104
	Leitungszeitmessungen	76	9.5	Stimulation der Kaumuskulatur (N. trigeminus)	105
6.5	Fallbeispiel	77	9.6	Stimulation der vom N. accessorius	
Literatur		78		innervierten Halsmuskeln	
7	Motovicch overioute Determined des Asse		Literatur	· · · · · · · · · · · · · · · · · · ·	107
7	Motorisch evozierte Potenziale der Arm- und Handmuskeln	79	10	Motorisch evozierte Potenziale der	
	Helge Topka	,,	10	axialen und proximalen Muskeln	109
7.1	Indikationen	80		Andreas Ferbert	
7.1	Durchführung der Untersuchung	80	10.1	Einleitung	110
7.2.1	Vorbereitung	82	10.2	Unterschiede und Gemeinsamkeiten zwischen	
7.2.2	Bestimmung der peripher-motorischen			distalen, proximalen und axialen Muskeln	110
	Leitungszeit	82	10.3	Ableitung von speziellen Muskeln	111
7.2.3	Transkranielle Stimulation des primären		10.3.1	M. deltoideus	111
	motorischen Handareals	85	10.3.2	M. erector spinae	111
7.3	Probleme bei der Untersuchung	87	10.3.3	M. pectoralis und M. latissimus dorsi	
Literatur		88	10.3.4	Diaphragma	114
_			10.3.5	M. sphincter ani externus, M. sphincter urethrae	
8	Motorisch evozierte Potenziale der Bein-			und M. bulbocavernosus	114
	und Fußmuskeln	89	10.3.6	Quergestreifte Muskulatur des Pharynx und Ösophagus	115
8.1	Transkranielle Stimulation des primären		Literatur	٠	115
	motorischen Beinareals	90			
8.1.1	Auffinden des optimalen transkraniellen		11	Triple-Stimulationstechnik	119
	Reizortes	90		Kai M. Rösler	
8.1.2	Bestimmung der erforderlichen transkraniellen		11.1	Neurophysiologischer Hintergrund $\ldots \ldots$	120
	Reizstärke	92	11.1.1	Desynchronisation der induzierten	
8.1.3	Vorinnervation des Zielmuskels	92		Motoneuronentladungen	
			11.1.2	Mehrfachentladungen von Motoneuronen	120

11.1.3	Prinzip der Triple-Stimulationstechnik		111	Spezielle Diagnostik:	
11.2	Praktisches Vorgehen				
11.2.1 11.2.2	Ableitung			Kochrezepte	
11.2.2	Periphere distale Stimulation				
11.2.3	Proximale Nervenstimulation		14		149
11.2.5	Transkranielle Stimulation			Friedemann Awiszus, Helmut Feistner	
11.2.6	Bestimmung der Reizintervalle		14.1	Vorbemerkung	150
11.3	Messungen und Berechnungen		14.2	Grundlagen kortikaler Reizschwellen	150
11.4	Klinische Anwendung der	120	14.2.1	TMS-induzierte Ereignisse	151
	Triple-Stimulationstechnik	126	14.2.2	Vom physiologischen zum mathematischen	
11.5	Limitationen der TST			Problem	151
11.6	Fallbeispiele		14.3	Rezepte für die Schätzung kortikaler	
	·			Reizschwellen	153
			14.3.1	Nicht durchführbar, obsolet und ineffizient:	
12	Transkutane Magnetstimulation			Leitlinienrezepte	153
	peripherer Nerven	133	14.3.2	Durchführbar, aber ineffizient:	
	Christian Bischoff			Das Mills-Nithi-Verfahren	154
12.1		124	14.3.3	Effizient, aber grob: Schwellenjagd mittels	
12.1	Magnetsimulation peripherer Nerven	134		Bisektion	154
12.1.1 12.1.2	Grundlagen der peripheren Magnetsimulation Vorteil der Magnetstimulation peripherer	134	14.4	Interpretation kortikaler Erregbarkeits-	
12.1.2	Nerven	124		schwellenschätzungen	155
12.1.3	Nachteile der Magnetstimulation peripherer	134	14.4.1	Physikalische Einflussfaktoren	155
12.1.3	Nerven	12/	14.4.2	Physiologische, pathologische und	
12.1.4	Hinweise zur technischen Durchführung			pharmakologische Einflussfaktoren	157
12.1.4	Direkte Muskelstimulation		14.4.3	Schwellenschätzungen unterschiedlicher	
				TMS-induzierter Ereignisse	
Literatur		150	Literatur	·	158
13	Besonderheiten im Kindes- und		15	Kortikale Innervationsstille	159
	Jugendalter	139		Michael Orth, Reiner Benecke	
	Florian Heinen, Verena Brodbeck		15.1	Definition und Physiologie	160
13.1	Altersspezifische Besonderheiten	140	15.1	Methoden und Protokolle	
13.1.1	Neuroanatomische und neurophysiologische		15.2.1	TMS-Versuchsprotokoll	
	Besonderheiten	140	15.2.1	Auswertung	
13.1.2	Konsequenzen für die MEP-Ableitung im		15.2.3	Einflussgrößen	
	Kindesalter	141	15.3	Fallbeispiele	
13.2	Elektrophysiologische Kennwerte und			·	
	$prakt is ches \ Vorgehen \ \dots \dots \dots \dots \dots$	141	Litteratur		105
13.2.1	Bestimmung der zentralmotorischen		16	Kortikale Doppelpulsprotokolle	167
	Leitungszeit (ZML)	142		Mathias Wahl, Ulf Ziemann	
13.2.2	Bestimmung der kortikalen motorischen			,	
	Reizschwelle	142	16.1	Doppelpulsprotokolle, die zwei überschwellige	
13.2.3	Organisationstyp der kortikospinalen Bahn bei			Stimuli gleicher Intensität bei langen	
	$\label{thm:continuous} Zerebral paresen \ und \ kindlichem \ Schlaganfall \ \ .$	143		Interstimulusintervallen verwenden	1.00
13.3	Spezielle elektrophysiologische Kennwerte und		1611	(10–250 ms)	108
	praktisches Vorgehen		16.1.1	Technische Voraussetzungen zur Bestimmung	160
13.3.1	Interhemisphärische Hemmung		1612	der LICI und LICF	169
13.3.2	Intrakortikale Hemmung und Bahnung		16.1.2 16.1.3	3	169
13.4	Klinische Fragestellungen		16.2	Doppelpulsprotokolle, die einen ersten	109
13.4.1	Fazialisparese		10.2	unterschwelligen und einen zweiten	
13.4.2	Multiple Sklerose			überschweiligen Stimulus bei kurzen Inter-	
13.4.3	Rett-Syndrom	145		stimulusintervallen verwenden (1–20 ms)	170
13.4.4	Lähmung im Rahmen einer somatoformen	1.45	16.2.1	Technische Voraussetzungen zur Bestimmung	. / 0
12.45	Störung	145	. 0.2.1	3	170
13.4.5	Entwicklungsneurologie der kindlichen	1.45	16.2.2		170
1246	Motorik		16.2.3	Physiologische Grundlagen	
13.4.6	Zerebralparesen und kindlicher Schlaganfall			,	
Literatur		140			

16.3	Doppelpulsprotokolle, die einen ersten über-		19	Stimulation des visuellen Kortex	203
	schwelligen und einen zweiten			Thomas Kammer	
	unterschwelligen Stimulus bei sehr kurzen Inter-		19.1	Überblick über die Phänomene	204
	stimulusintervallen verwenden (0,5–5 ms)	173	19.1.1	Phosphene	204
16.3.1	Technische Voraussetzungen zur Bestimmung		19.1.2	Visuelle Maskierung	
	der SICF		19.2	Protokolle	204
16.3.2	Bestimmung der SICF		19.2.1	Phosphene	204
16.3.3	Physiologische Grundlagen		19.2.2	Visuelle Maskierung	206
16.4	Fallbeispiel		19.3	Physiologische Grundlagen	208
Literatur		1/5	19.4	Fallbeispiel	208
17	Affaranta Kanditianianun	177	Literatur	·	208
17	Afferente Konditionierung	1//			
	Monika Pötter, Hartwig Roman Siebner		20	Transkranielle elektrische Stimulation	211
17.1	Einleitung	178		Stephan Brandt, Jan Brocke, Kerstin Irlbacher	
17.2	Afferente Konditionierung mittels peripherer		20.1	Physiologische Grundlagen der TES	212
	elektrischer Stimulation	178	20.2	Durchführung	212
17.2.1	Afferente sensomotorische Hemmung kurzer		20.2.1	Polarität	212
	Latenz	178	20.2.2	Ausrichtung	212
17.2.2	Afferente sensomotorische Hemmung langer		20.2.3	Reizstärke und Reizdauer	214
	Latenz		20.3	Anwendungsgebiete von TES	215
	Zentrale reziproke sensomotorische Hemmung	184	20.4	Sicherheitsaspekte	215
17.3	Sonstige afferente Konditionierungs-	405	20.4.1	Tierexperimentelle Grundlagen	215
1721	paradigmen	185	20.4.2	Nebenwirkungen und Kontraindikationen	216
17.3.1	Afferente Konditionierung durch nozizeptive	105	Literatur	٠	216
17.3.2	Stimulation	103			
17.3.2	Stimulation	185	21	Intraoperatives Monitoring/	
17.3.3	Afferente Konditionierung durch akustische	103		Intensivmedizin	219
17.3.3	oder visuelle Reize	186		Andrea Szelényi	
17.4	Fallbeispiel		21.1	Intraoperatives Monitoring	220
17.5	Bewertung der Verfahren		21.1.1	Zielsetzung	
			21.1.2	Physiologische Grundlagen	
Literatui		100	21.2	Evozierung motorischer Potenziale und	
18	Zerebrale Konnektivität	191		Anästhesie	220
	Tobias Bäumer, Alexander Münchau		21.2.1	Interaktion mit Anästhetika	220
		400	21.3	Praktische Durchführung	221
18.1	Methodische Überlegungen	192	21.3.1	Indikation zum intraoperativen	
18.2	Ipsilaterale Innervationsstille	100		MEP-Monitoring	221
1001	(engl. ipsilateral silent period, iSP)		21.3.2	Nebenwirkungen und Patientensicherheit	221
18.2.1	Methodischer Ansatz und Durchführung		21.3.1	Monitoring muskulärer MEP	221
18.2.2	Auswertung		21.3.2	Kranielle Eingriffe: Muskuläre MEP	222
18.2.3	Technischer Bedarf		21.3.3	Spinale Eingriffe: Kombination muskulärer	
18.2.4	Kommentare			und spinaler MEP	223
18.3 18.3.1	Doppelpulsprotokolle		21.4	Fallbeispiel	224
	Vorbemerkungen	194	21.5	MEP in der Intensivmedizin	225
18.3.2	Interaktion von frontalen (prämotorischen)	105	Literatur		225
18.3.3	Arealen und ipsilateralem M1 Interhemisphärische Inhibition (IHI)				
	Interhemisphärische Fazilitierung		IV	Spezielle Diagnostik:	
18.3.5	Inhibition nach Konditionierung über der	190		•	
	hinteren Schädelgrube	108		Wichtige Krankheitsbilder	
	Beispiele von rTMS-Konditionierungs-	190			
	protokollen	198	22	Multiple Sklerose	229
18.4.1	Methodische Ansätze und Durchführung			Patrick Jung, Ulf Ziemann	
	Fallbeispiel		22.1	Pathophysiologische Grundlagen	230
			22.2	Diagnostische Wertigkeit von TMS-Messwerten	
c.utul		201	22.2.1	Sensitivität	231
			22.2.2	Spezifität	232
			22.2.3	Detektion subklinischer Läsionen	232
			22.2.4	Prognostischer Wert	233

22.2.5	Surrogatmarker klinischer Krankheits-		25	Myelopathien	255
	progression und therapeutischer Effekte			Sven Schippling	
22.3	Fallbeispiel		25.1	Einführung	256
Literatur		235	25.2	MEP-Kennwerte bei Myelopathien	
			25.2.1	Peripher- und zentralmotorische Leitungszeit .	
23	Motoneuronerkrankungen	237	25.2.2	MEP-Amplitude	
	Klaus Krampfl, Reinhard Dengler		25.3	Myelopathien	257
23.1	Pathophysiologische Grundlagen	238	25.3.1	Kompressive zervikale Myelopathie	257
23.1.1	Degeneration des 1. Motoneurons	238	25.3.2	Andere Myelopathien	258
23.1.2	Degeneration des 2. Motoneurons	238	25.4	Praktisches Vorgehen und therapeutische	
23.2	Wesentliche TMS-Messwerte bei der			Konsequenzen	
	Untersuchung von Patienten mit		25.5	Fallbeispiel	259
	Motoneuronerkrankungen		Literatur		260
23.2.1	Zentralmotorische Leitungszeit (ZML)	239			
23.2.2	Kortikale Reizschwelle		26	Epilepsien	261
23.2.3	MEP-Amplitude			Janine Reis, Hajo M. Hamer, Felix Rosenow	
23.2.4	MEP/M-Wellen-Quotient		26.1	Pathophysiologie der Epilepsien	262
23.2.5	Triple-Stimulationstechnik		26.2	Durch TMS bestimmbare Kennwerte kortikaler	
23.2.6	Kortikale Innervationsstille	241		Erregbarkeit in der Epileptologie	262
23.2.7	Intrakortikale Hemmung bei kurzen		26.3	TMS-Kennwerte kortikaler Erregbarkeit bei	
	Interstimulus-Intervallen			generalisierten Epilepsien	262
23.2.8	Intrakortikale Bahnung	242	26.3.1	Motorische Reizschwellen	
23.2.9	Elektromyographische Ableitungen von		26.3.2	MEP-Amplitude	263
	einzelnen motorischen Einheiten		26.3.3	MEP bei konditionierender afferenter	
23.2.10	Ipsilaterale MEP	242		Stimulation peripherer Nerven	263
23.3	Korrelation pathologischer TMS-Befunde		26.3.4	Interhemisphärische Inhibition	263
	zum klinischen Verlauf von Motoneuron-	242	26.3.5	Kortikale Innervationsstille	263
22.4	erkrankungen	242	26.3.6	Intrakortikale Hemmung bei kurzen	
23.4	Spezifische TMS Befunde bei genetischen	242		Interstimulusintervallen und intrakortikale	
22.5	definierten Varianten der ALS			Bahnung	265
23.5 23.6	TMS-Messwerte unter Therapie		26.3.7	Intrakortikale Bahnung und Hemmung bei	
	Fallbeispiel			langen Interstimulusintervallen	265
Literatui		244	26.4	TMS Kennwerte kortikaler Erregbarkeit bei	
24	Schlaganfall	247		fokalen Epilepsien	
4 -1	Joachim Liepert	277	26.4.1	Motorische Reizschwellen	
	•		26.4.2	MEP-Amplitude	266
24.1	Prognose-Abschätzung	248	26.4.3	MEP bei konditionierender afferenter	
24.1.1	Einzelreiz-Stimulation der ipsiläsionellen			Stimulation peripherer Nerven	
2442	Hemisphäre	248	26.4.4	Interhemisphärische Inhibition	
24.1.2	Einzelreiz-Stimulation der kontraläsionellen	240	26.4.5	Kortikale Innervationsstille	26/
2412	Hemisphäre	248	26.4.6	Intrakortikale Hemmung bei kurzen	
24.1.3	Doppelreiz-Protokolle: Intrakortikale Hemmung bei kurzen Interstimulusintervallen	240		Interstimulusintervallen und intrakortikale	260
24.2	Untersuchungen zur Pathophysiologie mittels	249	26.4.7	Bahnung	268
24.2	TMS	240	20.4.7	3	260
24.2.1	Intrakortikale Hemmung bei kurzen	243	26.5	langen Interstimulusintervallen Einflussfaktoren und praktische Hinweise	
24.2.1	Interstimulusintervallen	249	26.6	Sicherheitsaspekte bei Epilepsiepatienten	269
24.2.2	Kortikale Innervationsstille		26.7	Fallbeispiel	
24.2.3	MEP-Intensitätskurven				
24.2.4	MEP-Mapping		Litteratur		2/1
24.2.5	Interhemisphärische Hemmung		27	Bewegungsstörungen	273
24.2.6	Virtuelle Läsionen			Alexander Wolters	_,,
24.3	Therapieinduzierte Änderungen der		27.1		2= -
	Erregbarkeit des motorischen Kortex	252	27.1	Pathophysiologie	
24.3.1	MEP-Mapping		27.2	Morbus Parkinson	
24.3.2	Intrakortikale Hemmung bei kurzen		27.2.1	Erregbarkeit des motorischen Kortex	
	Interstimulusintervallen	252	27.2.2	Konnektivität des motorischen Kortex	
24.4	Fallbeispiel		27.3 27.3.1	Parkinson-Syndrome	
Litaratur		254	۱.۵.۱	i aikiii5011-3yiiai0111 11111 Faikii1-Waldi1011	2/3

27.3.2 27.4	Atypische Parkinson-Syndrome	276	V		
27.4.1	Erregbarkeit und Konnektivität des motorischen Kortex			Hirnfunktionen – Methoden	
27.4.2	Sensomotorische Integration		31	Passagere Funktionsunterbrechung mit	
27.4.3	Stimulations-induzierte Plastizität	277	31	3	207
27.5	Hyperkinetische Syndrome	277		3	307
27.5.1	Huntington-Chorea			Boris Hagen Schlaak, Alvaro Pascual-Leone,	
27.5.2	Essenzieller Tremor und Parkinson-Tremor			Hartwig Roman Siebner	
27.5.3	Gilles-de-la-Tourette-Syndrom		31.1	Einführung	308
27.5.4	Myoklonus		31.2	Prinzip der Funktionsunterbrechung	308
27.6	Fallbeispiel		31.3	Effektive Stimulation des Zielareals	310
			31.4 31.5	Läsionsmodus: Einzelreizung versus Reizserie. Spezifität der TMS-induzierten Läsionseffekte	
28	Zerebelläre Erkrankungen	281	31.6 31.7	Prolongierte Läsionseffekte nach rTMS	
28.1	Einführung	282	Literatur		315
28.2	Änderungen der zentralmotorischen		22	Navanaviastias dantus slussiallas	
	Leitungszeit bei spinozerebellären Atrophien		32	Neuronavigation der transkraniellen	247
	(SCA)	282		3	317
28.2.1	SCA 1 und Friedreich-Ataxie			Uwe Herwig, Carlos Schönfeldt-Lecuona	
28.2.2	SCA 2, 3, 6		32.1	Positionierungsstrategien	318
28.3	Änderung der Erregbarkeit des motorischen		32.1.1	Konventionelle Methoden	318
	Kortex	283	32.1.2	Bildgebungsgestützte Nicht-Echtzeit-	
28.3.1	Kortikale Innervationsstille	283		Positionierung	
28.3.2	Intrakortikale Hemmung bei kurzen		32.1.3	Neuronavigation der Spule in Echtzeit	
	Interstimulusintervallen und intrakortikale		32.2		
	Bahnung	283	32.2.1	Komponenten	
28.4	Zerebelläre Konditionierung eines Test-MEP		32.2.2	Durchführung	
	über dem kontralateralen Motorkortex	285	32.2.3	Vorteile und Grenzen	
Literatur	·	285	Literatur		321
29	Migräne	287	33	Kortikale Erregbarkeit und kortikokortikale	
	Michael Siniatchkin, Thorsten Bartsch			Konnektivität	323
29.1	Pathophysiologische Konzepte der Migräne		33.1		324
29.2	Erregbarkeit des visuellen Kortex bei Migräne .	288	33.1.1		324
29.3	Erregbarkeit des motorischen Kortex bei		33.1.2	Erregbarkeitsänderungen vor, während und	J2-1
20.4	Migräne		33.1.2	nach einer Bewegung	324
29.4	Ausblick.		33.1.3	Erregbarkeitsänderungen bei Beendigung und	J2-1
29.5	Fallbeispiel		33.1.3	5 5	325
			33.1.4	Erregbarkeitsänderungen bei Vorstellung und	
30	Psychiatrische Erkrankungen	29/	33.1.5	Die ermüdende Kontraktion	
	Malek Bajbouj		33.2		327
30.1	Depressionen	298	33.2.1		
30.1.1	Neurobiologische Grundlagen		33.2.2	Interhemisphärische Konnektivität zwischen	
30.1.2	TMS-Befunde			den primären motorischen Handarealen	328
30.2	Schizophrenien		33.2.3	Interhemisphärische Konnektivität zwischen	
30.2.1	Neurobiologische Grundlagen			dem dorsalen prämotorischen und dem primär	
30.2.2	TMS-Befunde			motorischem Kortex	330
30.3	Demenz vom Alzheimer-Typ		33.3	Ausblick	331
30.3.1	Neurobiologische Grundlagen		Literatur		331
30.3.2	TMS-Befunde	300			
30.4	Zwangsstörungen				
30.4.1	Neurobiologische Grundlagen				
30.4.2	TMS-Befunde				
30.5	Fallbeispiel				
Literatur		303			

34	Neuropharmakologie	333	36.4.2 36.5	Fallbeispiele	361
34.1 34.2	Einführung	334	36.6	Erkrankungen	
J 7. 2	Neuropharmaka mit bekanntem Wirkmechanismus	33/	Literatur	·	365
34.2.1 34.2.2	Motorische Reizschwelle		37	Transkranielle Magnetstimulation und funktionelle Magnetresonanztomografie	367
34.2.2	(MEP)	334		Jürgen Baudewig, Sven Bestmann	
34.2.3	Kontralaterale kortikale Innervationsstille		37.1	Einführung	368
34.2.4	Intrakortikale Hemmung bei kurzen		37.2	Funktionelle MRT im Anschluss an die rTMS	368
	Interstimulusintervallen		37.3	Funktionelle MRT während der TMS	
34.2.5	Intrakortikale Bahnung	337	37.3.1	Methodische Aspekte	369
34.2.6	Intrakortikale Bahnung bei kurzen	227	37.4	Anwendungsbeispiele für die TMS während der	271
2427	Interstimulusintervallen	33/	37.4.1	funktionellen MRT	3/1
34.2.7	Intrakortikale Hemmung bei langen Interstimulusintervallen	338	37.4.1	transkraniellen Einzelreizen oder kurzen	
34.2.8	Afferente sensomotorische Hemmung kurzer	330		Reizserien	371
3 1.2.0	Latenz	338	37.4.2	Darstellung intrakortikaler Konnektivität	
34.2.9	Zusammenfassung		37.4.3	Klinische und neuropharmakologische	
34.2.10	Kortikale Erregbarkeitsänderungen als			Anwendungen	372
	biologischer Marker neuropharmakologischer		37.5	Vergleich mit anderen bildgebenden Verfahren	373
	Effekte	339	37.6	Ausblick	373
34.3	Charakterisierung des Wirkmechanismus von		Literatur	·	374
	Neuropharmaka	339			
34.4	Kortikale Erregbarkeitsänderungen unter	240	38	Transkranielle Magnetstimulation und tiefe Hirnstimulation	277
245	chronischer Gabe eines Neuropharmakons	340			377
34.5	Neuropharmakologische Modulation kortikaler Plastizität	2/1		Andrea A. Kühn	
34.5.1	Stimulationsinduzierte Plastizität		38.1	Einleitung	378
34.5.2	Übungsabhängige Plastizität		38.2	Sicherheitsaspekte zur TMS bei Patienten mit	270
			38.3	Hirnschrittmacher	378 379
35	Transkranielle Magnetstimulation und		38.3.1	Einfluss der kontinuierlichen Hochfrequenz-	
33	Elektroenzephalografie	345	20.2.2	stimulation auf die motorkortikale Erregbarkeit	379
	Reto Huber		38.3.2	Kortikal und peripher induzierte Effekte der Einzelreizstimulation über die implantierten	
35.1	Zeitlich getrennte Durchführung von TMS und			Stimulationselektroden	381
33.1	EEG/MEG	346	38.3.3	Effekte der transkraniellen Kortexstimulation	301
35.2	Simultane Durchführung des EEG während	3 10	50.5.5	auf die neuronale Aktivität in den	
	der TMS	349		Basalganglien	382
35.3	Vor- und Nachteile des TMS-EEG-Ansatzes	352	Literatur		
Literatur		352			
			39	Tierexperimentelle Untersuchungen	385
36	Kombination von transkranieller			Klaus Funke	
	Magnetstimulation und Positronen-		39.1	Einleitung	386
	emissionstomografie	355	39.2	Einzelzellableitungen im visuellen Kortex der	
	Martin Peller, Hartwig Roman Siebner			Katze	386
36.1	Einführung		39.3	Verhaltensexperimente zur antidepressiven	200
36.2	Methodische Aspekte		20.2.1	Wirkung der rTMS	388 389
36.2.1 36.2.2	Interaktion zwischen TMS und PET		39.3.1 39.4	Einfluss der rTMS auf Lernen und Gedächtnis	
36.2.3	Methoden zur Spulenpositionierung über dem	330	39.5	Neurotransmitterfreisetzung, Rezeptordynamik	
- 0.2.3	kortikalen Zielareal	357		Genexpression	
36.3	PET-Messungen während der TMS		39.5.1	Fallbeispiel	
36.3.1	Allgemeine Aspekte		39.6	Sicherheitsaspekte der rTMS –	
36.3.2	Fallbeispiele	359		Neurodegeneration und Neuroprotektion \dots	392
36.4	PET-Messungen im Anschluss an die TMS \ldots		Literatur	•	392
36.4.1	Allgemeine Aspekte	360			

1/1	Ch - t		42.4	Charakterisierung trainingsinduzierter	
VI	Charakterisierung von Hirn-			Veränderungen	425
	funktionen – Funktionelle		42.4.1	Einzelpuls-TMS: Lernbedingte Änderungen	
				der kortikospinalen Erregbarkeit	425
	Systeme		42.4.2	Doppelpuls-TMS: Lernbedingte Änderungen	
				der intrakortikalen Erregbarkeit	426
40	Handmotorik	397	42.5	Motorische Rehabilitation nach Schlaganfall	426
	Michael Martin Weiss, Hartwig Roman Siebner		42.6	Ausblick	427
40.1	Aufgabenabhängige Modulation der kortiko-		Literatur		427
	motorischen Exzitabilität	398			
40.1.1	Bewegungsbeobachtung	398	43	Sprache	429
40.1.2	Bewegungsvorstellung	399		Caterina Breitenstein, Stefan Knecht	
40.1.3	Bewegungsauswahl und Bewegungsinitiierung		43.1		430
40.1.4	Bewegungsausführung		43.2	5 5	432
40.2	Kartierung kortikomotorischer		43.2.1	Stimulation während oder kurz vor der	732
	Repräsentationen	400	73.2.1	Durchführung einer Sprachaufgabe	432
40.2.1	Praktische Durchführung		43.2.2	Längeranhaltende Förderung von	732
40.2.2	Fallbeispiele		73.2.2	5	433
40.3	Kontextabhängige Konnektivität		43.3		433
40.4	Passagere Funktionsunterbrechung		43.3.1	Stimulation während oder kurz vor der	733
40.4.1	Bewegungsauswahl im dorsalen		TJ.J.1		433
	prämotorischen Kortex	404	43.3.2	Längeranhaltende Störung von	733
40.4.2	Greiffunktion und visuomotorische Integration		73.3.2	-	435
	im Parietallappen	406	43.4	TMS zur Bestimmung der funktionellen	733
40.4.3	Funktionsunterbrechung im supplementären		тт	Interaktion von Gehirnregionen	125
	motorischen Areal	406	43.5	Zusammenfassung und Ausblick	
40.5	Konditionierung mit der rTMS				
			Literatui		737
			44	Somatosensorik	439
41	Okulomotorik	411		Hubert R. Dinse, Patrick Ragert, Martin Tegenthoff	737
	Thomas Nyffeler, René M. Müri				
41.1	Einleitung	412	44.1	3	
41.2	Funktionsunterbrechung während einer Augen-		44.2	3	440
71.2	bewegungsaufgabe bei gesunden Probanden	413	44.3	Akute Störung der somatosensorischen	
41.2.1	Kartierungsexperimente zur Lokalisation	713		3	440
71.2.1	okulomotorischer Funktionen	413	44.3.1	3	440
41.2.2	Chronometrie von relevanten Funktionen einer	713	44.3.2	3	441
41.2.2	okulomotorischen Region	414	44.4	Anhaltende Beeinflussung der	
41.2.3	Funktionsunterbrechung mit Doppelpulsen	717		3	441
71.2.3	und kurzen Reizserien	<i>1</i> 15	44.4.1	Frequenzabhängige Konditionierungseffekte	
41.3	Konditionierende rTMS bei gesunden	713		3 3	441
71.5	Probanden	<i>1</i> 15	44.4.2	Weitere transkranielle Konditionierungs-	
41.4	Interferenz während einer Augenbewegungs-	713		·	444
71.7	aufgabe bei Patienten	<i>1</i> 15	44.5	Transkranielle Modulation von sensorischen	
41.5	Ausblick			Lernprozessen	
	Ausbieck		44.6		445
Literatui		410	Literatur	′	446
42	Motorisches Lernen	421	45	Visuelle Verarbeitung	449
	Susan Koeneke, Lutz Jäncke		43	_	443
10.1				Til Ole Bergmann, Hartwig Roman Siebner	
42.1	Motorisches Lernen und TMS –	422	45.1	3	450
42.2	eine Einführung	422	45.2	Mentale Chronometrie des primären visuellen	
42.2		422			450
42.2.1	motorische Lernprozesse		45.3	Visuelle Verarbeitung in höheren visuellen	
42.2.1	Niederfrequente rTMS				450
42.2.2	Hochfrequente rTMS	424	45.3.1	3 3	450
42.3	Akute Funktionsunterbrechung während	124	45.3.2	Objekterkennung	451
	motorischer Lernaufgaben	424	45.4	Funktionelle Interaktionen zwischen visuellen	

45.4.1	Wechselwirkungen zwischen Areal V1 und V5 .	452	49	Emotionen	487
45.4.2	Einfluss des frontalen Augenfelds auf			Nicola Großheinrich, Kristina Fast, Frank Padberg	
	okzipitale visuelle Areale		49.1	Einführung	488
45.5	Multimodale Wahrnehmung		49.2	Wirkung der rTMS auf die normale Affektlage	
45.6	Visuelle Vorstellung			bei Gesunden	489
45.7	Ausblick		49.2.1	Untersuchungen mit Selbstbeurteilungsskalen	489
Literatur		45/	49.2.2	Untersuchungen mit neurophysiologischen	
		450		Variablen	492
46	Aufmerksamkeit	459	49.2.3	Neuropsychologische Untersuchungen mit	
	Claus C. Hilgetag			emotional-kognitiven Paradigmen	493
46.1	Einführung	460	49.3	Wirkung der rTMS auf induzierte Emotionen	
46.2	Einsatzmöglichkeiten der TMS zur Aufklärung			bei gesunden Probanden	494
	von Aufmerksamkeitsprozessen		49.4	Methodische Beschränkungen	
46.2.1	Lokalisierung involvierter Hirnregionen	460	49.5	Diskussion und Ausblick	
46.2.2	Funktionelle Spezialisierung einzelner		Literatur	`	495
	Hirnregionen	462			
46.2.3	Funktionelle Lateralisierung von		VII	Induktion von Plastizität –	
	Aufmerksamkeit	462		Methoden	
46.2.4	Chronometrie von Aufmerksamkeitsprozessen	463		Methoden	
46.2.5	Interaktionen zwischen Regionen des				
	Aufmerksamkeitsnetzwerks	464	50	Repetitive transkranielle Magnet-	
46.3	Untersuchung von Aufmerksamkeitsprozessen				499
4621	an gesunden Probanden	464		Nicolas Lang, Hartwig Roman Siebner	
46.3.1	Akute Funktionsunterbrechung während	464	50.1	Einführung	500
4622	einer Aufmerksamkeitsaufgabe	464	50.2	Effekte der rTMS auf die kortikale Erregbarkeit	
46.3.2	Länger anhaltende Modulation von	465		,	501
16.1	Aufmerksamkeitsprozessen	403	50.2.1	Bahnung und Hemmung der kortikalen	
46.4	Untersuchung von Aufmerksamkeitsleistungen	16E		3	501
46.5	an Patienten		50.2.2	Einfluss von Pulskonfiguration und	
	Ausblick				503
Literatur		400	50.2.3	Effekte auf die kortikale Erregbarkeit in	
47	Gedächtnis	469		3	503
7,		407	50.3	Konditionierende Effekte der rTMS auf	
	Felix M. Mottaghy, Roland Sparing			Systemebene	
47.1	Einführung		50.4	Neue Stimulationsprotokolle	
47.2	Sensorisches Ultrakurzzeitgedächtnis		50.4.1	Repetitive Doppelpulsstimulation	
47.3	Arbeitsgedächtnis		50.4.2	Salvenartige rTMS	
47.3.1	Verbales Arbeitsgedächtnis	4/1	50.4.3	Paarig-assoziative rTMS	
47.3.2	Visuell-räumliches Arbeitsgedächtnis		50.5	Einfluss neurobiologischer Faktoren	
47.4 47.5	Langzeitgedächtnis	4/4	50.6	Ausblick	
47.5	Untersuchung von Gedächtnisfunktionen	474	Literatur		509
47.6	bei Patienten		E1	Consorts accomistive Stimulation	E 1 2
47.6	Zusammenfassung und Ausblick		51	•	513
Literatur		4/5		Ulf Ziemann	
40	Transkranielle Magnetstimulation und		51.1	Einführung	514
48	Schlaf	477	51.2	Gepaarte assoziative Stimulation –	
		4//		Induktion LTP-ähnlicher Plastizität	
	Farid Salih, Pascal Grosse		51.2.1	Reizprotokoll	514
48.1	Einleitung		51.2.2	Physiologische Eigenschaften von	
48.2	Methodische Aspekte	480		PAS-induzierter LTP-ähnlicher Plastizität	
48.3	Änderungen der kortikomotorischen		51.2.3	Funktionelle Relevanz PAS-induzierter LTP-ähnlich	
	Erregbarkeit im Schlaf bei Gesunden	481		Plastizität	517
48.4	TMS bei schlafbezogenen zerebralen		51.2.4	Klinische Relevanz PAS-induzierter	-
	Erkrankungen			LTP-ähnlicher Plastizität	518
48.5	Andere experimentelle Anwendungen		51.3	Gepaarte assoziative Stimulation –	
48.6	Ausblick			Induktion LTD-ähnlicher Plastizität	
Literatur		486	51.3.1	Reizprotokoll	519

51.3.2	Physiologische Eigenschaften PAS-induzierter LTD-ähnlicher Plastizität	519	54.4.3	Homöostatische Plastizität zwischen übungs- abhängiger Plastizität und nachfolgender	
51.3.3	Funktionelle Relevanz PAS-induzierter			stimulationsinduzierter Plastizität	
	LTD-ähnlicher Plastizität		54.5		
51.3.4	Klinische Relevanz PAS-induzierter LTD-ähnliche		Literatur	·	550
	Plastizität				
51.4 Literatur	Ausblick		VIII	Modulation von Hirn-	
Literatui		321		funktionen - Therapeutische	
52	Übungsabhängiges motorisches Lernen .	523		Ansätze	
	Cathrin Bütefisch				
52.1	Einleitung	524	55	Transkranielle Kortexstimulation	555
52.2	Charakterisierung motorischer Lernvorgänge			Ahmed A. Karim, Niels Birbaumer,	
	mit der TMS	524		Hartwig Roman Siebner	
52.2.1	Einfluss motorischen Lernens auf die		55.1		556
	transkraniell ausgelöste Bewegung	524	55.2	Messung der kortikalen Erregbarkeit mit	330
52.2.2	Einfluss motorischen Lernens auf die		33.2	-	556
	kortikomotorische Erregbarkeit	526	55.3	Neuromodulatorische Effekte der	330
52.2.3	Einfluss motorischen Lernens auf die		JJ.J	transkraniellen Kortexstimulation	556
	intrakortikale Doppelpulserregbarkeit	526	55.3.1		556
52.3	Neuropharmakologische Beeinflussung des		55.3.2	Netzwerkeffekte im stimulierten neuronalen	330
	motorischen Lernens	527	JJ.J.Z		557
52.4	Ausblick	529	55.4	System	337
Literatur		530	33.4		559
			55.4.1	Normalisierung des regionalen Erregbarkeits-	333
53	Transkranielle Gleichstromstimulation	533	33.4.1		559
	Michael A. Nitsche, Walter Paulus		55.4.2	Neuromodulation funktionell intakter	339
53.1	Technische Grundlagen	524	33.4.2		560
53.1	Praktische Durchführung		55.5	Methodische Aspekte der therapeutischen	500
53.3	Neurobiologischer Wirkungsmechanismus		33.3		561
53.4	Auswirkungen auf motorische und visuelle	337	55.5.1		561
JJ. 4	Hirnfunktionen	539	55.5.2	Bestimmung der optimalen Stimulations-	501
53.5	Klinische Effekte		33.3.2		561
53.6	Ausblick		55.5.3		562
			55.6	Strategien zur Optimierung der	302
Litteratur		311	33.0		563
54	Metaplastizität	543	55.6.1	-	563
J -	Ulf Ziemann, Hartwig Roman Siebner	343	55.6.2	Manipulation der kortikalen Aktivität während	505
			33.0.2	der Kortexstimulation	563
54.1	Einführung	544	55.7	Schlussfolgerung und Ausblick	
54.2	Modulation von Plastizität durch Disinhibition	545			565
54.2.1	Modulation stimulations induzierter Plastizität				505
5422	durch Disinhibition	545	56	Schlaganfall	567
54.2.2	Modulation übungsabhängiger Plastizität	F 4.6		Agnes Flöel, Friedhelm Hummel, Christian Gerloff	
542	durch Disinhibition	546	F.C. 1	,	F C O
54.3	Modulation von Plastizität durch	F 4.6	56.1	TMS und kortikale Erregbarkeit	
5424	neuromodulierende Medikamente	546	56.2	•	569
54.3.1	Modulation stimulationsinduzierter Plastizität	F 4.6	56.2.1	Motorisches System	
5422	durch neuromodulierende Medikamente	546	56.2.2	Aphasie	
54.3.2	Modulation übungsabhängiger Plastizität	F 47	56.2.3	3	573
	durch neuromodulierende Medikamente		56.2.4		574
54.4	Homöostatische Metaplastizität	547	56.3	3	574
54.4.1	Homöostatische Metaplastizität stimulations-	E 47	56.4	3	574
5443	induzierter Plastizität	54/	Literatur	·	3/5
54.4.2	Homöostatische Metaplastizität zwischen				
	stimulationsinduzierter Plastizität und	E 40			
	nachfolgender übungsabhängiger Plastizität	549			

57	Epilepsie	577	61.5.5	Vergleich mit der Elektrokonvulsionstherapie (EKT)	615
			61.6	Magnetkonvulsionstherapie (MKT)	
57.1	rTMS bei Epilepsie		61.7	Sicherheit der rTMS	
57.1.1	Allgemeine Vorbemerkungen		61.8	Ausblick	
57.1.2	Pathophysiologische Konzepte				
57.1.3	Therapeutische rTMS-Studien bei Epilepsien				
57.1.4 Literatur	Ausblick		62	Andere psychiatrische Erkrankungen Peter Eichhammer, Göran Hajak	621
58	Bewegungsstörungen	583	62.1	Schizophrenie	622
	Martin Sommer, Hartwig Roman Siebner		62.1.1	Klinik und Pathophysiologie	
58.1	Einleitung	584	62.1.2	rTMS bei Schizophrenie – Positivsymptomatik .	622
58.2	Morbus Parkinson		62.1.3	rTMS bei Schizophrenie – Negativsymptomatik	625
58.2.1	Pathophysiologischer Hintergrund		62.2	Angststörungen – Panikstörung	625
58.2.2	Klinische Effekte einer einmaligen	301	62.2.1	Klinik und Pathophysiologie	625
JO.L.L	rTMS-Anwendung	585	62.2.2	rTMS bei Panikstörung	625
58.2.3	Kumulative Effekte wiederholter	505	62.3	Posttraumatische Belastungsstörung (PTSD) $$.	
	rTMS-Anwendungen	587	62.3.1	Klinik und Pathophysiologie	
58.3	Andere Bewegungsstörungen		62.3.2	rTMS bei posttraumatischer Belastungsstörung	
58.4	Offene Fragen		62.4	Zwangsstörung	
58.5	Ausblick		62.4.1	Klinik und Pathophysiologie	
Literatur		590	62.4.2	rTMS bei Zwangsstörung	
			62.5	Craving	
59	Tinnitus	593	62.5.1	Klinik und Pathophysiologie	
	Christian Plewnia, Christian Gerloff		62.5.2	rTMS bei Craving	
59.1	Pathophysiologische Grundlagen	594	Literatur		629
59.2	Funktionelle Topografie		Faulata f	eln	c21
59.3	Experimentelle Therapie		Farbtaie	ein	631
59.4	Ausblick		Sachvor	zeichnis	637
			Sacriver	zeiciiiis	037
60	Schmerz	599			
	Peter Schwenkreis, Burkhard Pleger, Martin Tegenthoff				
60.1	Pathophysiologisches Konzept	600			
60.2	TMS und experimenteller Schmerz	601			
60.3	TMS und chronischer Schmerz	601			
60.4	Ausblick	605			
Literatur		606			
61	Depressive Erkrankungen	609			
	Frank Padberg, Nicola Großheinrich, Thomas E. Schläpfer				
61.1	Einführung	610			
61.2	Grundlagen der funktionellen Neuroanatomie	610			
61.3	Wirkung auf dopaminerge und serotonerge				
61 /	Systeme				
61.4	Antidepressive Wirksamkeit der rTMS	012			
61.5	Spezifische Anwendungen bei depressiven Erkrankungen	612			
6151	Kombinationsbehandlung mit rTMS in der	012			
61.5.1	Primärtherapie	612			
61.5.2	rTMS bei therapieresistenten Depressionen				
61.5.3	rTMS bei bipolaren Erkrankungen				
61.5.4	rTMS bei anderen depressiven Syndromen				

Autorenverzeichnis

Awiszus, Friedemann, Prof. Dr.

Orthopädische Universitätsklinik, Otto-von-Guericke Universität Magdeburg, Leipziger Str. 44, 39120 Magdeburg E-Mail: friedemann.awiszus@medizin.uni-magdeburg.de

Bajbouj, Malek, Prof. Dr.

Klinik und Hochambulanz für Psychiatrie und Psychotherapie, Charité, Universitätsmedizin Berlin, Campus Benjamin Franklin,

Eschenallee 3, 14050 Berlin E-Mail: malek.bajbouj@charite.de

Bartsch, Thorsten, Dr.

Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Schittenhelmstraße 10, 24105 Kiel E-Mail: t.bartsch@neurologie.uni-kiel.de

Baudewig, Jürgen, Dr.

MR-Forschung in der Neurologie und Psychiatrie, Bereich Humanmedizin, Universität Göttingen, Robert-Koch-Str. 40, 37075 Göttingen E-Mail: jbaudew@gwdg.de

Bäumer, Tobias, Dr.

Klinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg E-Mail: baeumer@uke.uni-hamburg.de

Benecke, Reiner, Prof. Dr.

Klinik für Neurologie und Poliklinik, Universität Rostock, Gehlsheimer Straße 2, 18147Rostock E-Mail: reiner.benecke@med.uni-rostock.de

Bergmann, Til Ole

Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Schittenhelmstraße 10, 24105 Kiel, E-Mail: t.bergmann@neurologie.uni-kiel.de

Bestmann, Sven, Dr.

Wellcome Dept. of Imaging Neuroscience, University College London, 12 Queen Square, London WC1N 3BG, United Kingdom E-Mail: s.bestmann@fil.ion.ucl.ac.uk

Birbaumer, Niels, Prof. Dr.

Institut für Medizinische Psychologie und Verhaltensbiologie, Eberhard-Karls-Universität Tübingen, Gartenstraße 29, 72074 Tübingen E-Mail: niels.birbaumer@uni-tuebingen.de

Bischoff, Christian, Prof. Dr.

Neurologische Gemeinschaftspraxis, Burgstraße 7, 80331 München E-Mail: bischoff@profbischoff.de

Brandt, Stephan A., Priv.-Doz. Dr.

Klinik und Poliklinik für Neurologie, Charité, Universitätsmedizin Berlin, Campus Mitte, Schumannstraße 20/21, 10117 Berlin E-Mail: stephan.brandt@charite.de

Breitenstein, Caterina, Dr.

Klinik und Poliklinik für Neurologie, Universitätsklinikum Münster, Albert-Schweitzer-Straße. 33, 48129 Münster E-Mail: caterina.breitenstein@uni-muenster.de

Brocke, Jan, Dr.

Klinik und Poliklinik für Neurologie, Charité, Universitätsmedizin Berlin, Campus Mitte, Schumannstraße 20/21, 10117 Berlin E-Mail: jan.brocke@charite.de

Brodbeck, Verena, Dr.

Laboratoire de Cartographie des Fonctions Cérébrales, Prof. Christoph Michel Clinique de Neurologie, Hôpital Cantonal Universitaire24, rue Micheli-du-Crest, CH-1211 Genève, Schweiz E-Mail: verena.brodbeck@medecine.unige.ch

Bütefisch, Cathrin, Priv.-Doz. Dr.

Department of Neurology West Virginina, University School of Medicine, One Medical Center Drive, PO Box 9180, Health Sciences Center Morgantown, WV 26506-9180, USA E-Mail: cbuetefisch@hsc.wvu.edu

Claus, Detlef, Prof. Dr.

Klinik für Neurologie und Klinische Neurophysiologie, Heidelberger Landstraße 379, 64297 Darmstadt E-Mail:

d.claus@t-online.de; detlef.claus@klinikum-darmstadt.de

Dengler, Reinhard, Prof. Dr.

Klinik für Neurologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover E-Mail: dengler.reinhard@mh-hannover.de

Dinse, Hubert, Prof. Dr.

Institut für Neuroinformatik, Ruhr-Universität-Bochum,

Universitätsstr. 150, 44780 Bochum

E-Mail:

hubert.dinse@neuroinformatik.ruhr-uni-bochum.de

Eichhammer, Peter, Priv.-Doz. Dr.

Klinik und Poliklinik für Psychiatrie, Universität Regensburg, Universitätsstr. 84, 93053 Regensburg E-Mail: peter.eichhammer@medbo.de

Feistner, Helmut, Prof. Dr.

Klinik für Neurologie II,

Otto-von-Guericke Universität Magdeburg,

Leipziger Str. 44, 39120 Magdeburg

E-Mail: helmut.feistner@medizin.uni-magdeburg.de

Ferbert, Andreas, Prof. Dr.

Neurologische Abt., Klinikum Kassel GmbH, Mönchebergstr. 41–43, 34125 Kassel E-Mail: ferbert@klinikum-kassel.de

Flöel, Agnes, Dr.

Klinik und Poliklinik für Neurologie, Universitätsklinikum Münster, Albert-Schweitzer-Straße. 33, 48129 Münster E-Mail: floeel@uni-muenster.de

Funke, Klaus, Prof. Dr.

Institut für Physiologie, Abt. für Neurophysiologie, Ruhr-Universität-Bochum, Universitätsstr. 150, 44780 Bochum E-Mail: funke@neurop.ruhr-uni-bochum.de

Gerloff, Christian, Prof. Dr.

Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg E-Mail: gerloff@uke.uni-hamburg.de

Grosse, Pascal, Dr.

Neurologische Poliklinik, Charité, Universitätsmedizin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin E-Mail: pascal.grosse@charite.de

Großheinrich, Nicola

Klinik für Psychiatrie und Psychotherapie, Ludwig-Maximilians-Universität, Nussbaumstraße 7, 80336 München E-Mail: nicola.grossheinrich@med.uni-muenchen.de

Hajak, Göran, Prof. Dr.

Klinik und Poliklinik für Psychiatrie, Universität Regensburg, Universitätsstr. 84, 93053 Regensburg E-Mail: goeran.hajak@medbo.de

Hamer, Hajo, Priv.-Doz. Dr.

Interdisziplinäres Epilepsiezentrum, Klinik für Neurologie, Philipps-Universität Marburg, Rudolf-Bultmann-Straße 8, 35039 Magdeburg E-Mail: hamer@staff.uni-marburg.de

Heide, Guenther, Dr.

Klinik für Neurologie, Friedrich-Schiller-Universität, Erlanger Allee 101, 07740 Jena E-Mail: guenther.heide@med.uni-jena.de

Heinen, Florian, Prof. Dr.

v. Hauner´sches Kinderspital, Klinik der Universität München, Lindwurmstraße 2, 80337 München E-Mail: florian.heinen@med.uni-muenchen.de

Herwig, Uwe, Dr.

Psychiatrische Universitätsklinik Zürich, Minervastr. 145, 8032 Zürich, Schweiz E-Mail: uwe.herwig@puk.zh.ch

Hess, Christian, Prof. Dr.

Klinik und Poliklinik für Neurologie, Inselspital, CH-3010 Bern, Schweiz E-Mail: christian.w.hess@insel.ch

Hilgetag, Claus, Prof. Dr.

Internationale Universität Bremen, Campus Ring 6, 28759 Bremen E-Mail: c.hilgetag@iu-bremen.de

Huber, Reto, Prof. Dr.

Kinderspital Zürich, Universitäts-Kinderklinik, Steinwiesstraße 75, 8032 Zürich, Schweiz E-Mail: reto.huber@kispi.uzh.ch; rhuber@facstaff.wisc.edu

Hummel, Friedhelm, Dr.

Neurologische Universitätsklinik, Allgemeine Neurologie, Hoppe-Seyler-Straße 3, 72076 Tübingen E-Mail: friedhelm.hummel@uni-tuebingen.de

Irlbacher, Kerstin, Dr.

Klinik für Neurologie Charité, Universitätsmedizin Berlin, Campus Mitte, Schumannstraße 20/21, 10117 Berlin E-Mail: kerstin.irlbacher@charite.de

Jäncke, Lutz, Prof. Dr.

Psychologisches Institut, Neuropsychologie, Universität Zürich, Treichlerstraße 10, CH-8032 Zürich, Schweiz

E-Mail: l.jaencke@psychologie.unizh.ch

Jung, Patrick, Dr.

Klinik für Neurologie, Klinikum der JW Goethe-Universität Frankfurt, Schleusenweg 2–16, 60528 Frankfurt am Main E-Mail: patrick.jung@em.uni-frankfurt.de

Kaelin-Lang, Alain, Dr.

Klinik und Poliklinik für Neurologie, Inselspital, CH-3010 Bern, Schweiz

E-Mail: alain.kaelin@dkf.unibe.ch

Kammer, Thomas, Dr.

Psychiatrische Klinik, Universitätsklinikum Ulm, Leimgrubenweg 12–14, 89075 Ulm E-Mail: thomas.kammer@uni-ulm.de

Karim, Ahmed, Dr.

Institut für Medizinische Psychologie und Verhaltensbiologie, Eberhard-Karls-Universität Tübingen, Gartenstraße 29, 72074 Tübingen E-Mail: ahmed.karim@uni-tuebingen.de

Knecht, Stefan, Prof. Dr.

Klinik und Poliklinik für Neurologie, Universitätsklinikum Münster, Albert-Schweitzer-Straße. 33, 48129 Münster

E-Mail: knecht@uni-muenster.de

Koeneke, Susan, Dr.

Psychologisches Institut, Neuropsychologie, Universität Zürich, Treichlerstraße 10, CH-8032 Zürich, Schweiz E-Mail: s.koeneke@psychologie.unizh.ch

Krampfl, Klaus, Priv.-Doz. Dr.

Klinik für Neurologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover E-Mail: krampfl.klaus@mh-hannover.de

Kühn, Andrea, Dr.

Sobell Department Institute of Neurology, 11 Queen Square, London WC1N 3BG, United Kingdom E-Mail: a.kuhn@ion.ucl.ac.uk

Lang, Nicolas, Dr.

Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Schittenhelmstraße 10, 24105 Kiel E-Mail: n.lang@neurologie.uni-kiel.de

Liepert, Joachim, Prof. Dr.

Neurorehabilitation Kliniken Schmieder, Zum Tafelholz 8, 78476 Allensbach E-Mail: j.liepert@kliniken-schmieder.de

Mottaghy, Felix, Prof. Dr.

Department of Nuclear Medicine, University Hospital KU Leuven, Herestraat 49, B-3000 Leuven, Belgium E-Mail: felix.mottaghy@uz.kuleuven.ac.be

Müller, Florian, Dr.

Klinik für Neurologie, Klinikum der JW Goethe-Universität Frankfurt, Schleusenweg 2–16, 60528 Frankfurt am Main E-Mail: f.mueller@med.uni-frankfurt.de

Münchau, Alexander, Priv.-Doz. Dr.

Klinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg E-Mail: muenchau@uke.uni-hamburg.de

Müri, Rene, Prof. Dr.

Neuropsychologische Rehabilitation, Neurologische Universitätsklinik und Poliklinik, Inselspital, CH-3010 Bern, Schweiz

E-Mail: rene.mueri@insel.ch 41

Nitsche, Michael, Dr.

Abt. für Klinische Neurophysiologie, Universität Göttingen, Robert-Koch-Str. 40, 37075 Göttingen E-Mail: mnitsch1@gwdg.de

Nyffeler, Thomas, Dr.

Neuropsychologische Rehabilitation, Neurologische Universitätsklinik und Poliklinik, Inselspital, CH-3010 Bern, Schweiz

E-Mail: thomas.nyffeler@insel.ch

Orth, Michael, Dr.

Klinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg E-Mail: m.orth@uke.uni-hamburg.de

Padberg, Frank, Priv.-Doz. Dr.

Klinik für Psychiatrie, Ludwig-Maximilians-Universität, Nussbaumstr. 7, 80336 München E-Mail: padberg@med.uni-muenchen.de

Pascual-Leone, Alvaro, Prof. Dr.

Department of Neurology, Beth Israel Hospital, Harvard Medical School,

330 Brookline Ave, Boston, MA 02215, USA E-Mail: apleone@bidmc.harvard.edu

Paulus, Walter, Prof. Dr.

Abt. für Klinische Neurophysiologie, Universitätsklinik Göttingen, Robert-Koch-Str. 40, 37075 Göttingen E-Mail: wpaulus@med.uni-goettingen.de

Peller, Martin, Dr.

Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel Schittenhelmstraße 10, 24105 Kiel E-Mail: m.peller@neurologie.uni-kiel.de

Pleger, Burkhard, Dr.

Wellcome Dept. of Imaging Neuroscience, University College London, 12 Queen Square, London WC1N 3BG, United Kingdom E-Mail: b.pleger@fil.ion.ucl.ac.uk

Plewnia, Christian, Dr.

Klinik für Psychiatrie und Psychotherapie, Osianderstr. 24, 72076 Tübingen E-Mail: christian.plewnia@uni-tuebingen.de

Pötter, Monika, Dr.

Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel Schittenhelmstraße 10, 24105 Kiel E-Mail: m.poetter@neurologie.uni-kiel.de

Ragert, Patrick, Dr.

Human Cortical Physiology Section, National Institute of Neurological Disorders and Stroke, NIH, Building 10

10 Center Drive, Bethesda, MD 20892-1430, USA E-Mail: ragertp@ninds.nih.gov

Reis, Janine, Dr.

Human Cortical Physiology Section, National Institute of Neurological Disorders and Stroke, NIH, Building 10

10 Center Drive, Bethesda, MD 20892-1430, USA E-Mail: reis@staff.uni-marburg.de; reisj@ninds.nih.gov

Rosenow, Felix, Prof. Dr.

Interdisziplinäres Epilepsiezentrum, Klinik für Neurologie, Philipps-Universität Marburg, Rudolf-Bultmann-Straße 8, 35039 Marburg E-Mail: rosenow@staff.uni-marburg.de

Rösler, Kai, Prof. Dr.

Klinik und Poliklinik für Neurologie, Inselspital, CH-3010 Bern, Schweiz E-Mail: kai-michael.roesler@insel.ch

Salih, Farid, Dr.

Neurologische Poliklinik, Charité, Universitätsmedizin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin E-Mail: farid.salih@charite.de

Schippling, Sven, Dr.

Klinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg E-Mail: s.schippling@uke.uni-hamburg.de

Schlaak, Boris Hagen, Dr.

Klinik für Neurologie, Neurozentrum Universitätsklinikum Schleswig-Holstein, Campus Kiel Schittenhelmstraße 10, 24105 Kiel E-Mail: b.schlaak@neurologie.uni-kiel.de

Schläpfer, Thomas, Prof. Dr.

Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Bonn, Sigmund-Freud-Straße 25, 53105 Bonn E-Mail: schlaepf@jhmi.edu; thomas@schlaepfer.org

Schönfeldt-Lecuona, Carlos, Dr.

Universitätsklinik für Psychiatrie, Psychiatrie III Leimgrubenweg 12, 89075 Ulm E-Mail: carlos.schoenfeldt@uni-ulm.de

Schwenkreis, Peter, Priv.-Doz. Dr.

Neurologische Universitäts- und Poliklinik, Berufsgenossenschaftliche Kliniken Bergmannsheil, Bürkle-de-la-Camp-Platz 1, 44789 Bochum E-Mail: peter.schwenkreis@ruhr-uni-bochum.de

Siebner, Hartwig, Prof. Dr.

Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Schittenhelmstraße 10, 24105 Kiel E-Mail: h.siebner@neurologie.uni-kiel.de

Sinjatchkin, Michael, Dr.

Abteilung für Neuropädiatrie, Universitätskinderklinik der CAU, Schwanenweg 20, 24105 Kiel E-Mail: m.siniatchkin@pedneuro.uni-kiel.de

Sommer, Martin, Dr.

Abt. für Klinische Neurophysiologie, Universitätsklinik Göttingen, Robert-Koch-Str. 40, 37075 Göttingen E-Mail: msommer@gwdg.de

Sparing, Roland, Dr.

Arbeitsgruppe Kognitive Neurologie, Institut für Neurowissenschaften und Biophysik, Abt. Medizin, Forschungszentrum Jülich, 52425 Jülich

E-Mail: r.sparing@fz-juelich.de

Szelenyi, Andrea, Dr.

Klinik für Neurochirurgie, Klinikum der JW Goethe-Universität Frankfurt, Schleusenweg 2–16, 60528 Frankfurt am Main E-Mail: a.szelenyi@em.uni-frankfurt.de

Tegenthoff, Martin, Prof. Dr.

Neurologische Universitäts- und Poliklinik, Berufsgenossenschaftliche Kliniken Bergmannsheil, Bürkle-de-la-Camp-Platz 1, 44789 Bochum E-Mail: martin.tegenthoff@ruhr-uni-bochum.de

Tergau, Frithjof, Priv.-Doz. Dr.

Neurologische Klinik, St.-Bernward-Krankenhaus, Treibestraße 9, 31134 Hildesheim E-Mail: neurologie@bernward-khs.de

Topka, Helge, Prof. Dr.

Abt. für Neurologie und Klinische Neurophysiologie, Städt. Krankenhaus München-Bogenhausen, Englschalkinger Straße 77, 81925 München E-Mail: topka@extern.lrz-muenchen.de

Urban, Peter, Priv.-Doz. Dr.

Klinik für Neurologie, Asklepios Klinik Barmbek, Rübenkamp 220, 22291 Hamburg E-Mail: p.urban@asklepios.com

Wahl, Mathias, Dr.

Klinik für Neurologie, Klinikum der JW Goethe-Universität Frankfurt, Schleusenweg 2–16, 60528 Frankfurt am Main E-Mail: wahl@med.uni-frankfurt.de

Weiss, Michael, Dr.

Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Schittenhelmstraße 10, 24105 Kiel E-Mail: m.weiss@neurologie.uni-kiel.de

Werhahn, Konrad, Priv.-Doz. Dr.

Neurologische Klinik, Universität Mainz, Langenbeckstraße 1, 55101 Mainz E-Mail: werhahn@uni-mainz.de

Wessel, Karl Prof. Dr.

Neurologisch-Psychiatrische Klinik, Städtisches Klinikum Braunschweig GmbH, Salzdahlumer Str. 90, 38126 Braunschweig E-Mail: k.wessel@klinikum-braunschweig.de

Weyh, Thomas, Priv.-Doz. Dr.

Heinz Nixdorf-Lehrstuhl für Medizinische Elektronik, TU München, Arcisstraße 21, 80333 München E-Mail: weyh@tum.de

Wolters, Alexander, Dr.

Klinik für Neurologie und Poliklinik, Universität Rostock, Gehlsheimer Straße 2, 18147 Rostock E-Mail: alexander.wolters@med.uni-rostock.de

Ziemann, Ulf, Prof. Dr.

Klinik für Neurologie, Klinikum der JW Goethe-Universität Frankfurt, Schleusenweg 2–16, 60528 Frankfurt am Main E-Mail: u.ziemann@em.uni-frankfurt.de

Abkürzungsverzeichnis

Abkürzung*	Deutsch	Englisch
a. m.	anteromedial	anteromedial
ap./pa.	anterior-posterior/posterior-anterior	anterior to posterior/posterior to anterior
AMT	kortikale motorische Reizschwelle bei Voraktivierung	active motor threshold
CSP	kontralaterale kortikale Innervationsstille	contralateral cortical silent period
EEG	Elektroenzephalogramm	electroencephalogramm
EEG	Elektoenzephalografie	electroencephalography
EMG	Elektromyografie	electromyography
EPSP	exzitatorisches postsynaptisches Potenzial	excitatory postsynaptic potential
fMRT (fMRI)	funktionelle Magnetresonanztomografie	functional magnetic resonance imaging
ICF	intrakortikale Bahnung	intracortical facilitation
IHF	interhemisphärische Bahnung	interhemispheric facilitation
IHI	interhemisphärische Hemmung	interhemispheric inhibition
IOD 1 (FDI)	M. interosseus dorsalis manus I	first dorsal interosseous muscle
IPSP	inhibitorisches postsynaptisches Potenzial	inhibitory postsynaptic potential
ISI	Interstimulusintervall	interstimulus interval
iSP	ipsilaterale kortikale Innervationsstille	ipsilateral cortical silent period
KML (CML)	kortikomuskuläre Leitungszeit	cortical motor latency
lm./ml.	lateral-medial/medial-lateral	latero-medial/medio-lateral
LAI	afferente sensomotorische Hemmung langer Latenz	long-latency afferent inhibition
LICF	intrakortikale Bahnung bei langen Interstimulusintervallen	long-interval intracortical facilitation
LICI	intrakortikale Hemmung bei langen Interstimulusintervallen	long-interval intracortical inhibition
LTD	Langzeitdepression	long-term depression
LTP	Langzeitpotenzierung	long-term potentiation
MEG	Magnetoenzephalografie	magnetoencephalography
MEP	motorisch evoziertes Potenzial	motor evoked potential
MKT	Magnetkonvulsionstherapie	magnetic seizure therapy
MRT (MRI)	Magnetresonanztomografie	magnetic resonance imaging
MSAP (CMAP)	Muskelsummenaktionspotenzial	compound muscle action potential
MT	kortikale motorische Reizschwelle	motor threshold
p. l.	posterolateral	posterolateral
PAS	gepaarte assoziative Stimulation	paired associative stimulation
PET	Positronenemissionstomografie	positron emission tomography
PML	periphere motorische Leitungszeit	peripheral motor latency
RMT	kortikale motorische Reizschwelle in Ruhe	resting motor threshold
rTMS	repetitive transkranielle Magnetstimulation	repetitive transcranial magnetic stimulation
SAI	afferente sensomotorische Hemmung kurzer Latenz	short-latency afferent inhibition
SEP	somatosensorisch evoziertes Potenzial	somatosensory evoked potential
SI	primärer somatosensorischer Kortex	primary somatosensory cortex
SICF	intrakortikale Bahnung bei kurzen Interstimulusintervallen	short-interval intracortical facilitation

^{*} Englische Abkürzung in Klammern, wenn die deutsche und englische Abkürzung voneinander abweichen.

Grundlagen

1	Hirnstimulation – Historischer Überblick	- 3
	Christian W. Hess	

- 2 Hirnstimulation Technische Grundlagen 17
 Thomas Weyh, Hartwig Roman Siebner
- 3 Hirnstimulation Physiologische Grundlagen 27
 Hartwig Roman Siebner, Ulf Ziemann
- 4 Sicherheitsaspekte und Anwendungsrichtlinien 47
 Walter Paulus, Hartwig Roman Siebner

Hirnstimulation – Historischer Überblick

Christian W. Hess

1.1	Historischer Überblick – 4	1.3	Die Einführung der TMS in die
1.1.1	Entwicklung der motorischen Kortex-		klinische Neurologie – 8
	reizung in Tierexperimenten – 4	1.3.1	Technische Entwicklung der Magnet-
1.1.2	Erste elektrische Reizversuche am		stimulation – 8
	menschlichen Gehirn – 5	1.3.2	Klinische Entwicklung der Magnet-
			stimulation zu diagnostischen
1.2	Der Beginn der Magnetstimulation		Zwecken – 9
1.2.1	nervöser Strukturen – 7 Frühe Versuche mit alternierenden	1.3.3	Hemmende Phänomene und
			Untersuchungen zur kortikalen
	Magnetfeldern – 7		Erregbarkeit – 12
1.2.2	Magnetstimulatoren für Einzelreize – 7		
		1.4	Therapieversuche mit rTMS – 13
		1.5	Gleichstromreizung des Kortex – 14
		Literatur	- 14

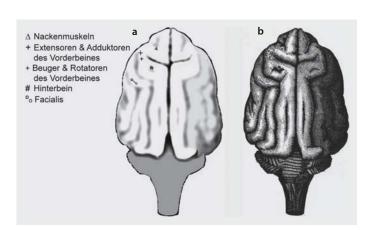
ZUM THEMA

Das Kapitel beleuchtet zuerst die ersten frühen Experimente motorischer Kortexstimulation beim Tier im 19. Jahrhundert und skizziert die ersten Anwendungen der Kortexstimulation beim Menschen, welche ebenfalls im 19. Jahrhundert begannen. Viel Raum wird der Entwicklung der nichtinvasiven transkraniellen Hirnstimulation beim Menschen eingeräumt, welche sich in der zweiten Hälfte des 20. Jahrhunderts entwickelte und ihren größten Durchbruch mit der transkraniellen Magnetstimulation (TMS) erlebte. Diese welche erst

durch die Herstellung von Reizgeräten ermöglicht wurde, welche kurze Magnetpulse ohne Nachschwingen erzeugen. Neben der Reizung mit einzelnen Magnetpulsen werden auch die Entwicklungen mit anderen Reizmodalitäten sowohl der elektrischen Anoden-Reizung, der Gleichstromreizung als auch der TMS-Salvenreizung (rTMS) bis in die jüngste Vergangenheit dieses Jahrhunderts skizziert und dabei auf die diagnostischen, wissenschaftlichen und ersten therapeutischen Anwendungen in der Psychiatrie eingegangen.

1.1 Historischer Überblick

1.1.1 Entwicklung der motorischen Kortexreizung in Tierexperimenten


Frühe Versuche, das Hirn elektrisch zu reizen, waren wegen methodischen Unzulänglichkeiten zu wenig konklusiv, um eine zerebrale elektrische Erregbarkeit eindeutig zu postulieren. So beschrieb z. B. der v. a. anatomisch wegweisende Turiner Luigi Rolando in seiner berühmten 1809 in Sardinien (das Piemont war von Napoleon besetzt) erschienen Arbeit - Saggio sopra la vera struttura del cervello dell'uomo e degli animali e sopra le funzioni del sistema nervoso - Reizversuche mit galvanischem Strom an dem nach ihm benannten präzentralen Gyrus von verschiedenen Haustieren (Capparoni u. Rolando 1928). Wegen den von ihm verursachten kortikalen Läsionen zögerte er aber, die induzierten Bewegungseffekte als elektrisch bedingt zu interpretieren. So herrschte bis weit ins vorletzte Jahrhundert hinein der Glaube, dass das Gehirn elektrisch unerregbar sei. Gustav Fritsch und (Julius) Eduard Hitzig in Berlin waren die ersten, welche dieses physiologische Dogma klar widerlegten und durch ausgedehnte Versuche an der freigelegten Hirnrinde von Hunden die physiologischen Grundlagen für die späteren Reizversuche am motorischen Kortex schufen (Fritsch u. Hitzig 1870; ■ Abb. 1.1).

Hitzig war durch eine Beobachtung am Menschen auf die Idee gekommen, das Gehirn könnte erregbar sein: Wenn er einen konstanten galvanischen Strom (= Gleichstrom) durch den Hinterkopf eines Probanden leitete, konnte er Schwindelgefühle und »Bewegungen der Augen« (offenbar einen Nystagmus) hervorrufen und er führte dies auf eine Reizung der Vierhügelregion zurück. Obwohl wir heute annehmen müssen, dass Hitzig effektiv die Vestibularis-

nerven gereizt hatte, verdanken wir seiner Beobachtung die Weiterführung der Experimente an Hunden. Fritsch u. Hitzig stellten bereits unmissverständlich fest, dass die nichtmotorische Region des Kortex »mehr nach hinten« liegt und dass beim mehr vorne liegenden »motorischen Theil« durch schwache fokale elektrische Einzelreize »combinierte« Muskelkontraktionen der gegenüberliegenden Körperhälfte ausgelöst werden können. Sie machten auch schon die Beobachtung, dass auf der Kortexoberfläche der Anodenschließungsstrom die niedrigste Reizschwelle aufweist. Die Befunde wurden kurz darauf von dem in einer Irrenanstalt in Nordengland tätigen D. Ferrier (Ferrier 1875) unter Verwendung galvanischer und faradischer (30-40 Hz) Reize am Affen bestätigt. Er bekundete dabei allerdings Mühe, die Pionierleistung von Fritsch und Hitzig korrekt zu würdigen.

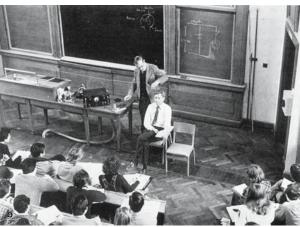
Die wichtige von Fritsch u. Hitzig (1870) gemachte Beobachtung, dass die Anode die niedrigste Schwelle aufweist, konnte später mehrfach tierexperimentell bestätigt werden (z. B. Ferrier 1875; Hern et al. 1962). Es erwies sich später auch für die transkranielle elektrische Kortexstimulation (TES) am Menschen als gültig (Merton u. Morton 1980). Als Erklärung für dieses auf den ersten Blick paradoxe Phänomen wurde postuliert, dass die an der Oberfläche liegende Anode durch die induzierten Reizströme in der Tiefe des Kortex kathodisch wirkt und dass dabei die Pyramidenzellen unterhalb ihrer Zellkörper am Axonhügel durch virtuelle Kathoden depolarisiert und damit direkt gereizt werden (Hern et al. 1962).

Reizphysiologisch entscheidend wichtig waren die tierexperimentellen Befunde 1954 von H.D. Patton und V.E. Amassian in Seattle, welche gezeigt hatten, dass kortikale Einzelreize mit Bewegungseffekt immer raschleitende hochfrequente Salven von deszendierenden Impulsen in den kortikospinalen Neuronen indu-

■ Abb. 1.1a,b. Die Originalabbildung (b) aus der Arbeit von Fritsch u. Hitzig (1870) zeigt das Hundehirn von oben mit den Stimulationsorten auf der linken Hemisphäre, welche zu einem motorischen Reizerfolg auf der kontralateralen Körperseite führten. Zur besseren Sichtbarkeit sind die Stimulationsorte auf der linken Schattengraphik (a) eingezeichnet

₅ 1

zierten (Patton u. Amassian 1954). Der mit Tiefenelektroden im Hirnstamm von der Pyramidenbahn abgeleitete erste Impuls bezeichneten sie als »D-Welle« (D = direkt) und alle späteren Impulse als »I-Wellen« (I = indirekt) (▶ Kap. 3). Diese bei höherer Reizstärke nach einem Intervall von 1,2-2 ms und mit weiteren Zwischenintervallen von 1-1,8 ms nachfolgenden I-Wellen wurden nämlich auf eine zusätzliche indirekte transsynaptische Aktivierung der Pyramidenzellen zurückgeführt. Die von den Physiologen D. Kernell und W.U. Wu in Oxford beim Affen auf der Kortexoberfläche applizierten Einzelreize induzierten kurze Salven mit einer maximalen Entladungsfrequenz um 800 Hz und zwar in Form von repetitiven Entladungen innerhalb derselben rasch leitenden Axone (Kernell u. Chien-Ping 1967). E.V. Evarts schließlich zeigte 1966 am National Institute of Health (NIH) in Bethesda, Maryland, USA am wachen, beweglichen Affen, dass bei den phasischen Entladungsmustern der großen Pyramidenzellen die Erregungen in den rasch leitenden kortikospinalen Axonen am besten mit den spontanen Bewegungen und die langsamer geleiteten Erregungen eher mit tonischen Bewegungen korrelierten (Evarts 1966). Es war das Verdienst von Y. Katavama et al. in Tokio 1988 als erste beim Menschen mittels epiduraler Elektroden diese reizinduzierte deszendierende Aktivität vom Rückenmark abgeleitet zu haben (Katayama et al. 1988). Sie stellten unter anderem fest, dass die erste D-Welle gegenüber Anästhetika resistent war, wohingegen die bei hoher Reizstärke zusätzlich rekrutierten I-Wellen unter Anästhesie verschwanden (► Kap. 21).


1.1.2 Erste elektrische Reizversuche am menschlichen Gehirn

Als erster den menschlichen Kortex elektrisch gereizt und dabei das Prinzip der gekreuzten Repräsentation bestätigt hat schon im vorletzten Jahrhundert wahrscheinlich der amerikanische Neurochirurg Bartholow (1874) in Ohio: An einer Patientin mit traumatisch bedingter großer infizierter Knochenlücke im Schädel, führte er nach Evakuation des Eiters mit feinen Nadelelektroden am Gehirn Reizversuche durch, welche nach heutigen Begriffen heroisch anmuten: Bartholow hat nach faradischer Oberflächenreizung auch noch eine Nadelelektrode ins Gehirn versenkt und dann den Reizstrom erhöht, bis er einen generalisierten epileptischen Anfall auslöste. Die Patientin hatte in der Folge eine Reihe von spontanen epileptischen Halbseitenkrämpfen und verstarb 3 Tage nach der Operation infolge Hirnvenenthrombose. Mehrere Neurochirurgen in England und Amerika haben noch im vorletzten Jahrhundert während Operationen elektrische motorische Reizversuche am freigelegten menschlichen Kortex durchgeführt und die tierexperimentellen Resultate bestätigt (Horsley 1887; Lloyd u. Deaver 1888; Parker u. Gotch 1893). Die Tatsache, dass man bis in die Mitte des letzten Jahrhunderts neurochirurgische Eingriffe am Gehirn mehrheitlich in Lokalanästhesie ausübte, kam der Durchführung solcher Versuche entgegen.

Anfangs letzten Jahrhunderts haben A.S.F. Grünbaum und C.S. Sherrington (Grünbaum u. Sherrington 1903) in Liverpool und das Ehepaar Oskar und Cécile Vogt in Berlin (Vogt u. Vogt 1919) durch minutiöse faradische Reizuntersuchungen am Affen die schon von H. Jackson (1931) vorausgesagte somatotope Organisation des motorischen Kortex nachgewiesen. H. Cushing hat in Boston durch Reizung des freigelegten menschlichen Kortex den postzentralen Gyrus erstmals auch rein sensible Effekte erzielt (Cushing 1909). O. Foerster in Breslau erweiterte, ebenfalls durch Untersuchungen am freigelegten menschlichen Kortex, die Kenntnisse über die motorische Repräsentation, indem er auch die der Brodmann-Area 4 angrenzenden Bezirke untersuchte (Foerster 1936). W. Penfield, der auch bei Foerster gearbeitet hatte, haben wir die 1937 in Montréal ebenfalls am wachen Patienten durchgeführten systematischen Reizuntersuchungen zu verdanken, welche zum heute allgemein bekannten motorischen und sensiblen »Homunculus« betreffend der Repräsentation der Körperregionen geführt haben (Penfield u. Boldrey 1937). Der Tierexperimentator Sherrington soll gegenüber Penfield die neidvoll anmutende Bemerkung gemacht haben: »It must be great fun to speak to the preparation and have it answer to you« (Penfield 1967). Von diesen Untersuchungen her war auch bekannt, dass die durch motorische Kortex-Reizung ausgelösten Muskelzuckungen vom bewussten Patienten nicht als selbst gemacht sondern als von außen aufgezwungen erlebt werden, was aus heutiger Sicht nicht überrascht, da ja der primär motorische Kortex in der Hierarchie des exekutiven Systems ein relativ untergeordnetes Organ darstellt.

T. Gualtierotti und A.S. Paterson hatten 1954 in London erstmals am Affen und dann am Menschen mit bipolaren Elektroden durch den intakten Schädel hindurch bis zu 40 s dauernde Reizsalven über dem motorischen Kortex appliziert und über distal an den Extremitäten auftretende reizabhängige Muskelkontraktionen berichtet (Gualtierotti u. Paterson 1954). Die Reizmethode hat sich aber wegen zu großer Schmerzhaftigkeit als nicht praktikabel erwiesen und war wegen dem unbestimmten Erregungszeit-

■ Abb. 1.2a,b. a Patrick A. Merton (1920–2000), Professor für Humanphysiologie an der Universität Cambridge U.K. mit einem Forschungslabor am Institute of Neurology, Queen Square, London. Als Pionier der tranksraniellen Hirnstimulation beim Menschen entwickelte er 1980 die erste erfolgreiche transkranielle elektrische Stimulation des motorischen Kortex und war der erste Proband 1985 für TMS mit dem Sheffield-Magnetstimulator von A. Barker. b Erste öffentliche TES-

Sitzung im März 1981 an der Universität Cambridge vor Medizinstudenten im 2. Jahr. Proband war Prof. Pat Merton und Experimentator Dr. Richard H. Adrian. An der Tafel sieht man den Schaltkreis des Hochvoltstimulators aufgezeichnet. Dr. Adrian entlädt den Kondensator durch Drücken einer Morsetaste. Dr. Merton zeigt mit dem Zeigefinger der rechten Hand auf seine linke Hand, wo die evozierten Muskelzuckungen zu beobachten sind. (Abb. 1.2b aus Meyer 1992)

punkt für die Ausmessung von motorischen Latenzzeiten nicht brauchbar. Der an der Universität Cambridge lehrende (seit 1984 Lehrstuhl für Humanphysiologie) und gleichzeitig auch am National Hospital for Nervous Diseases in London forschende Neurophysiologe Patrick (Pat) A. Merton (Abb. 1.2) und sein Techniker H. Bert Morton haben 1980 die von Hill et al. (1980) zur direkten Muskelreizung (unter Umgehung der intramuskulären Nervenfasern) entwickelte Methode von elektrischen ultrakurzen Hochspannungs-Kondensator-Reizen mit Erfolg zur Kortexstimulation durch den intakten Schädel an sich selbst ausprobiert: Mit der Anode über dem entsprechenden präzentralen Gebiet, der Kathode 6 cm frontal davon, einem Reiz von 2000 Volt Spannung und einer Zeitkonstante des Abfalls von 10 µs gelang es ihnen, in distalen Arm- und Fußmuskeln Einzelzuckungen auszulösen (Merton u. Morton 1980). Die von den Muskeln abgeleiteten Summenpotenziale wiesen dieselben Latenzzeiten auf, wie sie von Kortexreizungen während neurochirurgischen Operationen bekannt waren. Die Autoren fanden bald heraus, dass für die TES auch kleinere Spannungen von unter 1000 Volt genügen und dass man in den kleinen Handmuskeln schon mit ca. 500 Volt Spannung eine befriedigende Reizantwort evozieren kann.

Obwohl Merton damals in typisch britisch bagatellisierender Art behauptete, dass die durch den Reiz verursachte Empfindung »weniger stark als bei peripherer Nervenreizung« sei (Merton et al. 1982), waren diese Reize für eine breite klinische Anwendung immer noch zu schmerzhaft. Immerhin konnten mit der TES in England am Gesunden und bei Patienten wichtige Befunde erhoben werden (Ingram u. Swash 1985). So konnte mit unterschwelligen elektrischen transkraniellen Kortexreizen eine fördernde Wirkung auf den H-Reflex nachgewiesen werden (Cowan et al. 1986), was bewies, dass unterschwellige Kortexreize eine Aktivierung der Pyramidenzellen zur Folge hatten.

Untersuchungen bei Patienten mit TES schließlich zeigten eine abnorme zentrale motorische Erregungsüberleitung bei multipler Sklerose (Cowan et al.
1984; Mills u. Murray 1985), bei der amyotrophischen
Lateralsklerose (Ingram u. Swash 1987) und eine normale motorische Erregungsüberleitung beim Morbus
Parkinson (Dick et al. 1984). Im Frühjahr 1985 war es
wiederum Pat Merton, welcher den am Institut von
Anthony Barker an der Universität Sheffield entwickelten Magnetstimulator zuerst an seinem eigenen
Kopf ausprobieren ließ (► Abschn. 1.2.2) und damit
die moderne Ära der transkraniellen Magnetstimulation (TMS) einleitete (Barker et al. 1985).

7 1

1.2 Der Beginn der Magnetstimulation nervöser Strukturen

1.2.1 Frühe Versuche mit alternierenden Magnetfeldern

Die Reizung nervöser Substrate mittels Magnetfeldpulsen gründete auf den Erfahrungen von A. d'Arsonval (1896), Beer (1902) und S.P. Thompson (1910), welche die Wirkung eines alternierenden magnetischen Feldes auf den Organismus untersuchten. D'Arsonval konnte bei Applikation eines mit 42 Hz oszillierenden Magnetfeldes am Kopf Schwindelsensationen auslösen, welche bei gewissen Probanden »bis zur Synkope« führten, und er induzierte wahrscheinlich auch schon Muskelkontraktionen: »Ce champ magnétique alternatif modifie également la forme de la contraction musculaire et produit sur les êtres vivants d'autres effets qu'il est facile de mettre en relief...« (d'Arsonval 1896). Da die Probanden ihren Kopf und z. T. auch ihren Körper gänzlich in einer großen Solenoid-Spule platziert hatten, ist anzunehmen, dass es sich um eine erste Beschreibung magnetischer peripherer Nervenreizung handelt. Bei den induzierten Schwindelsensationen dürfte es sich um die Folge einer Vestibularisreizung gehandelt haben. Sowohl d'Arsonval, Beer wie Thompson beobachteten bei Applikation des Magnetfeldes am Kopf aber vor allem Flickerphosphene. Swinton (1911) hatte schon früh darauf hingewiesen, dass induzierte Reizströme als Ursache für diese Reizeffekte angenommen werden müssten, und Walsh et al. (1946) hatten die bereits früher geäußerte Vermutung, dass man dabei die Retina reizt, bestätigt. A. Kolin et al. (1959) gelang es mittels alternierender Magnetfelder erstmals den Froschnerv zu reizen.

1.2.2 Magnetstimulatoren für Einzelreize

R.G. Bickford und B.D. Freeming in San Diego (Bickford u. Freeming 1965) waren wahrscheinlich die ersten, welche funktionierende Magnetstimulatoren für Einzelreize bauten, mit welchen man durch Nervenreizung sichtbare Muskelzuckungen evozieren konnte. Es gelang diesen Autoren jedoch nicht, das elektrische Muskelsummenpotenzial abzuleiten. Bickford u. Freeming (1965) haben die Methode erfolgreich bei Menschen angewandt und den mechanischen Reizerfolg registriert, das Problem der über mehrere Millisekunden abklingenden Nachschwingungen des Magnetfeldpulses, welche wegen der großen Artefakte die elektrische Ableitung vom Muskel verunmöglichten, aber nicht gelöst. Dieselben Autoren hatten auch

schon versucht den Kortex zu reizen und bei Platzierung der Reizspule über dem Vertex »ein Gefühl von Bewegung in beiden Beinen« provoziert, ohne allerdings objektive Muskelkontraktionen zu beobachten, womit der Beweis für eine effektiv erfolgte motorische Kortexstimulation fehlte. P.A. Öberg in Uppsala gelang es, die magnetischen Nachschwingungen zu dämpfen (Öberg 1973); er unternahm aber offenbar keine Versuche, den elektrischen Reizerfolg vom Muskel abzuleiten.

M. Polson schließlich entwickelte als PhD-Arbeit bei Antony Barker, dem Leiter des Department of Medical Physics and Clinical Engineering an der Universität Sheffield, einen Magnetstimulator für die kontaktlose Reizung peripherer Nerven, welcher einen Magnetfeldpuls ganz ohne Nachschwingung produzierte (Polson et al. 1982). Sie konnten nun den Reizerfolg in den Muskeln mit Elektroden ableiten, weil keine Reizartefakte mehr das Muskelsummenpotenzial verdeckten. Für die Elektroneurografie war der Magnetstimulator dennoch ungeeignet, da der exakte effektive Reizort am peripheren Nerv nicht bekannt war. So fand der aus wissenschaftlichem Interesse entwickelte Stimulator vorerst keine klinische Anwendung, bis 3 Jahre später, im Februar 1985, der im Labor von A. Barker arbeitende Student Reza Jalinous die Arbeiten von Pat Merton et al. über die elektrische Kortexreizung las, eine mögliche Anwendung des Magnetstimulators erkannte und deshalb die Gruppe in London kontaktierte (■ Abb. 1.3).

■ Abb. 1.3. Die Erfinder des ersten transkraniell wirksamen Einzelpuls-Magnetstimulators an der Sheffield Universität U.K. (von links nach rechts): Dr. Reza Jalinous, Prof. lan Freeston, Prof. Anthony Barker (Leiter des Department of Medical Physics and Clinical Engineering). Hier nicht abgebildet ist M. Polson, der als Doktorand bei A. Barker tätig war

Pat Merton ließ den Magnetstimulator von Anthony Barker nach London ans National Hospital, Queen Square bringen und ließ ihn zuerst an seinem eigenen Kopf ausprobieren. Als zweiter Proband stellte sich Lindsay Symon, der Leiter der Neurochirurgie am Queen Square zur Verfügung. Es ließen sich mühelos und völlig schmerzlos gut sichtbare Muskelzuckungen mit Bewegungseffekt an Armen und Händen hervorrufen; die transkranielle Magnetstimulation war entdeckt (Barker et al. 1985).

1.3 Die Einführung der TMS in die klinische Neurologie

1.3.1 Technische Entwicklung der Magnetstimulation

Barker et al. bauten 1985 für den klinischen Gebrauch fünf Prototypen magnetischer Hochspannungsstimulatoren (Barker et al. 1985), welche vorerst am Hallamshire Hospital in Sheffield, am National Hospital for Nervous Diseases in London, am Institute of Psychiatry des King's College De Crespigny Park in London und am London Hospital in East London zum Einsatz kamen. Der als Modell für die später kommerziell von der Fa. Novametrix in Wales hergestellten Stimulatoren dienende Prototyp benützte einen 54-µF-Mylarfilm-Kondensator, der bei maximaler Leistung auf 4000 V aufgeladen wurde, um dann durch die Reizspule entladen zu werden. Die Reizspule besaß 26 konzentrische Windungen eines flach aneinander gelegten 4 mm breiten Kupferbandes und hatte einen mittleren Durchmesser von 9 cm (Innendurchmesser = 6,5 cm, Außendurchmesser = 12,5 cm). Der Widerstand der Spule betrug 12 m Ω , die Selbstinduktion 35 µH und bei maximaler Leistung floss ein maximaler Strom von 5500 A). Der Magnetpuls dauerte ca. 2,2 ms mit einer Anstiegszeit von 0,16 ms bis zum Maximum und einer Zeitkonstante des Abfalls von 0,5 ms. Der induzierte Strompuls war mit einer Anstiegszeit von 0,08 ms und einer Zeitkonstante des Abfalls von 0,14 ms dem Puls des elektrischen Hochvoltstimulators sehr ähnlich. Das im Zentrum mit einer Probespule gemessene maximale Magnetfeld betrug ca. 2,1 T (Tesla). Eine Leckstrom-Messvorrichtung und ein Überhitzungsschutz in der Spule schalteten das Reizgerät im Störfall automatisch ab. Reza Jalinous wechselte noch im Jahre 1985 von der Universität Sheffield zur Fa. Novametrix in Wales, wo er sich an der Marktentwicklung des Magnetstimulators beteiligte. 1989 wechselte die Lizenz für den Magnetstimulator zur neu gegründeten Fa. Magstim.

Noch im gleichen Jahr bauten P. Merton und H. Morton am Queen Square London aus einem alten Herzdefibrillator ihre eigene Version eines Magnetstimulators. In der Absicht, eine Behinderung der Forschung durch ein kommerzielles Monopol zu verhindern, publizierten P. Merton und H. Morton 1986 den kompletten Schaltplan ihres vergleichsweise billig herzustellenden Niederspannungs-Stimulators (Merton u. Morton 1986). Dieser arbeitete mit zehn 2200-µF-Stroboskop-Kondensatoren, welche in 2 seriell geschalteten Bänken von je 5 parallel geschalteten Kondensatoren angeordnet waren und auf maximal je 350 V aufgeladen wurden. Die Reizspule bestand aus 12 Windungen von 2 mm dickem, flexiblem Kupferdraht mit einem Durchmesser von etwa 14 cm. Der Magnetpuls war wesentlich länger mit einer Anstiegszeit bis zum Maximum von 0,48 ms mit einer Zeitkonstante des Abfalls von 1,3 ms. Der induzierte Strom erreichte das Maximum nach 0,1 ms und hatte eine Zeitkonstante von 0,32 ms. Der Stimulator wurde von der Fa. Digitimer vermarktet und entpuppte sich in seiner Wirksamkeit tatsächlich dem ersten Prototyp aus Sheffield als fast ebenbürtig (Hess u. Ludin 1988), allerdings mit einer geringeren maximalen Reizwirkung. Wenig später folgten als weitere kommerzielle mit Hochspannung arbeitende Magnetstimulatoren jener von der Fa. Cadwell in den USA, welche einen biphasischen Stimulus produzierten, und jener von der Fa. Dantec in Skandinavien, welcher sich mehr an die Technologie des Sheffield-Stimulators anlehnte.

Eine kuriose Verwirrung entstand anfänglich betreffend der Beschreibung und Bezeichnung der Stromrichtung der monophasischen Stimuli durch die Produzenten: Es war nämlich nicht immer klar, ob der induzierende Strom in der Spule oder der induzierte Strom im Schädelinnern gemeint, bzw. ob die Stromrichtung physikalisch (negativer Fluss) oder konventionell (positiver Fluss) definiert war. Man wurde sich einig, dass immer der Strom in der Spule konventionell (positiver Fluss) definiert werden sollte, was 1990 in einem Corrigendum des *Journal of Physiology* ein für allemal richtig gestellt wurde (Day et al. 1990).

Für Forschungszwecke war die Entwicklung einer fokalen Magnetspule entscheidend wichtig und durch S. Ueno et al. (1988) am Elektronik-Departement der Kyushu Universität in Japan 1988 technisch erstmals realisiert und am Froschnerven erprobt. Ein Jahr später wurde mit einem unabhängig davon in der Schweiz entwickelten System die fokale Wirkung der achtförmigen Doppelspule (»figure-of-eight coil« oder »twin coil«) erstmals am motorischen Kortex des Menschen erprobt und nachgewiesen (Rösler et al. 1989a). Während die Doppelspulen mit dem Ziel eines möglichst

9 1

fokussierten Reizes in der Regel eher klein geformt waren, baute man sehr große fast den ganzen Kopf umfassende Doppelspulen, um die Tiefenwirkung zu erhöhen und damit die vergleichsweise etwas schwächere Reizwirkung ihres Aggregates zu kompensieren

Die großen und wenig fokalen runden Magnetspulen hatten für klinisch-diagnostische Zwecke den Vorteil, dass nicht lange die optimale Spulenposition gesucht werden musste. Für wissenschaftliche Untersuchungen hingegen wurden die fokalen kleinen Doppelspulen immer dann bevorzugt, wenn eine möglichst umschriebene Reizwirkung angestrebt wurde. Dabei wurde oft zuerst die Handregion mit der niedrigsten Reizschwelle als Referenzpunkt aufgesucht (▶ Kap. 6 und 40). Der gewünschte Reizort wurde darauf bezogen und entsprechend der allgemeinen Hirnanatomie definiert, was aufgrund der individuellen Abweichungen mit einem gewissen Fehler behaftet ist. Deshalb wurde gelegentlich von jedem Probanden ein MRT mit kontrastierenden Bezugspunkten auf dem Skalp anfertigt. Verschiedentlich wurden auch TMS und fMRI- (engl. functional magnetic resonance imaging) Untersuchungen kombiniert, z. B. um das Mapping des motorischen Kortex beider Methoden zu vergleichen (► Kap. 37). Bei langen Experimenten blieb die genaue und konstante Platzierung der Reizspule auf dem Kopf ein Problem. Deshalb wurden in den 90er-Jahren verschiedene automatisierte Haltevorrichtungen und schließlich eigentliche Neuronavigationssysteme entwickelt bzw. von der neurochirurgischen Stereotaxie übernommen und angepasst (► Kap. 32).

Ein weiterer bedeutender methodologischer Schritt war die Entwicklung eines repetitiven Stimulators (repetitive TMS, rTMS), der die Applikation von Doppelreizen oder Salven ermöglichte. Um kortikale Doppelreize mit normalen Geräten applizieren zu können, wurde 1989 von der neu gegründeten Fa. Magstim in England (Nachfolger der Fa. Novametrix) ein sog. Bistim-Module konstruiert, mit welchem man die Reizpulse von zwei Magnetstimulatoren mit frei wählbarem Intervall in dieselbe Reizspule entladen konnte (Kujirai et al. 1993). Mehrere Gruppen bauten auch erfolgreich Salvenstimulatoren (z. B. Inghilleri et al. 1990), wobei die Fa. Cadwell in den USA als erste anfangs der 90er-Jahre Prototypen auf den Markt brachte. Diese produzierten Reizsalven bis zu 60 Hz. Die Überhitzung der Spule wurde mit einem Wasser-Kühlsystem verhindert. Alvaro Pascual-Leone applizierte damit längere Salven über der Broca-Region der linken Hemisphäre, um transiente Sprachstörungen zu induzieren (Pascual-Leone et al. 1991). Mit der rTMS konnten nun eindeutige kognitive Effekte erzielt werden. Sie eröffnete neue Perspektiven für die Forschung und erstmals auch für die Therapie, weil der erzielte Effekt die Stimulation für Minuten überdauerte. Gleichzeitig stieß man durch die Applikation längerer Salven an die Grenze des sicherheitsmäßig Erlaubten, wegen des Risikos von Hautverbrennungen unter EEG-Elektroden und epileptischer Anfälle auch bei gesunden Probanden (▶ Kap. 4). Die Psychiater machten sich die epileptogene Wirkung der rTMS zu Nutze, mit dem Ziel, eine mittels »magnetischer Anfallstherapie« schonendere Alternative zur klassischen Elektrokonvulsionstherapie zu entwickeln (Kosel et al. 2003; ▶ Kap. 61).

Die rTMS erfuhr ganz kürzlich durch die Arbeitsgruppe von John C. Rothwell am Queen Square in London nochmals eine entscheidende Wende mit der Einführung eines neuen rTMS-Protokolls, sog. Theta-Burst-rTMS ,welches aus der tierexperimentellen Neurobiologie übernommen wurde und ein längeres Überdauern des Reizeffektes ermöglicht (Huang et al. 2005; ► Kap. 50). Dabei werden relativ schwache Reize in ganz kurzen ca. 50-Hz-Salven in einer Sequenz von 5 Hz (Theta-Frequenz) über längere Zeit - entweder in Paketen von 2 s oder kontinuierlich - appliziert. Je nach Protokoll erzielt man eine hemmende oder fördernde Wirkung. Präliminäre Experimente in Bern zeigten, dass es mit einem speziell weiterentwickelten Theta-Burst-Protokoll sogar möglich ist, den überdauernden Reiz-Effekt auf viele Stunden auszudehnen (Nyffeler et al. 2006).

1.3.2 Klinische Entwicklung der Magnetstimulation zu diagnostischen Zwecken

Das hervorstechende Merkmal des Magnetstimulator-Reizes war die absolute Schmerzlosigkeit. Bei Applikation am Kopf fühlte man bekanntlich lediglich eine ganz kurze Kribbelparästhesie in der Kopfhaut und hörte einen Klick in der Spule, wobei das subjektive Empfinden von den heftigen bewirkten Muskelzuckungen dominiert wurde. Versuche, mit Einzelreizen sensible bzw. optische Phänomene zu evozieren führten dagegen nur mit maximaler Reizstärke sehr sporadisch zu bescheidenem Erfolg; also konzentrierte man sich vorerst auf das motorische System.

Obwohl die Reizung am Kopf schmerzfrei war, hatte man 1986 naturgemäß noch großen Respekt vor den Magnetpulsen und die Befürchtung von Nebenwirkungen – möglicherweise sich erst verzögert manifestierend – war latent vorhanden. Die wuchtige Ener-