
Xpert.press

Die Reihe Xpert.press vermittelt Professionals
in den Bereichen Softwareentwicklung,
Internettechnologie und IT-Management aktuell
und kompetent relevantes Fachwissen über
Technologien und Produkte zur Entwicklung
und Anwendung moderner Informationstechnologien.

Volker Gruhn · Daniel Pieper
Carsten Röttgers

MDA®
Effektives Software-Engineering
mit UML 2® und Eclipse TM

Mit 293 Abbildungen

123

Volker Gruhn
Lehrstuhl für
Angewandte Telematik/e-Business
Universität Leipzig
Klostergasse 3
04109 Leipzig
gruhn@ebus.informatik.uni-leipzig.de

Daniel Pieper
Carsten Röttgers
adesso AG
Stockholmer Allee 24
44269 Dortmund
dp@mda-buch.info
cr@mda-buch.info

Bibliografische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.ddb.de abrufbar.

ISSN 1439-5428
ISBN-10 3-540-28744-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28744-5 Springer Berlin Heidelberg New York

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere
die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und
Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen We-
gen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser
Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes
ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechts-
gesetzes der Bundesrepublik Deutschland vom 9. September 1965 in der jeweils geltenden
Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen
den Strafbestimmungen des Urheberrechtsgesetzes.

Springer ist ein Unternehmen von Springer Science+Business Media

springer.de

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem
Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche
Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten
wären und daher von jedermann benutzt werden dürften. Text und Abbildungen wurden
mit größter Sorgfalt erarbeitet. Verlag und Autor können jedoch für eventuell verbliebene
fehlerhafte Angaben und deren Folgen weder eine juristische Verantwortung noch irgendeine
Haftung übernehmen.

Satz: Druckfertige Daten der Autoren
Herstellung: LE-TEX, Jelonek, Schmidt & Vöckler GbR, Leipzig
Umschlaggestaltung: KünkelLopka Werbeagentur, Heidelberg
Gedruckt auf säurefreiem Papier 33/3142 YL – 5 4 3 2 1 0

Vorwort v

Vorwort

„Simple things should be simple and complex things should
be possible.”

Alan Kay

Informationstechnik ist über den Lauf der Jahre zum Rückgrat der
Geschäftswelt geworden: kaum eine kommerzielle Transaktion läuft
heute nicht IT-gestützt ab, nahezu jeder Euro, der seinen Besitzer
wechselt, wird elektronisch erfasst. Die Geschäftsprozesse vieler
Unternehmungen entwachsen den vier Wänden ihrer Bürogebäude
oder Produktionsstätten und spielen sich in Zeiten von Globalisie-
rung und sich öffnenden Märkten zunehmend auch auf internationa-
lem Parkett ab. Solch internationales Treiben ist dabei nicht länger
auf große Konzerne beschränkt, sondern wird immer mehr auch für
kleine und mittelständische Unternehmen zum Tagesgeschäft. Die
daraus resultierenden Anforderungen erfordern eine entsprechende
IT mit maßgeschneiderten Lösungen, die die individuellen Bedürf-
nisse der Unternehmen berücksichtigen.

Das Problem
Wir können nicht wie wir wollen. Man mag es ja kaum noch hören,
aber die Software-Industrie steckt immer noch in der bereits vor
Jahrzehnten ausgerufenen Software-Krise. Gewiss, in puncto Effi-
zienz, Effektivität und Produktivität sind Fortschritte erzielt worden,
aber wenn wir ehrlich sind, sind es eher Schrittchen, von denen wir
da sprechen und weniger die erhofften Sprünge. Die Bestandsauf-
nahme der Software-Projektlandschaft fällt dementsprechend fatal
aus: Falls ein Projekt tatsächlich überlebt, dann selten in Time und
noch viel seltener in Budget. Bei der Qualität wird es dann schließ-
lich ganz dünn, sie fällt meist gleich als Erstes über Bord, sobald
Time und Budget in Gefahr scheinen.

Vorwortvi

Dabei wird Software immer komplexer, die Ansprüche an ihre
Leistungsfähigkeit, Zuverlässigkeit, Sicherheit und Skalierbarkeit
bei stetig steigendem Kosten- und Zeitdruck gleichzeitig immer
größer. Ein Circulus Diaboli, bei dem man am liebsten den Kopf in
den Sand stecken möchte.

Dumm nur, wenn der Kunde dieses Spiel nicht mehr mitspielen
mag und selbst aktiv nach Auswegen sucht. In letzter Zeit werden
dabei immer häufiger Outsourcing und Near-/Offshoring-
Maßnahmen diskutiert. Auch wenn Yourdon in [You05] attestiert,
dass sich die Entwicklung von betriebswirtschaftlicher Individual-
software weniger zu solchen Maßnahmen eignet als etwa die von
wissenschaftlich oder technisch geprägter Software, fällt sein Resü-
mee am Ende ernüchternd aus: Immer öfter gewinnen spezialisierte
Offshorer auch in diesem Bereich gegen Dienstleister aus der alten
Welt und zwar nicht nur bei den Kosten, sondern auch bei Termin-
treue und Qualität. Geben wir es ruhig zu: die westliche IT-Industrie
ist auch hier überrumpelt worden. Über die Hälfte aller CMM5-
zertifizierten Unternehmen kommt mittlerweile aus Indien.

Für die Software entwickelnden Unternehmen heißt es also end-
lich aktiv zu werden und nach Lösungen für eine effizientere Ent-
wicklung und Pflege von Software zu suchen. Aussprüche wie „Das
Ende der Software-Entwicklung wie wir sie kennen“ scheinen so
gerade rechtzeitig den nächsten Anlauf auf die Brook´sche Silver-
bullet einzuläuten. Sollten wir nicht eigentlich gelernt haben, dass es
selbige nicht geben kann? Nun, glauben wir zumindest Frankel
[Fra04] und Greenfield et al. [GSCK04], so stehen wir allen Unken-
rufen zum trotz kurz vor dem Eintritt in eine Phase zunehmender
Professionalisierung der Softwareentwicklung.

Frankel wählt dazu den Begriff der Software-Industrialisierung,
Greenfield spricht in diesem Zusammenhang gar von Software-
Fabriken. Uneins ist man sich zurzeit noch, wie die konkrete Mani-
festierung dieser Ideen auszusehen hat. Einigkeit scheint hingegen
darüber zu herrschen, dass aus technischer Sicht die Softwareent-
wicklung zukünftig architekturzentriert, aspektorientiert, domänen-
spezifisch und modellgetrieben erfolgen muss.

Der Vorschlag der Object Management Group
Eine ganzheitliche Vorgehensweise, die versucht durch die synerge-
tische Verwendung bekannter Prinzipien und Methoden den neuen
Anforderungen zu begegnen, ist die Model-Driven Architecture
(MDA) der OMG, die bereits seit dem Jahr 2000 einen der großen
Hoffnungsträger für den Weg aus der Krise darstellt.

Sie beschreibt den Rahmen für ein modellgetriebenes Vorgehen,
bei dem Modelle in den Mittelpunkt des Entwicklungsprozesses

Vorwort vii

gerückt werden. Kern dieser Architektur ist ein Konzept, das zwi-
schen plattform-unabhängigen und plattform-spezifischen Modellen
unterscheidet und es so ermöglicht, die Spezifikation der Funktiona-
lität eines Systems von der Spezifikation, wie diese Funktionalität
auf eine spezifische Plattform implementiert wird, zu trennen. Der
Übergang von der fachlich getriebenen Spezifikation zur ausführba-
ren Anwendung erfolgt dabei möglichst automatisiert durch geeig-
nete Transformationswerkzeuge.

Versprochen wird sowohl Kostensenkung durch die generative
Erzeugung von weiten Teilen der Anwendung und beschreibender
Modelle sowie die vereinfachte Wiederverwendung horizontaler
Querschnittskomponenten in der Entwicklung von Folgeanwendun-
gen. Durch die Erstellung technologieunabhängiger Modelle soll
zudem der Forderung der Unternehmen nach Konservierung der
Fachlichkeit entsprochen werden, indem die fachlichen Modelle ihre
Gültigkeit, auch bei sich ändernden unterliegenden Technologie-
landschaften, behalten und so die aktuelle Dominierung der Fach-
lichkeit durch die kurzen technologischen Änderungszyklen durch-
brochen wird.

Die notwendigen Mittel zur Umsetzung
Um die eben dargestellten Prinzipien anzuwenden, bedarf es einer
maßgeschneiderten unterstützenden Infrastruktur, die unter anderem
die benötigten domänenspezifischen Sprachen, die geeigneten
Prozesse sowie die technischen Werkzeuge zur Unterstützung des
Automatisierungsansatzes liefert bzw. ermöglicht. Bislang waren
diese Werkzeuge proprietär und herstellergebunden bzw. mit hohen
Eigenentwicklungskosten verbunden, die gerade für kleine und
mittelständische Unternehmen (KMUs) mit zu hohem Risiko und
Investitionsaufwand zu Buche schlagen, um ernsthaft in Erwägung
gezogen zu werden. Mittlerweile existiert jedoch eine Vielzahl
offener Standards und Open-Source Frameworks, die einen Versuch
der Umsetzung in Eigenregie in neuem Glanz erscheinen lassen.

Mit den Modellierungsstandards der OMG, namentlich des UML
und MOF 2.x Stacks, liegt nun auch der benötigte konzeptuelle
Überbau vor; domänenspezifische Erweiterungen sind in der Kon-
zeption bzw. kurz vor der Fertigstellung. Open-Source Projekte wie
Eclipse, die von vielen großen Firmen unterstützt werden, bilden
ganze Ökosysteme frei verfügbarer technischer Bausteine, diese
Konzepte auch auf praktischer Ebene umsetzen zu können.

Das vorliegende Buch …
… nimmt zum einen die theoretischen Konzepte unter die Lupe und
versetzt den Leser so in die Lage die Eignung der MDA für die

Vorwortviii

individuelle Situation seines Unternehmens besser einordnen und
bewerten zu können, liefert zum anderen jedoch auch konkrete
Betrachtungen zur praktischen Umsetzung mittels frei verfügbarer
Techniken und Technologien. Besonderer Fokus wird dabei auf die
Verwendung der Unified Modeling Language (UML) als Modellie-
rungssprache der Wahl sowie auf das Eclipse-Projekt als technische
Basis zur Umsetzung gelegt. Im Verlaufe der Untersuchung der
Randaspekte der MDA werden weiterhin viele weitere Konzepte
und Technologien des modernen Software-Engineerings aufgegrif-
fen und vertieft, sodass die Lektüre auch dann lohnt, wenn die
Einführung MDA im eigenen Hause nicht kurz vor der Tür steht.

Aufgrund der Vielfalt der Themen können viele hochinteressante
Aspekte der MDA jedoch trotzdem nur am Rande behandelt werden.
Wir hoffen jedoch, dass bei der getroffenen Auswahl auch die für
Ihre individuelle Situation passenden Themenkomplexe enthalten
sind und wünschen Ihnen in diesem Sinne Viel Spaß beim Lesen.

Literatur

[Fra04] David S. Frankel: Software Industrialization and the
New IT. In: David S. Frankel und John Parodi
(Hrsg.): The Mda Journal – Model Driven Architec-
ture Straight From the Masters. Meghan-Kiffer,
2004.

[GSCK04] Jack Greenfield, Keith Short, Steve Cook und Stuart
Kent: Software Factories – Assembling Applications
with Patterns, Models, Frameworks, and Tools. John
Wiley & Sons, 2004.

[You04] Edward Yourdon: Outsource – Competing in the
Global Productivity Race. Prentice Hall, 2004.

Inhaltsverzeichnis ix

Inhaltsverzeichnis

1 EINLEITUNG ...1
1.1 An wen wendet sich dieses Buch..1
1.1.1 Entscheider/Manager/Projektleiter..1
1.1.2 Berater..2
1.1.3 Architekten und Entwickler ..2

1.2 Ziele des Buches..2
1.2.1 Wie lässt sich die MDA einordnen?3
1.2.2 Darstellung der Konzepte der MDA.......................................3
1.2.3 Koordination und Kombination ..3
1.2.4 genua – prototypisches MDA Framework..............................4
1.2.5 Fazit – Ist MDA endlich die silberne Kugel?4

1.3 Überblick und Leitfaden zum Lesen.......................................4

1.4 Konventionen ..6

1.5 Weitere Informationen ..7

2 MDA – ÜBERBLICK UND ORIENTIERUNG.......................9
2.1 Motivation modellgetriebener Ansätze...................................9
2.1.1 Die Geschichte der Softwareentwicklung – ein histori-

scher Abriss ...11
2.1.2 Die Gegenwart...14
2.1.3 Akute Probleme bei der Software-Erstellung.......................16
2.1.4 Die Idee modellgetriebener Ansätze.....................................19

2.2 Die Model-Driven Architecture (MDA)...............................21
2.2.1 Ziele der MDA ..21
2.2.2 Die Vorgaben der Object Management Group (OMG)23
2.2.3 Metamodell der zentralen MDA-Begrifflichkeiten..............25
2.2.4 Standards im Dunstkreis der MDA.......................................31

2.3 Ideen, Anleihen und verwandte Ansätze32

Inhaltsverzeichnis x

2.3.1 Plattformunabhängigkeit .. 34
2.3.2 Ausführbare Modelle.. 35
2.3.3 Klassen, Komponenten und Frameworks 36
2.3.4 Musterorientierung ... 37
2.3.5 Architekturzentrierung.. 39
2.3.6 Aspektorientierung ... 40
2.3.7 Konvergenz... 41
2.3.8 Domain Engineering... 43
2.3.9 Generative Programming ... 45
2.3.10 Software-Factories et al. ... 46

2.4 Pragmatische Sichten auf MDA... 47
2.4.1 MDA-light .. 49
2.4.2 Warum jetzt?... 49

2.5 Also ….. 51

3 MODELLIERUNG..57
3.1 Grundlagen der Modellierung .. 57
3.1.1 Sketch-Modelle... 63
3.1.2 Formale Modelle... 65
3.1.3 Kurze Rekapitulation.. 71

3.2 Unified Modeling Language (UML).................................... 73
3.2.1 Historisches... 73
3.2.2 UML – Die Sprache der Model-Driven Architecture.......... 75
3.2.3 UML-Spezifikationen... 80

3.3 Metamodellierung... 84
3.3.1 Meta? – Grundlagen ... 84
3.3.2 Meta Object Facility 2 (MOF 2) .. 87
3.3.3 Beispiel für ein Metamodell ... 92
3.3.4 UML-Profile ... 94

3.4 UML-Repository .. 98

3.5 UML-Action-Semantics ... 101

3.6 OCL – Object Constraint Language................................... 106
3.6.1 Grundlagen – Was ist OCL? .. 106
3.6.2 Zuordnung von OCL-Ausdrücken zu Modellelementen... 108
3.6.3 Anwendungsmöglichkeiten von OCL................................ 110

4 MODELLE DER MDA...119
4.1 Lebenszyklus von MDA-Modellen.................................... 120

4.2 Computation Independent Model (CIM) 122

Inhaltsverzeichnis xi

4.3 Plattform Independent Model (PIM)126

4.4 Architecture Metamodel (AMM)..130

4.5 Platform Description Model (PDM)139

4.6 Platform Specific Model (PSM) ...141

5 TRANSFORMATION ..149
5.1 Einführung ...149

5.2 Anwendungsfälle für Transformationen.............................151

5.3 Modell-zu-Modell Transformationen153
5.3.1 Das Schema metamodellbasierter Modell-

transformationen..154
5.3.2 Beispiel: UML 2.0 PIM zu Java PSM157
5.3.3 Implementierungs-Strategien für Transformationen164

5.4 Modell-zu-Text Transformationen......................................167
5.4.1 Fortführung des Beispiels: Java PSM zu Java Code168
5.4.2 … vom Modell zum Text..171
5.4.3 Synchronisation von Modellen und Code...........................173

5.5 PIM Code vs. PIM PSM Code.............................178

6 KOORDINATION UND KOMBINATION183
6.1 Grundlagen und Vogelperspektive184
6.1.1 Das Prozessmodell von oben ..185
6.1.2 Domain Engineering ...188
6.1.3 Application Engineering ...191

6.2 Aktivitäten und Artefakte..191
6.2.1 Domäne qualifizieren ..191
6.2.2 Domäne analysieren ..194
6.2.3 Framework implementieren ..196
6.2.4 System-Modellierung ..197
6.2.5 Transformation ..198
6.2.6 Feedback..199

6.3 Rollen und (neue) Aufgaben ...201
6.3.1 Domain Engineering ...202
6.3.2 Application Engineering ...206
6.3.3 Fazit ...211

6.4 Einführung von MDA ins Unternehmen211
6.4.1 Ad-hoc-Vorgehen oder Iterative Einführung?....................213
6.4.2 Pilotprojekte...216

Inhaltsverzeichnis xii

6.4.3 Fazit... 217

6.5 Anpassen bestehender Organisationsstrukturen 218
6.5.1 Drei mögliche Organisationsmodelle................................. 220

6.6 Best Practices und Gefährliches ... 223
6.6.1 Iterativ-Inkrementelle Softwareentwicklung 223
6.6.2 Best Practices …... 230
6.6.3 … und Gefährliches.. 237

7 VORSTELLUNG DES FALLBEISPIELS............................247
7.1 Ausgangssituation... 248

7.2 Modell des Geschäftssystems... 250
7.2.1 Modellierungsfokus .. 251
7.2.2 Organisationseinheiten ... 252
7.2.3 Geschäftspartner ... 253
7.2.4 Geschäftsanwendungsfälle der aktiven Geschäfts-

partner ... 254
7.2.5 Weitere unterstützende Geschäftsanwendungsfälle 256
7.2.6 Geschäftsmitarbeiter/Akteurmodelle 256
7.2.7 Geschäftsprozesse... 257
7.2.8 Essenzbeschreibungen der Geschäftsanwendungsfälle 259
7.2.9 Ablaufmodelle der Geschäftsanwendungsfälle 261
7.2.10 Ablauf Geschäftsprozess .. 262
7.2.11 Geschäftsklassenmodell ... 263

7.3 Ergebnis der Geschäftsprozessmodellierung 264

7.4 Das weitere Vorgehen .. 265

8 PROJEKTPLANUNG ..269
8.1 Exploratory 360º ... 269
8.1.1 Systemanforderungen ... 270
8.1.2 Ein erster Releaseplan der Anwendung 272
8.1.3 Anforderungen an „genua“... 273
8.1.4 Releaseplan des genua Frameworks................................... 277
8.1.5 Erste Projektpläne... 277

8.2 Technologie-Plan.. 279
8.2.1 Das Eclipse-Projekt .. 279
8.2.2 Hibernate... 283
8.2.3 Graphical Editing Framework (GEF) 289
8.2.4 Eclipse Modeling Framework (EMF) + Eclipse UML2 ... 291
8.2.5 JavaServer Faces... 300
8.2.6 Apache Beehive .. 304

Inhaltsverzeichnis xiii

8.2.7 jBPM..311

9 PROJEKTDURCHFÜHRUNG..327
9.1 Architektur von genua Anwendungen327

9.2 Dialoge und Kontrollflüsse ...330
9.2.1 genua Platform Independent Pageflow

Profile (gPIPfP) ...331
9.2.2 Das erste Modell des Projekts „M&M online“..................339
9.2.3 genua Beehive Pageflow Profile (gBPfP)...........................345
9.2.4 genua JSF Metamodel (gJSFMM)......................................353
9.2.5 genua Platform Independent Workflow

Profile (gPIWfP)..356
9.2.6 Ein weiteres Modell des M&M-Projektes358
9.2.7 genua jBPM Profil...360
9.2.8 Transformation von gPIWfP nach gjBPM363
9.2.9 Vom Modell zum lauffähigen Workflow364

9.3 Geschäftslogik/Services ..371
9.3.1 Beehive Controls ...371
9.3.2 Realisierung der Services als SLSBs376

9.4 Persistenz ...378
9.4.1 genua Platform Independent Persistence Profile (gPIP)379
9.4.2 genua Hibernate Persistence Profile (gHPP)382
9.4.3 Strategie zur Abbildung Hibernate gHPP......................386
9.4.4 Anbindung an die Serviceschicht..388

9.5 genua Model2Model-Transformator (gM2M)389
9.5.1 Essenzieller Ablauf..389
9.5.2 genua ATLAS Transformation Language (gATL)390
9.5.3 Verarbeitung von gATL Transformationsmodulen............394
9.5.4 Beispiel ..396
9.5.5 Konstruktion des Zwischenmodells....................................399
9.5.6 Deserialisierung des Quellmodells......................................403
9.5.7 Durchführung der Transformation mittels Jython..............404
9.5.8 Durchführung einer Transformation mittels Ant................408

9.6 genua Model2Text-Transformator (gM2T)........................411
9.6.1 Java Emitter Templates (JET)...413
9.6.2 Modell-Fassaden ...414
9.6.3 Zusammenspiel der Komponenten415
9.6.4 Literaturempfehlungen..417

10 /LOST+FOUND...421
10.1 Bringt MDA einen ROI? – Die etwas andere Sichtweise. .421

Inhaltsverzeichnis xiv

10.2 Software-Factories vs. MDA.. 423
10.2.1 Was sind Software-Factories? .. 424
10.2.2 Reizwort „UML“ .. 425
10.2.3 MDA – was fehlt?... 425
10.2.4 Andere Meinungen zum Thema... 426

11 ENDE GUT – ALLES GUT? ..433
11.1 Was fehlt bzw. ist zu tun?... 434

11.2 Was wird? ... 436
11.2.1 Wie lange dauert es noch bis MDA zur Commodity

wird?.. 436
11.2.2 Woran könnte die MDA noch scheitern?........................... 438

11.3 Proof-of-Concept erfolgreich? ... 442
11.3.1 Der MDA-Prozess – in Sicht?.. 442
11.3.2 genua – Prototypisches MDA-Framework 443

11.4 … schließende Worte ... 444

A UML-SCHNELLREFERENZ ...447
A.1 Strukturdiagramme ... 447
A.1.1 Klassendiagramm ... 447
A.1.2 Objektdiagramm ... 454
A.1.3 Paketdiagramm ... 455
A.1.4 Komponentendiagramm ... 457
A.1.5 Verteilungsdiagramm ... 460
A.1.6 Kompositionsstrukturdiagramm... 461

A.2 Verhaltensdiagramme... 464
A.2.1 Use-Case Diagramm... 465
A.2.2 Aktivitätsdiagramm .. 467
A.2.3 Zustandsautomat ... 474
A.2.4 Sequenzdiagramm .. 479
A.2.5 Interaktions-Übersichts Diagramm 483
A.2.6 Kommunikationsdiagramm.. 484
A.2.7 Zeitdiagramm.. 486

A.3 Literaturtipps... 487

B OOGPM...491
B.1 Einleitung und Übersicht .. 491

B.2 Organisationseinheiten modellieren................................... 494

B.3 Aktive Geschäftspartner identifizieren............................... 495

Inhaltsverzeichnis xv

B.4 Geschäftsanwendungsfälle der aktiven Geschäftspartner
identifizieren..496

B.5 Geschäftsmitarbeiter identifizieren und Akteurmodell
entwickeln..498

B.6 Geschäftsprozesse definieren ..499
B.6.1 GAF-Abläufe modellieren ..499

B.7 Literaturempfehlungen ..500

1.1 An wen wendet sich dieses Buch 1

1 Einleitung

„If all you have is a hammer, everything looks like a nail.“

Bernard Baruch

1.1 An wen wendet sich dieses Buch
Das vorliegende Buch ist so aufgebaut, dass es Aspekte für diejeni-
gen Leser enthält, die sich „nur“ über die Wurzeln und theoretischen
Grundlagen der Model-Driven Architecture informieren wollen,
aber auch den Bogen zu deren praktischer Anwendung schlägt,
sodass auch Praktiker, die Tipps zur konkreten Umsetzung erwarten,
sich in diesem Buch wiederfinden werden.

Speziell werden folgende Themenkomplexe für die folgenden
Interessengruppen behandelt:

1.1.1 Entscheider/Manager/Projektleiter
Für die Unentschiedenen, die nicht sicher sind, ob die Vorgehens-
weisen der MDA zur Bewältigung ihrer individuellen Anforderun-
gen prinzipiell geeignet sind, bietet das vorliegende Buch erste
Einblicke und die notwendige Grundlage zur fundierten Entschei-
dungsfindung. Für alle, die diese Entscheidung bereits getroffen
haben oder kurz davor stehen, wird konkret auf die Auswirkungen
eingegangen, die eine Einführung auf die bestehende Unterneh-
mensorganisation hat bzw. haben sollte und bietet Tipps zur Adap-
tion bestehender Entwicklungsprozesse.

Auch als „Know-how Update“, um über die Themen auf dem
Laufenden zu bleiben, die aktuell die Softwareentwicklung beschäf-
tigen, ist das vorliegende Buch bestens geeignet. Die Basiskonzepte

1 Einleitung 2

und Ideen der MDA werden ausführlich erläutert und in den Kontext
des aktuellen State-of-the-Art der Softwareentwicklung eingeordnet.

1.1.2 Berater
Für die Berater unter Ihnen liefert das Buch das notwendige Hinter-
grundwissen zu den, oft nur als Buzzwords missbrauchten, Konzep-
ten eines der aktuell interessantesten Bereiche des Software-
Engineerings, das zur fundierten Einschätzung und Einordnung
dieser Ideen in der Praxis benötigt wird, um eine professionelle
Beratungsleistung in diesem Themenkomplex bieten zu können.
Anhand von Beispielen wird gezeigt, wie den Anforderungen des
IT-Alltags mit den Werkzeugen der MDA begegnet werden kann.
Die vorgestellten Bausteine können auch in Ansätzen, die nicht den
Stempel MDA tragen, verwendet werden und bilden so eine sinnvol-
le Ergänzung jedes Consulting-Toolkits.

Last-but-not-least werden Antworten auf häufig – und berech-
tigt – gestellte Fragen zu Machbarkeit und ROI des Ansatzes gege-
ben, die als Argumentationshilfe in Kundengesprächen wertvolle
Dienste leisten können.

1.1.3 Architekten und Entwickler
Anhand eines Fallbeispiels werden die im ersten Teil des Buches
theoretisch erarbeiteten Konzepte und Forderungen nach weitestge-
hender Werkzeugunterstützung des MDA-Prozesses durch die
Erarbeitung eines Beispielframeworks umgesetzt, das ganz ohne
proprietär kommerzielle Bausteine auskommt, und ausschließlich
mittels Open-Source Technologien realisiert werden kann. Der
Fokus wird dabei vor allem auf das Eclipse-Projekt [Eclipse] sowie
dessen untergeordnete Teilprojekte gelegt, da diese eine fast voll-
ständige Abdeckung der notwendigen Bausteine eines solchen
Frameworks liefern.

Ein mit der MDA-Infrastruktur eng verbundener Überblick über
die aktuellen Softwaretools und Bibliotheken, die zur Realisierung
der vertikalen und horizontalen Domänenaspekte herangezogen
werden, rundet den Themenkomplex für die Praktiker unter den
Lesern ab.

1.2 Ziele des Buches
Im Sinne eines Proof-of-Concept sollen in diesem Buch zuerst die
Ziele untersucht werden, zu deren Lösung die MDA antritt und
anschließend die Betrachtung nicht unterschlagen werden, ob der
Ansatz diese Versprechungen mit den aktuell verfügbaren Techno-

1.2 Ziele des Buches 3

logien prinzipiell erfüllen kann. Dabei sollen vor allem die folgen-
den Themenbereiche näher betrachtet werden:

1.2.1 Wie lässt sich die MDA einordnen?
Im Ansatz MDA finden sich viele Anleihen bekannter und weniger
bekannter Prinzipien, Technologien und Vorgehensweisen aus dem
weiten Feld des Software-Engineering. Wir wollen versuchen, diese
Anleihen zu identifizieren und ihre Bedeutung innerhalb der Model-
Driven Architecture näher zu beleuchten. Da einige Bestandteile
bereits in der Vergangenheit große Versprechungen bezüglich der
Effektivitätssteigerung der Softwareentwicklung nicht oder nur
teilweise halten konnten, wollen wir außerdem versuchen zu klären,
ob eine Kombination dieser Einzelteile zum jetzigen Zeitpunkt
eventuell größere Aussichten auf Erfolg haben kann und die Gründe
für unsere Schlussfolgerungen erläutern.

1.2.2 Darstellung der Konzepte der MDA
Hier sollen die technischen Grundlagen der MDA vorgestellt und
die hinterliegenden Prinzipien erläutert werden. Modelle und (Me-
ta-)Modellierung, spezifische Modellarten der MDA, der Plattform-
begriff, Transformationen und Transformationsbeschreibungen
sowie UML sind nur einige Begriffe, die verstanden und angewen-
det werden müssen, um die Vorstellungen der OMG umsetzen zu
können. Wir wollen diese Begriffe in ihre übergeordneten Themen-
komplexe einordnen und sowohl die spezifischen Einzelheiten, aber
auch die großen Zusammenhänge ausführlich erläutern, da sie das
Fundament des zweiten Teils der Betrachtungen bilden: der Unter-
suchung der Tragfähigkeit der MDA durch Konzeption und aus-
schnittsweise Implementierung eines Frameworks namens genua
(vgl. Abschnitt 1.2.4) anhand eines Projekt-Fallbeispiels.

1.2.3 Koordination und Kombination
Nicht nur die Machbarkeit der technologischen Umsetzung der
MDA-Prinzipien ist zu zeigen, auch die organisatorischen Aspekte
müssen näher untersucht werden. So setzt die MDA a priori weder
einen dezidierten Software-Entwicklungsprozess als Grundlage
voraus, noch werden von der OMG selbst irgendwelche Vorschläge
bezüglich des zu verwendenden Prozessmodells gemacht. Zu unter-
suchen ist also, was ein Prozess mindestens leisten muss, um die
zusätzlichen Anforderungen, die die Vorgehensweise erfordert,
erfüllen zu können. Beantwortet werden sollen also unter anderem
folgende Fragen: Welche Anforderung stellt MDA an Organisation

1 Einleitung 4

und Prozesse? Welche Implikationen ergeben sich? Und wie können
bestehende Strukturen und Vorgehensmuster so angepasst werden,
dass diese Anforderungen erfüllt werden.

1.2.4 genua – prototypisches MDA Framework
Hier wird versucht die theoretisch erarbeiteten Anforderungen an
eine technische Infrastruktur zur Stützung der MDA prototypisch
umzusetzen. In einem Fallbeispiel wird unter dem Namen genua ein
MDA-Framework entwickelt, das aus den geforderten Tools wie
Generatoren, Transformatoren, Profilen usw. besteht, die in den
vorangegangenen Kapiteln als unverzichtbar identifiziert wurden.

Die Technologien, die zur Umsetzung ausgewählt wurden, wer-
den erklärt und das Zusammenspiel im MDA-Prozess anhand eines
zusammenhängenden Fallbeispiels auszugsweise erläutert. Unter-
sucht wird so die Tragfähigkeit und Integrierbarkeit der zur Zeit
verfügbaren Technologielandschaft gegenüber Ansprüchen der
MDA. Hierbei werden dezidiert nur frei verfügbare Open-Source
Elemente und frei verfügbare Standards betrachtet.

1.2.5 Fazit – Ist MDA endlich die silberne Kugel?
Die in den vorigen Kapiteln gewonnenen Einsichten und Erkennt-
nisse werden hier in einer komprimierten Form zusammengefasst
und die Tragfähigkeit der „Idee MDA“ von den Autoren anhand der
gemachten Erfahrungen und theoretischen Überlegungen bewertet.
Zusätzlich sollen ausgewählte Schwachstellen noch einmal explizit
genannt und ein Blick in die Glaskugel auf die nähere Zukunft der
MDA versucht werden.

1.3 Überblick und Leitfaden zum Lesen
Die Konzeption des Buchaufbaus folgt einer Dreiteilung: Teil I
(Kapitel 2–5) beschreibt die theoretischen Grundlagen des Ansatzes
(die Architektur der MDA). Im zweiten Teil (Kapitel 6) werden die
Auswirkungen der vorgestellten Konzepte auf die Prozesse und die
Organisation von Unternehmen näher beleuchtet. Teil III (Kapitel 7–
9) bringt die Ideen zur Anwendung und setzt sie mit konkreten
Technologien zur Umsetzung in Beziehung.

Es folgt ein Überblick über den Inhalt der einzelnen Kapitel:

1.3 Überblick und Leitfaden zum Lesen 5

Kapitel 2: MDA – Überblick und Orientierung

Hier werden die grundlegenden Konzepte und Begriffe erläutert, auf
denen die MDA basiert. Außerdem wird der Ansatz in den „histori-
schen Kontext“ des Software-Engineering eingebettet und die
Beziehungen zwischen „alten“ Ideen und „neuer“ MDA hergestellt.

Kapitel 3: Modellierung

Als einem der Hauptwerkzeuge der MDA wird der Modellierung ein
eigenes Kapitel gewidmet. Hier werden die entsprechenden grundle-
genden Begriffe und Konzepte eingeführt und das Werkzeug der
OMG, die Unified Modeling Language (UML) sowie deren Spezifi-
kationen unter die Lupe genommen. Weitere behandelte Punkte
sind: formale Modellierung, Metamodellierung, MOF, Action
Semantics, UML Repository usw.

Kapitel 4: Modelle der MDA

Hier wird der „Lebenszyklus“ der Modellarten der MDA betrachtet
und ein erstes durchgängiges Beispiel für konkrete Modelle vom
anwendungs-unahängigen Modell (CIM) bis zur fertigen Applika-
tion gezeigt.

Kapitel 5: Transformation

Der Übergang von einem Modell in ein anderes wird in der MDA
Transformation genannt. Dieses Kapitel schafft die Grundlagen zu
diesem Themengebiet, die erst die Beschäftigung mit der Erstellung
von Werkzeugen zur automatisierten Transformation sowie der
Generierung von Quellcode als spezielle Unterart ermöglichen.

Kapitel 6: Koordination und Kombination

Nach all den „harten Fakten“ spielen hier die „weichen“ Aspekte der
Einführung der MDA in bestehende Unternehmen eine Rolle. Die
Integration des Ansatzes in bereits bestehende Software-Prozesse
wird hier ebenso beleuchtet wie die Auswirkung des Ansatzes auf
die Projektleiter und Entwickler bzw. deren bestehende Aufgaben
und Rollen. Weiterhin werden die Anforderungen beleuchtet, die
sich an die Unternehmensorganisation ergeben und die speziellen
Aufgaben in der Einführungsphase (der MDA) näher betrachtet.

Kapitel 7–9: Vorstellung und Durchführung des Fallbeispiels

Anhand eines Fallbeispiels werden hier die im ersten Teil des Bu-
ches erarbeiteten Konzepte dem Lackmustest unterzogen. Konkrete

Architektur

Organisation&Prozesse

Praktische Anwendung

Architektur

Organisation&Prozesse

Praktische Anwendung

Architektur

Organisation&Prozesse

Praktische Anwendung

1 Einleitung 6

mögliche Lösungen für technische und konzeptionelle Probleme
werden angegeben und auszugsweise detailliert erläutert.

Kapitel 10: /lost+found

Hier werden die Aspekte aufgegriffen, die wir Ihnen nicht vorenthal-
ten wollten, jedoch „nirgendwo sonst so richtig gepasst haben“.
Weniger ein in sich geschlossenes Kapitel als eine Fundgrube
interessanter Ideen und Gedankengänge finden sich hier Aspekte,
die das Gesamtbild MDA weiter schärfen.

Kapitel 11: Ende gut – alles gut?

Tief durchatmend werden hier die im Laufe der vielen Kapitel
erworbenen Erkenntnisse noch einmal zusammengefasst. Dabei
werden wir auch einen vorsichtigen Ausblick in die Zukunft der
Softwareentwicklung wagen und auch die Möglichkeit und deren
Ursachen für den Fall betrachten, dass sich die MDA nicht durch-
setzt. Natürlich darf an dieser Stelle auch ein ordentliches Schluss-
wort nicht fehlen.

Anhang A: UML Schnellreferenz

Im Sinne einer Referenz werden hier alle dreizehn Diagrammarten
der UML 2.x aufgeführt und die wichtigsten Notationselemente
vorgestellt und erläutert.

Anhang B: OOGPM

Ein Mittel, die Welt der Geschäftsprozessmodellierung mit der
MDA zu verbinden, stellt die OOGPM (Objektorientierte Ge-
schäftsprozessmodellierung, [OWS+03]) dar. Hierzu definiert sie
sowohl die Methode als auch die notwendigen Profile, um die
Ergebnisse als UML Modelle festhalten zu können. An dieser Stelle
wird die OOGPM kurz vorgestellt und die wichtigsten Ergebnisty-
pen samt entsprechender Beispieldiagramme erläutert.

1.4 Konventionen
Bei der Gestaltung des Buches wurden Konventionen bei der Wahl
der Schrifttypen und der Verwendung von Sprachmitteln verwendet,
die an dieser Stelle kurz erläutert werden:

Deutsch/Englisch: Grundsätzlich wurde die im Alltag der
Autoren gängige Form gewählt (also etwa Bridge und nicht
Brücke). Wo erforderlich wurden diese in die entsprechende

1.5 Weitere Informationen 7

Form der anderen Sprache übersetzt und in Klammern an den
Originalbegriff angehängt. Oftmals wurden der Vollständigkeit
halber beide Formen angegeben, um dem Leser eine Orientie-
rung in den Literaturangaben, zu ermöglichen.
Codebeispiele: Codebeispiele und genereller alle textlichen
Artefakte, wie Auszüge aus Deskriptoren etc., sind in Courier
New angegeben (Beispiel: Klasse Person).
Schlüsselwörter: Begriffe, die im jeweiligen Kontext eine
prominente Bedeutung besitzen sowie Schlüsselkonzepte wur-
den zur Hervorhebung in Kursivschrift gesetzt.
Literaturverzeichnis: Zur besseren Übersichtlichkeit wurden
neben dem Gesamtverzeichnis am Ende des Buches die kapitel-
relevanten Einträge auch am Ende jedes Kapitels aufgeführt.
Index: Zum besseren Auffinden relevanter Textstellen bei
Benutzung des Buches als Referenz und Nachschlagewerk wur-
de ein ausführlicher Index erstellt, der am Ende des Buches zu
finden ist und alle relevanten Schlüsselbegriffe enthält.
Marginalien: Zur Erleichterung der Orientierung innerhalb der
einzelnen Kapitel und Abschnitte wurden Leitbegriffe als Mar-
ginalie an den Rand der Seite aufgenommen.

1.5 Weitere Informationen
Weitere Informationen, Errata, Quelltexte sowie ein Diskussionsfo-
rum zum Austausch untereinander und direkt mit uns, finden sich
unter:

www.mda-buch.info

1 Einleitung 8

Literatur

[Eclipse] Eclipse.org: Eclipse.org Main Page.
http://www.eclipse.org/ (letzter Abruf Mai 2005)

[OWS+03] Bernd Oesterreich, Christian Weiss, Claudia Schrö-
der, Tim Weilkiens und Alexander Lenhard: Objekt-
orientierte Geschäftsprozessmodellierung mit der
UML. dpunkt, 2003.

2.1 Motivation modellgetriebener Ansätze 9

2 MDA – Überblick und
Orientierung

„Als es noch keine Computer gab, war das Programmieren
noch relativ einfach.“

Edsger Wybe Dijkstra

In diesem Kapitel werden wir uns mit den Prinzipien der Model-
Driven Architecture (MDA) vertraut machen sowie Grundlagen und
Basiskonzepte einführen, die eine grobe Einordnung der Konzepte
und Techniken ermöglichen und dann in späteren Kapiteln detaillier-
ter beschrieben werden.

Zu Beginn wollen wir aber einen kleinen Blick zurück in die Ver-
gangenheit werfen – auf mittlerweile 50 Jahre industrielle Software-
Entwicklung. Dies soll uns dabei helfen, die Motive der Object
Management Group (OMG) zu verstehen, die schließlich zur For-
mulierung des Model-Driven Architecture Ansatzes geführt haben.

2.1 Motivation modellgetriebener Ansätze
Software hat sich im Laufe der letzten Jahrzehnte von ihrem ur-
sprünglichen Nischendasein zur nunmehr kritischen Rolle innerhalb
von Unternehmen entwickelt. Viele betriebswirtschaftliche Basis-
operationen laufen heute softwaretechnisch automatisiert oder
zumindest IT-gestützt ab. Software ist damit zu einem wichtigen
Erfolgsfaktor und mitunter zu einem entscheidenden Wettbewerbs-
vorteil vieler Unternehmen geworden (vgl. [SF03]).

Dem daraus resultierenden steigenden Bedarf an softwaretechni-
schen Lösungen in der betriebswirtschaftlichen Praxis stehen zu-
nehmend gegenüber:

2 MDA – Überblick und Orientierung 10

eine immer schwieriger zu beherrschende Komplexität,
stetig steigende Anforderungen an die Leistungsfähigkeit,
Zuverlässigkeit und Qualität,
kurze Technologiezyklen, die sowohl die Hardware- als auch
Software-Plattformen betreffen,
häufige Anforderungsänderungen,
und (insbesondere in Zeiten konjunktureller Schwächeperioden)
ein hoher Druck zur Kostenreduzierung.

16% 31% 53%

27% 40% 33%

26% 28% 46%

28% 23% 49%

34% 15% 51%

Projects Show Steady Improvement

2003

2000

1998

1996

1994

0 10 20 30 40 50 60 70 80 90 100

Succeeded Failed Challenged

Spätestens mit dem „Erkennen“ der so genannten Software-Krise
[NRB76] wurde daher die Forderung nach ingenieurmäßiger Soft-
ware-Erstellung immer lauter. Trotz aller Erfahrungen, neuer Tech-
nologien und vielfältiger Forschung fehlen der Software-Industrie
auch heute noch Entwicklungsprozesse, die an die Planbarkeit,
Zuverlässigkeit, Effektivität, Effizienz und Flexibilität der „alther-
gebrachten“ Industrie auch nur annähernd herankommen.

Abb. 2.1
Software-

Projekte zeigen
stetige Verbes-
serung (Quelle:

[JBCR01]
ergänzt durch

[SG03])

2.1 Motivation modellgetriebener Ansätze 11

Ein Versuch, unreflektiert Prozesse aus der Welt der klassischen
Industrie in die Software-Welt zu übernehmen, scheitert häufig auf
Grund der grundsätzlichen Verschiedenheit der materiellen Ferti-
gung und der sich immer neu stellenden Anforderungen an die
Entwicklung „geistiger“ Lösungen. Die große Anzahl abgebroche-
ner oder weit über dem ursprünglich angenommenen Budget been-
deter Projekte in der Software-Industrie zeigt das.

So hat sich der relative Anteil erfolgreich durchgeführter Software-
Projekte laut Studien der Standish Group von 16% im Jahre 1994
auf 34% im Jahre 2003 zwar immerhin mehr als verdoppelt [SG03],
andererseits bedeutet dies aber auch, dass immer noch zwei Drittel
der Projekte nicht wie geplant beendet werden (siehe auch Abb. 2.1).
Projekt-Beispiele der jüngeren Vergangenheit wie Cheops
[COWO00], Fiscus [HO04] oder etwa Toll Collect [CT03] bilden
hier nur die Spitze des Eisbergs.

Immerhin lässt sich aber ein Fortschritt feststellen. Wir wollen im
Folgenden einmal Revue passieren lassen, welche Anstrengungen zu
diesen Erfolgen geführt haben.

2.1.1 Die Geschichte der Softwareentwicklung –
ein historischer Abriss

Beginnen möchten wir in den 50er-Jahren: Zu dieser Zeit bestimm-
ten die knappen und teuren Hardware-Ressourcen die Computer-
Welt. Die Erstellung von Software spielte deshalb gegenüber der
Hardware-Entwicklung eine untergeordnete Rolle und erfolgte quasi
„nebenbei“. Software hatte noch eine beherrschbare Größe und
wurde in Maschinensprache binär kodiert.

Die Software-Systeme wurden komplexer und schon bald musste
man erkennen, dass die für den Menschen schwer verständlichen
maschinensprachlichen Binärcodes für Befehle und Operanden nicht
weiter dazu geeignet waren, um Software zu entwickeln. Die Ma-
schinensprachen wurden durch die Assembler-Sprachen (kurz
Assembler) abgelöst, die mnemonische Symbole, Marken und
Makros als Arbeitserleichterung für den Entwickler brachte. Mne-
monische Symbole lösten die angesprochenen Binärcodierungen ab,
Marken und Makros ermöglichten die Abstraktion von einzelnen
Instruktionen. Der Assemblierer übersetzte den in Assembler-
Sprache geschriebenen Code in ein Maschinenprogramm.

Knowledge-
Work
vs.
Industrielle
Fertigung

Maschinen-
sprachen

Assembler-
Sprachen

2 MDA – Überblick und Orientierung 12

Die Assembler-Sprachen waren nach wie vor maschinenorientiert,
gefragt waren aber zunehmend Programmiersprachen, mit denen
man die zu behandelnden Probleme direkter formulieren konnte. Die
Programmiersprache FORTRAN (FORmula TRANslator), die
1954-1958 von Jim Backus entwickelt worden war, gilt als erste
problemorientierte bzw. höhere Programmiersprache. Sie wurde für
mathematisch-technische Probleme konzipiert und ist Vorläuferin
vieler weiterer höherer Programmiersprachen die folgen sollten.
Musste man sich bei der Assembler-Programmierung um Prozessor-
register, Stack und Statusflags weitgehend selbst kümmern, konnte
man mit den höheren Programmiersprachen von diesen Dingen
abstrahieren. Ein Compiler erledigte stattdessen diese Arbeit und
sorgte für die Übersetzung in ein ausführbares Programm.

Die Hardware-Preise fielen, der Bedarf an Software wuchs, und
schon bald wurden die programmierten Systeme größenmäßig so
komplex, dass sie unhandhabbar wurden. Auf einer NATO-
Konferenz im Jahre 1968 reagierte man auf diesen Missstand – die
Software-Krise wurde ausgerufen und mit ihr wurde die Forderung
nach einer angemessenen Ingenieursdisziplin immer vehementer.
Bis zu diesem Zeitpunkt war die Software-Erstellung eher als künst-
lerische Tätigkeit aufgefasst worden, nun sollte eine strukturierte
Vorgehensweise die „Kunst“ verdrängen. In dieser Zeit wurde der
Begriff des Software-Engineering geprägt (vgl. [Bau93] bzw.
[Boe76]).

Mit komfortablen Kontrollstruktur- und Fallunterscheidungsmög-
lichkeiten begann man nun strukturiert – etwa in Pascal oder in C –
zu programmieren [DDH72]. Die neue Disziplin Software-
Engineering hatte sich aber nicht nur strukturierte Programmierung
auf die Fahnen geschrieben, sondern insbesondere auch systemati-
sche Methoden. Diese Lücke wurde unter anderem durch die Struk-
turierte Analyse (SA) [DeM78] und das Strukturierte Design (SD)
[YC79] geschlossen.

In der Strukturierten Analyse verwendete man hierarchisch angeord-
nete Datenflussdiagramme zur abstrakten Modellierung von Prozes-
sen. Mini-Spezifikationen (z. B. in Pseudo-Code) dienten dabei zur
Beschreibung von nicht weiter verfeinerten Prozessen und Data
Dictionaries stellten die einheitliche Datendefinition sicher. Die in
der Strukturierten Analyse ausgemachten Funktionen wurden dann
im Strukturiertem Design in hierarchisch aufgebaute Module zerlegt
und in Strukturdiagrammen festgehalten. Hierbei dienten die Dia-
gramme der Visualisierung von Programmabläufen und der Be-

Problemorien-
tierte/Höhere

Programmier-
sprachen

Software-Krise
und Software-

Engineering

Strukturierte
Programmierung

Strukturierte
Analyse und

Strukturiertes
Design

2.1 Motivation modellgetriebener Ansätze 13

schreibung der Schnittstellen zwischen den Modulen. Diagramme
bzw. Modelle erhielten in den strukturierten Methoden einen hohen
Stellenwert und ein Markt für Modellierungs-Werkzeuge entstand:
Willkommen in der Welt des Computer Aided Software Engineering
(CASE)!

Die Wiederverwendungskrise [Qui94] gegen Ende der 80er-Jahre
machte diese Idylle zunichte. Die abermals drastisch in ihrer Kom-
plexität gewachsenen Software-Systeme erzwangen erneut ein
Umdenken bei der Software-Erstellung. Diesmal wollte man insbe-
sondere der Wiederverwendbarkeit von Software Rechnung tragen.
So hatte man zwar im Laufe der Jahre gewaltige Software-Bestände
angehäuft, aber gleichzeitig das Problem, diese in geeigneter Form
auch nur teilweise wieder zu verwenden.

Die Lösung sollte das Objektorientierte Paradigma liefern; ein
Ansatz, der der natürlichen Denkweise sehr nahe kommt: Ein Sys-
tem besteht aus vielen Objekten und jedes dieser Objekte besitzt ein
definiertes Verhalten, einen inneren Zustand und eine eindeutige
Identität. Bereits in den 70er-Jahren hatte man sich diesem Ansatz in
wissenschaftlichen Veröffentlichungen gewidmet, der Durchbruch
sollte erst jetzt erfolgen.

Ole-Johan Dahl und Kristen Nygaard hatten bereits in den 60er-
Jahren eine entsprechende Programmiersprache entwickelt:
SIMULA (SIMUlation LAnguage). Ursprünglich für diskrete
Ereignis-Simulation entwickelt, kamen ihre Konzepte so zu spätem
Ruhm – die breite Akzeptanz wiederum, sollte später aber Sprachen
wie Smalltalk, C++ und Java vorbehalten bleiben.

Daten und Funktion wurden fortan nicht mehr getrennt voneinan-
der betrachtet, sondern zusammenhängend in Objekten. Klassen
nahmen dabei die Objekte auf, die dem gleichen Verhaltensschema
folgten und die gleiche innere Struktur besaßen. Vererbung und
Polymorphie sollten für die oben angesprochene Wiederverwend-
barkeit Sorge tragen. Um die Übersetzung des Programm-Codes in
ein ausführbares Programm kümmerte sich weiterhin ein – um OO-
Konstrukte aufgebohrter – Compiler.

Der breiten Akzeptanz folgend schossen Anfang der 90er-Jahre
adäquate objektorientierte Methoden wie Pilze aus dem Boden -
Rumbaughs Object Modeling Technique (OMT) [RBP+91] und
Boochs Object-Oriented Design (OOD) [Boo93] waren bzw. sind
wohl die zwei Bekanntesten unter ihnen. Sie intensivierten abermals
den Gebrauch von Modellen und entsprechender Modellierungs-
Werkzeuge in der Software-Entwicklung. Aus der Vielzahl der

Wiederverwen-
dungskrise

Objektorientier-
tes Paradigma

Objektorientierte
Analyse und
Objektorientier-
tes Design

2 MDA – Überblick und Orientierung 14

objektorientierten Methoden ging die Unified Modeling Language
(UML) hervor, eine standardisierte Modellierungssprache zur
Spezifikation objektorientierter Systeme.

In jüngster Vergangenheit bekam der Entwickler Unterstützung
durch eine Reihe verschiedener Konzepte wie Middleware [MW],
Komponenten und Applikationsservern. Durch ihre Verbreitung
wurden die Rechnergrenzen endgültig gesprengt und mit ihr eine
Transparenz der Netzwerkkommunikation geschaffen. Komponen-
ten brachten das Paradigma des Zusammenbaus vorgefertigter
Software-Einheiten. Die beiden Konzepte wurden mithilfe von
Object Request Brokern (ORBs) bzw. Applikationsservern zur
verteilten Objekttechnologie bzw. Distributed Object Technology
(DOT) verheiratet. Zusammengenommen verschafften sie uns
insbesondere Ansätze zur Abstraktion von Verteilung, Persistenz,
Transaktionalität und Sicherheit.

2.1.2 Die Gegenwart
Damit sind wir am Ende unserer kleinen Rückblicks angekommen.
Gegenwärtig wird das Objektorientierte Paradigma auf breiter Basis
erfolgreich um- und eingesetzt und ist aus der Entwicklungspraxis
nicht mehr wegzudenken. Mittlerweile sehen wir uns hochkomple-
xen Zielarchitekturen gegenüber, müssen die „Jugendsünden“ in
Form bestehender Anwendungen integrieren und dabei die verschie-
denartigsten Technologien einbeziehen. Auch hierbei unterstützen
uns Modelle und das damit verbundene Prinzip der Abstraktion,
indem sie helfen, komplexe Sachverhalte kompakt darzustellen.

Welche Schlussfolgerung lässt sich nun ziehen?
Betrachtet man die eben beschriebene Entwicklung der Software-
Entwicklung unter dem Gesichtspunkt eines gemeinsamen „Trends“
fallen folgende Punkte besonders ins Auge:

Der Fortschritt in der Software-Entwicklung ist eng verbunden
mit der Bewältigung von Komplexität – mitunter spricht man
deshalb bei der Komplexitätsbeherrschung auch von dem Pro-
blem des Software-Engineering.
Zu beobachten ist weiterhin, dass immer, wenn die Komplexität
der zu erstellenden Software-Systeme auf ein nicht mehr zu be-
herrschendes Maß angewachsen war, die Lösung in der Ver-
gangenheit in einem Abstraktionssprung auf eine höhere seman-
tische Ebene zu finden war.

Middleware,
Komponenten

und Applika-
tionsserver

Komplexitäts-
beherrschung

als das Problem

Abstraktion als
fortwährender

Trend

2.1 Motivation modellgetriebener Ansätze 15

Diese Beobachtungen lassen sich auch an der Evolution der Pro-
grammiersprachen festmachen: von Maschinensprachen über As-
sembler-Sprachen, Prozeduralen Sprachen hin zu Objektorientierten
Sprachen. Insofern kann bei der Abstraktion von einem fortwähren-
den Trend des Software-Engineering bzw. allgemein der Informatik
gesprochen werden.

?

Maschinensprache
00101011 01010111
01101000
10101010 10101011
[…]

Assembler-Sprache
MOV .segm SRC, DST
 LDA &SRC&
 STA &DST&
 […]

Objektorientierte Sprachen
public class Customer {
 private String name;
 […]
}

Modellierungssprachen

AccountCustomer

Ab
st

ra
kt

io
ns

gr
ad

Prozedurale Sprachen
void main(){
 printf("Welcome!\n");
 […]
}

Zeit

Wie bereits erwähnt sind Modelle ein weiteres Werkzeug, das uns
bei der Beherrschung dieser Komplexität hilft, indem sie frei nach
dem Motto „teile und herrsche“ einen Teil der selbigen verdecken.
Diese Beobachtung liefert den dritten Punkt, den wir als Trend in
der Historie der betrachteten Entwicklung festmachen wollen:

Modelle rücken mehr und mehr in den Mittelpunkt des Entwick-
lungsprozesses, insbesondere in Analyse und Entwurf.

Wie geht es weiter?
Angenommen der ausgemachte Trend wäre eine Tatsache, wäre es
dann nicht konsequent zu folgern, dass Modellierungssprachen die

Abb. 2.2
Steigender
Abstraktionsgrad

Zunehmende
Gewichtung von
Modellen

