Xpert.press

Die Reihe Xpert.press vermittelt Professionals

in den Bereichen Softwareentwicklung,
Internettechnologie und IT-Management aktuell

und kompetent relevantes Fachwissen iiber
Technologien und Produkte zur Entwicklung

und Anwendung moderner Informationstechnologien.

Volker Gruhn - Daniel Pieper
Carsten Rottgers

MDA®

Effektives Software-Engineering
mit UML 2@ und Eclipse ™

Mit 293 Abbildungen

@ Springer

Volker Gruhn Daniel Pieper

Lehrstuhl fiir Carsten Rottgers
Angewandte Telematik/e-Business adesso AG
Universitdt Leipzig Stockholmer Allee 24
Klostergasse 3 44269 Dortmund
04109 Leipzig dp@mda-buch.info
gruhn@ebus.informatik.uni-leipzig.de cr@mda-buch.info

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet {iber
http://dnb.ddb.de abrufbar.

ISSN 1439-5428
ISBN-10 3-540-28744-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28744-5 Springer Berlin Heidelberg New York

Dieses Werk ist urheberrechtlich geschiitzt. Die dadurch begriindeten Rechte, insbesondere
die der Ubersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und
Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfiltigung auf anderen We-
gen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser
Verwertung, vorbehalten. Eine Vervielfiltigung dieses Werkes oder von Teilen dieses Werkes
ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechts-
gesetzes der Bundesrepublik Deutschland vom 9. September 1965 in der jeweils geltenden
Fassung zuldssig. Sie ist grundsitzlich vergiitungspflichtig. Zuwiderhandlungen unterliegen
den Strafbestimmungen des Urheberrechtsgesetzes.

Springer ist ein Unternehmen von Springer Science+Business Media
springer.de

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem
Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche
Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten
wiren und daher von jedermann benutzt werden diirften. Text und Abbildungen wurden
mit grofiter Sorgfalt erarbeitet. Verlag und Autor kénnen jedoch fiir eventuell verbliebene
fehlerhafte Angaben und deren Folgen weder eine juristische Verantwortung noch irgendeine
Haftung iibernehmen.

Satz: Druckfertige Daten der Autoren

Herstellung: LE-TgX, Jelonek, Schmidt & Vockler GbR, Leipzig
Umschlaggestaltung: KiinkelLopka Werbeagentur, Heidelberg
Gedruckt auf sdurefreiem Papier 33/3142YL - 543210

Vorwort

~Simple things should be simple and complex things should
be possible.”

Alan Kay

Informationstechnik ist {iber den Lauf der Jahre zum Riickgrat der
Geschiftswelt geworden: kaum eine kommerzielle Transaktion lauft
heute nicht IT-gestiitzt ab, nahezu jeder Euro, der seinen Besitzer
wechselt, wird elektronisch erfasst. Die Geschiftsprozesse vieler
Unternehmungen entwachsen den vier Wénden ihrer Biirogebaude
oder Produktionsstétten und spielen sich in Zeiten von Globalisie-
rung und sich 6ffnenden Markten zunehmend auch auf internationa-
lem Parkett ab. Solch internationales Treiben ist dabei nicht ldnger
auf groBBe Konzerne beschrinkt, sondern wird immer mehr auch fiir
kleine und mittelstindische Unternehmen zum Tagesgeschéft. Die
daraus resultierenden Anforderungen erfordern eine entsprechende
IT mit maBgeschneiderten Losungen, die die individuellen Bediirf-
nisse der Unternehmen beriicksichtigen.

Das Problem

Wir kénnen nicht wie wir wollen. Man mag es ja kaum noch horen,
aber die Software-Industrie steckt immer noch in der bereits vor
Jahrzehnten ausgerufenen Software-Krise. Gewiss, in puncto Effi-
zienz, Effektivitidt und Produktivitdt sind Fortschritte erzielt worden,
aber wenn wir ehrlich sind, sind es eher Schrittchen, von denen wir
da sprechen und weniger die erhofften Spriinge. Die Bestandsauf-
nahme der Software-Projektlandschaft fillt dementsprechend fatal
aus: Falls ein Projekt tatséchlich iiberlebt, dann selten in Time und
noch viel seltener in Budget. Bei der Qualitit wird es dann schlieB-
lich ganz diinn, sie fallt meist gleich als Erstes iiber Bord, sobald
Time und Budget in Gefahr scheinen.

Vorwort

Vi

Dabei wird Software immer komplexer, die Anspriiche an ihre
Leistungsfihigkeit, Zuverlédssigkeit, Sicherheit und Skalierbarkeit
bei stetig steigendem Kosten- und Zeitdruck gleichzeitig immer
groBer. Ein Circulus Diaboli, bei dem man am liebsten den Kopf in
den Sand stecken mochte.

Dumm nur, wenn der Kunde dieses Spiel nicht mehr mitspielen
mag und selbst aktiv nach Auswegen sucht. In letzter Zeit werden
dabei immer héufiger Outsourcing und Near-/Offshoring-
MafBnahmen diskutiert. Auch wenn Yourdon in [You05] attestiert,
dass sich die Entwicklung von betriebswirtschaftlicher Individual-
software weniger zu solchen Mallnahmen eignet als etwa die von
wissenschaftlich oder technisch geprégter Software, fallt sein Resii-
mee am Ende erniichternd aus: Immer 6fter gewinnen spezialisierte
Offshorer auch in diesem Bereich gegen Dienstleister aus der alten
Welt und zwar nicht nur bei den Kosten, sondern auch bei Termin-
treue und Qualitdt. Geben wir es ruhig zu: die westliche IT-Industrie
ist auch hier i{iberrumpelt worden. Uber die Hilfte aller CMMS5-
zertifizierten Unternehmen kommt mittlerweile aus Indien.

Fiir die Software entwickelnden Unternehmen heifit es also end-
lich aktiv zu werden und nach Losungen fiir eine effizientere Ent-
wicklung und Pflege von Software zu suchen. Ausspriiche wie ,,Das
Ende der Software-Entwicklung wie wir sie kennen“ scheinen so
gerade rechtzeitig den néchsten Anlauf auf die Brook’sche Silver-
bullet einzulduten. Sollten wir nicht eigentlich gelernt haben, dass es
selbige nicht geben kann? Nun, glauben wir zumindest Frankel
[Fra04] und Greenfield et al. [GSCKO04], so stehen wir allen Unken-
rufen zum trotz kurz vor dem Eintritt in eine Phase zunehmender
Professionalisierung der Softwareentwicklung.

Frankel wahlt dazu den Begriff der Software-Industrialisierung,
Greenfield spricht in diesem Zusammenhang gar von Software-
Fabriken. Uneins ist man sich zurzeit noch, wie die konkrete Mani-
festierung dieser Ideen auszusehen hat. Einigkeit scheint hingegen
dariiber zu herrschen, dass aus technischer Sicht die Softwareent-
wicklung zukiinftig architekturzentriert, aspektorientiert, doménen-
spezifisch und modellgetrieben erfolgen muss.

Der Vorschlag der Object Management Group

Eine ganzheitliche Vorgehensweise, die versucht durch die synerge-
tische Verwendung bekannter Prinzipien und Methoden den neuen
Anforderungen zu begegnen, ist die Model-Driven Architecture
(MDA) der OMG, die bereits seit dem Jahr 2000 einen der groBen
Hoffnungstriger fiir den Weg aus der Krise darstellt.

Sie beschreibt den Rahmen fiir ein modellgetriebenes Vorgehen,
bei dem Modelle in den Mittelpunkt des Entwicklungsprozesses

Vorwort

geriickt werden. Kern dieser Architektur ist ein Konzept, das zwi-
schen plattform-unabhéngigen und plattform-spezifischen Modellen
unterscheidet und es so ermdglicht, die Spezifikation der Funktiona-
litdt eines Systems von der Spezifikation, wie diese Funktionalitdt
auf eine spezifische Plattform implementiert wird, zu trennen. Der
Ubergang von der fachlich getriebenen Spezifikation zur ausfiihrba-
ren Anwendung erfolgt dabei moglichst automatisiert durch geeig-
nete Transformationswerkzeuge.

Versprochen wird sowohl Kostensenkung durch die generative
Erzeugung von weiten Teilen der Anwendung und beschreibender
Modelle sowie die vereinfachte Wiederverwendung horizontaler
Querschnittskomponenten in der Entwicklung von Folgeanwendun-
gen. Durch die Erstellung technologieunabhingiger Modelle soll
zudem der Forderung der Unternehmen nach Konservierung der
Fachlichkeit entsprochen werden, indem die fachlichen Modelle ihre
Giiltigkeit, auch bei sich @ndernden unterliegenden Technologie-
landschaften, behalten und so die aktuelle Dominierung der Fach-
lichkeit durch die kurzen technologischen Anderungszyklen durch-
brochen wird.

Die notwendigen Mittel zur Umsetzung

Um die eben dargestellten Prinzipien anzuwenden, bedarf es einer
malgeschneiderten unterstiitzenden Infrastruktur, die unter anderem
die benétigten doménenspezifischen Sprachen, die geeigneten
Prozesse sowie die technischen Werkzeuge zur Unterstiitzung des
Automatisierungsansatzes liefert bzw. ermdglicht. Bislang waren
diese Werkzeuge proprietir und herstellergebunden bzw. mit hohen
Eigenentwicklungskosten verbunden, die gerade fiir kleine und
mittelstdndische Unternehmen (KMUs) mit zu hohem Risiko und
Investitionsaufwand zu Buche schlagen, um ernsthaft in Erwédgung
gezogen zu werden. Mittlerweile existiert jedoch eine Vielzahl
offener Standards und Open-Source Frameworks, die einen Versuch
der Umsetzung in Eigenregie in neuem Glanz erscheinen lassen.

Mit den Modellierungsstandards der OMG, namentlich des UML
und MOF 2.x Stacks, liegt nun auch der bendtigte konzeptuelle
Uberbau vor; doménenspezifische Erweiterungen sind in der Kon-
zeption bzw. kurz vor der Fertigstellung. Open-Source Projekte wie
Eclipse, die von vielen grolen Firmen unterstiitzt werden, bilden
ganze Okosysteme frei verfiigbarer technischer Bausteine, diese
Konzepte auch auf praktischer Ebene umsetzen zu kdnnen.

Das vorliegende Buch ...

... nimmt zum einen die theoretischen Konzepte unter die Lupe und
versetzt den Leser so in die Lage die Eignung der MDA fiir die

Vorwort

Vii

individuelle Situation seines Unternehmens besser einordnen und
bewerten zu konnen, liefert zum anderen jedoch auch konkrete
Betrachtungen zur praktischen Umsetzung mittels frei verfligbarer
Techniken und Technologien. Besonderer Fokus wird dabei auf die
Verwendung der Unified Modeling Language (UML) als Modellie-
rungssprache der Wahl sowie auf das Eclipse-Projekt als technische
Basis zur Umsetzung gelegt. Im Verlaufe der Untersuchung der
Randaspekte der MDA werden weiterhin viele weitere Konzepte
und Technologien des modernen Software-Engineerings aufgegrif-
fen und vertieft, sodass die Lektiire auch dann lohnt, wenn die
Einfithrung MDA im eigenen Hause nicht kurz vor der Tiir steht.

Aufgrund der Vielfalt der Themen kénnen viele hochinteressante
Aspekte der MDA jedoch trotzdem nur am Rande behandelt werden.
Wir hoffen jedoch, dass bei der getroffenen Auswahl auch die fiir
Ihre individuelle Situation passenden Themenkomplexe enthalten
sind und wiinschen Thnen in diesem Sinne Viel Spaf} beim Lesen.

Literatur

[Fra04] David S. Frankel: Software Industrialization and the
New IT. In: David S. Frankel und John Parodi
(Hrsg.): The Mda Journal — Model Driven Architec-
ture Straight From the Masters. Meghan-Kiffer,
2004.

[GSCKO04] Jack Greenfield, Keith Short, Steve Cook und Stuart
Kent: Software Factories — Assembling Applications
with Patterns, Models, Frameworks, and Tools. John
Wiley & Sons, 2004.

[You04] Edward Yourdon: Outsource — Competing in the
Global Productivity Race. Prentice Hall, 2004.

viik ™ Vorwort

Inhaltsverzeichnis

—_— = = e
—_— = = =
W N ==

1.2.1
122
123
124
1.2.5

1.3
1.4
1.5

2.1
2.1.1

2.12
2.13
2.14

22

221
222
223
224

23

EINLEITUNG 1
An wen wendet sich dieses Buch..........ooovvveeveiioiicoiiiieeees 1
Entscheider/Manager/Projektleiter..........coeeireeeenirieeerennnne. 1
BOIALET ..ottt 2
Architekten und EntwWicklerccooooeeeeeeeeeeeeeeeeeeeeeeeeeeee 2
Z1€le deS BUCKES.....ccvvieieeeeeeeeeeeeeeeeeeeeeeeee e 2
Wie lasst sich die MDA einordnen?cccooeeeeeeeeeveeeenennne. 3
Darstellung der Konzepte der MDAoccooeiveeinivieennene. 3
Koordination und Kombinationccoeeeeeeeeeeeeeeeeeeeeenne. 3
genua — prototypisches MDA Framework..........ccccoceceveencnn. 4
Fazit — Ist MDA endlich die silberne Kugel? 4
Uberblick und Leitfaden zum LeSen.........oovvvevevevevvveerrenne, 4
KONVENTIONEN ...ttt e e e 6
Weitere Informationencooeeeeveeeeeeeieeeeeeeeeeeeeeeee e 7
MDA - UBERBLICK UND ORIENTIERUNG ..cceeeeeeeeeveeeeeenes 9
Motivation modellgetriebener Ansatze............ocovevveeeeruenene. 9
Die Geschichte der Softwareentwicklung — ein histori-

SCHET ADIISS ..ttt ettt eeae e e s eaeeeea 11
Die GEGENWALL......c.cereeeeiiereirieieeeieree et 14
Akute Probleme bei der Software-Erstellung........................ 16
Die Idee modellgetriebener AnSatze...........cocevvveeeevreenenenne 19
Die Model-Driven Architecture (MDA)........ccccvevvveverenene. 21
Z1€le der MDA ... 21
Die Vorgaben der Object Management Group (OMG) 23
Metamodell der zentralen MDA-Begrifflichkeiten.............. 25
Standards im Dunstkreis der MDAcccooeveieeeeeeeeeeeeennn. 31
Ideen, Anleihen und verwandte Ansétzec.cveuen..... 32

Inhaltsverzeichnis

X

2.3.1 Plattformunabhangigkeitccoceveirenereniinenireeene 34
2.3.2 Ausfithrbare Modelle..........coocoorireniiiniiieceeeeen 35
2.3.3 Klassen, Komponenten und Frameworksc..c.cccoueueuennee 36
2.3.4 MUSLETOTIENtIETUNEeoveueererienieririeeeeeieeeie et 37
2.3.5 Architekturzentrierung..........ocoeeeeevereeereneeeneneeeseneeeeene 39
2.3.6 Aspektorientiertungcocevereeirereeenenieirereeese e 40
2.3.7 KONVETZENZ ..c.eeueeviieieririeieiesieieresie ettt st 41
2.3.8 Domain Engineering.........cccoeceeeeereenererereeerieneeeneneeeseeneene 43
2.3.9 Generative Programmingceceeeeeevereeereneeieseneeesieneens 45
2.3.10 Software-Factories et al.........ccccecevereeirenieirenenereeeeen 46
2.4 Pragmatische Sichten auf MDAccccooeirineinieeen 47
241 MDA-CHERE .o 49
2.4.2 Warum JEtZE?......ccovevieiriereeirieeecee ettt 49
2.5 AISO it et 51
3 MODELLIERUNG 57
3.1 Grundlagen der Modellierungccccecevvevrverienecneneennn 57
3.1.1 Sketch-Modelle..........ccecvverieirinieiririeeeeeeee e 63
3.1.2 Formale Modelle...........ccocerueirineirinieeieeeeeeeeeeene 65
3.1.3 Kurze Rekapitulation...........ccceceverererienieenenieeneneeeeeenns 71
3.2 Unified Modeling Language (UML)........ccccccecevenenerenuenenn 73
3.2.1 HiStOTISCRES.....cvvieiieiiiiciciccceecceccerc e 73
3.2.2 UML - Die Sprache der Model-Driven Architecture.......... 75
3.2.3 UML-Spezifikationen..........cccecevvereeerienieereieeseneeeeeieneens 80
3.3 Metamodellierung..........cocecveeveerieenienieeneeeeeeeeeeeeeee 84
3.3.1 Meta? — Grundlagencc.cceeevveererienieeneneeeseneeeeieeee 84
3.3.2 Meta Object Facility 2 (MOF 2)ccoceoiviviiriieeeeen 87
3.3.3 Beispiel fiir ein Metamodellccooevieineninineneiieienn 92
334 UML-PIOfle c..ovviiiiieniirieicicccccreneeeieeeseseeee 94
34 UML-REPOSILOTY ...ooviveniriiieieiirieieiesienieeeeseeeeie e 98
3.5 UML-Action-SemantiCscoceeeruerueererrereeerseneerensennenes 101
3.6 OCL - Object Constraint Language...........ccccecevverurervenenne 106
3.6.1 Grundlagen — Was ist OCL?ccceceviverrinenieireeene 106
3.6.2 Zuordnung von OCL-Ausdriicken zu Modellelementen... 108
3.6.3 Anwendungsmoglichkeiten von OCL...........ccccccevvrenuennnne. 110
4 MODELLE DER MDA 119
4.1 Lebenszyklus von MDA-Modellen........c..ccccceeerueenennnen. 120
4.2 Computation Independent Model (CIM)cccecvvennnee. 122
Inhaltsverzeichnis

43
4.4
4.5
4.6

5.1
52

53
5.3.1

532
533

5.4

5.4.1
542
543

5.5

6.1

6.1.1
6.1.2
6.1.3

6.2

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

6.3

6.3.1
6.3.2
6.3.3

6.4
6.4.1
6.4.2

Plattform Independent Model (PIM)cccocevveeevevnieinnenen. 126
Architecture Metamodel (AMM)........cceevevvevieriineereeeennne 130
Platform Description Model (PDM)ccccoceevviviecvrenienene 139
Platform Specific Model (PSM)cccoeveireneirenieirienne 141
TRANSFORMATION 149
EInfUhrungcovvveieineneieeee e 149
Anwendungsfille fiir Transformationen............cccceevuneeee. 151
Modell-zu-Modell Transformationencccceveeuvennee.. 153
Das Schema metamodellbasierter Modell-
transformationen...........oovvvvveiiiiieiieeeee e 154
Beispiel: UML 2.0 PIM zu Java PSMccccoovvvvriviennnns 157
Implementierungs-Strategien fiir Transformationen.......... 164
Modell-zu-Text Transformationen.............ccccoeveeevrevnvene.. 167
Fortfiihrung des Beispiels: Java PSM zu Java Code........... 168
... vom Modell Zum TeXt......ccccoovviivviiiiiiiiieceeeee e, 171
Synchronisation von Modellen und Code..............cc.......... 173
PIM — Code vs. PIM — PSM — Code.........ccceeeuvvennnnee. 178
KOORDINATION UND KOMBINATION ...ccccereeesanrescaseses 183
Grundlagen und Vogelperspektiveccccoeveeerenieennennn. 184
Das Prozessmodell von obencccccoevveeeeviveeeeveeeineeennen. 185
Domain Engineeringcoceeveevvenieereenieeneneeeesieeenes 188
Application ENgineeringcocoeveveveneirenenereneenenienns 191
Aktivitdten und Artefakte........coovvvevveeiiiiiiciieieeee e, 191
Doméine qualifizierenccoceevereirenieirenereseeeeen 191
Doméne analySierencecevveeveerieirenienieenieeeesreseenes 194
Framework implementierencoceeeevervecreniecnenieennes 196
System-Modellierungcoceeveerenieerenieeeeneeeeeeeenes 197
Transformationccoeveeueeeeeeiiieieeeeeeee e 198
Feedback......oooviieiiiiieeeieeeee e 199
Rollen und (neue) Aufgaben.........ccecvevieeirinenninieinnennn. 201
Domain Engineeringcoceeveeevvenieerenieineneeeesveeenenes 202
Application ENgineeringcoceevevevenieerenenenenieenenienens 206
FAZI oottt 211
Einfilhrung von MDA ins Unternehmenc.cccceeuee. 211
Ad-hoc-Vorgehen oder Iterative Einflihrung?.................... 213
PilOtProJekLe. .. .eoveueeeiieieierieeeereee e 216
Inhaltsverzeichnis

Xi

Xii

6.4.3

6.5
6.5.1

6.6

6.6.1
6.6.2
6.6.3

7
7.1

7.2

7.2.1
7.2.2
723
724

7.2.5
7.2.6
7.2.7
7.2.8
7.2.9

Anpassen bestehender Organisationsstrukturen
Drei mogliche Organisationsmodelle........c.oceceeevveucennenee.

Best Practices und Gefahrliches.........c..cccoovvevieeviecniennenen.
Iterativ-Inkrementelle Softwareentwicklung
BeSt PractiCesovcvvieeieeeeeeeeteeerecrecee ettt
... und Gefahrliches...........ooveveeiiecieiieeceeeeeceee e,

VORSTELLUNG DES FALLBEISPIELS
AUSZANGSSTTUALIONeeeeviveeieeiieieeiieeeeeeteeeeeee e

Modell des GeschaftsSystems...........coveerverveereeriecrerienennes
Modellierungsfokuscccoverueiririennireeereeeeeee
OrganisationSeINNEItenceevveeveverierieerienieerereceeseenes
GesChAftSPartnercooeevverieeriereree e
Geschiftsanwendungsfille der aktiven Geschéfts-

PATTNET ..ooiiiiiiiiiiiiiiiiiii e
Weitere unterstiitzende Geschéftsanwendungsfille
Geschéftsmitarbeiter/Akteurmodellec.cccoveveenecennes
GesChAftSPIOZESSe......veveverieieririeieierieee e
Essenzbeschreibungen der Geschéftsanwendungstille......
Ablaufmodelle der Geschéftsanwendungsfille

7.2.10 Ablauf GeSChAftSProzesscovveevevervenerereneeerieeeesieeenes
7.2.11 Geschéftsklassenmodellcccocvirieoirinenninineineee

73
7.4

8

8.1

8.1.1
8.12
8.1.3
8.1.4
8.1.5

8.2

8.2.1
822
823
824
8.2.5
8.2.6

Ergebnis der Geschiftsprozessmodellierung

Das weitere Vorgehencocoeeevevecivinenncneneee

PROJEKTPLANUNG

EXploratory 360°.......cccoiviieireeeireeeeeeee s
Systemanforderungencoeveeeeereneneneneneneeeereneens
Ein erster Releaseplan der Anwendung.........c.c.coccceneee.
Anforderungen an ,,geNua‘...........ccoevveerreneerenieeneneenes
Releaseplan des genua Frameworks............cccoceveeruiniennne.
Erste Projektplane..........coceeveevenieinienieineeeeeeee

Technologie-Plan.............ccoceverieirineininereeseeene
Das Eclipse-Projektccoevverieireneirieeeeceeee
HIbernate........co.eevveveeinieicinieicinieccnerccreeeseevceneceeneenes
Graphical Editing Framework (GEF)cc.cccoeccnneenn.
Eclipse Modeling Framework (EMF) + Eclipse UML2 ...
JavaServer Faces.......coovccveeinnecineicineeneccneecneeneees
Apache Beehive........ccocoveiiineiiiniceeeeceee

Inhaltsverzeichnis

8.2.7

9.1

9.2
9.2.1

922
923
9.2.4
925

9.2.6
9.2.7
9.2.8
9.2.9

93
9.3.1
932

9.4

9.4.1
9.4.2
943
9.4.4

9.5

9.5.1
952
953
9.5.4
955
9.5.6
9.5.7
9.5.8

9.6

9.6.1
9.6.2
9.6.3
9.6.4

10
10.1

PROJEKTDURCHFUHRUNG 327
Architektur von genua Anwendungen............c.cocevecevrnenene. 327
Dialoge und KontrollflliSSecoeceevrveinerreccnerecneneccnnenee 330
genua Platform Independent Pageflow

Profile (EPIPTP) ...ocveuiiiieieieeee e 331
Das erste Modell des Projekts ,,M&M online“.................. 339
genua Beehive Pageflow Profile (gBP{P)........c.cccccvveneeenn. 345
genua JSF Metamodel (gJISFMM)......cccccvvvveineneccnenienne 353
genua Platform Independent Workflow

Profile (GPTWIP).....coiiieiieeeeeeee e 356
Ein weiteres Modell des M&M-Projektes...........ccccevveneee 358
genua JBPM Profil.........cccoeiiiiiniinieeeeeee 360
Transformation von gPIW{P nach gjBPMc........ 363
Vom Modell zum lauffédhigen Workflowc..ccccenneeee. 364
Geschaftslogik/Servicesoveivirieirinieinineeeseeeeen 371
Beehive Controlsccoveerevecnnevinenieininecneeccneeeenees 371
Realisierung der Services als SLSBScccoceeveviecinenienene 376
PEISISIENZcveenviierceicicenrececceere et 378
genua Platform Independent Persistence Profile (gPIP)379
genua Hibernate Persistence Profile (gHPP)....................... 382
Strategie zur Abbildung Hibernate — gHPP...................... 386
Anbindung an die Serviceschicht...........ccccevereririnenenennne. 388
genua Model2Model-Transformator (gM2M) 389
Essenzieller Ablauf...........cccccocecenvioniccnennncciccnenenes 389
genua ATLAS Transformation Language (gATL) 390
Verarbeitung von gATL Transformationsmodulen............ 394
BeiSPICl ..o 396
Konstruktion des Zwischenmodells...........ccccccovvecinrecnnnn 399
Deserialisierung des Quellmodells...........cccoceveiriniennnnnne. 403
Durchfiihrung der Transformation mittels Jython.............. 404
Durchfiihrung einer Transformation mittels Ant................ 408
genua Model2Text-Transformator (gM2T)........ccceeveeenenee. 411
Java Emitter Templates (JET)......coceveverinevnineiiniene 413
Modell-Fassadencccoeeeenieeinnrecenieereneeeneneeneeneennen 414
Zusammenspiel der Komponentenccccceeeeereneecnnene. 415
Literaturempfehlungen..........cococevvevennccnnecnnccnnccnnes 417
/LOST+FOUND 421

Bringt MDA einen ROI? — Die etwas andere Sichtweise. .421

Inhaltsverzeichnis

Xiii

10.2 Software-Factories vs. MDA..........cceoeirineineeerienn 423
10.2.1 Was sind Software-Factories?cccecevevecerenerereniecnnes 424
10.2.2 Reizwort ,,UMLcccoiiiinnireeeecccenenenssenes 425
10.2.3 MDA —was fehlt?........cccooveirieieeeeeeeeen 425
10.2.4 Andere Meinungen zum Thema.........cccooeceeirercnneneenenn. 426
11 ENDE GUT — ALLES GUT? 433
11.1 Was fehlt bzw. iSt Zu tun?......ccceceevevevenireeereeeeen 434
I1.2° Was WIrd? ..ot 436
11.2.1 Wie lange dauert es noch bis MDA zur Commodity

WITA? ittt 436
11.2.2 Woran kdnnte die MDA noch scheitern?....................... 438
11.3 Proof-of-Concept erfolgreich?ccccoviveerinieennnnee. 442
11.3.1 Der MDA-Prozess —in Sicht?.........cccceceveneinenieennenenn 442
11.3.2 genua — Prototypisches MDA-Framework 443
11.4 ... schlieBende WOrtecccevueerirenieinieereeeee, 444
A UML-SCHNELLREFERENZ 447
A.l Strukturdia@rammeccceeveeerenieerenieereeeeeeenene 447
A.1.1 Klassendiagrammccoceveeeeerieninenienenenieenenieeenens 447
A.1.2 Objektdiagrammccceceeeriererinienirienieeeerieceeseeeeene 454
A.1.3 Paketdiagrammccoceeveevenieinenineneeereceeseeeine 455
A.1.4 Komponentendiagramm...........c.coeeeeverieereneererenereneens 457
A.1.5 Verteilungsdiagrammccccecevevieerenineneneeerenienne 460
A.1.6 Kompositionsstrukturdiagramm.............ccceceevererereennne 461
A.2 Verhaltensdiagramme............ccoceeeverieerenieereneerenienne 464
A.2.1 Use-Case Diagramm...........ccecevuevererieirenienenenieenenienens 465
A.2.2 AktivitAtsdiagrammccecevevieirienieeneneereeseenne 467
A.2.3 Zustandsautomat...........cccoeeenierecenereinieneeenereeneeneennene 474
A.2.4 Sequenzdia@ramincceceeeveerereenieerieniererieneeeseeneenens 479
A.2.5 Interaktions-Ubersichts Diagramm............c..ccccoovrenen.. 483
A.2.6 Kommunikationsdiagramm...........cccceeerereeereneeereniencns 484
A2.7 Zettdiaramim.........coceeveriererienieirienieieseneeneeieneee e 486
A3 LeraturtiPpS...ccceeeeereeririeneererieeeierieteiesie et 487
B 0O0GPM 491
B.1 Einleitung und Ubersicht..........ccccooovrverrerrerrerrrrrreenenns 491
B.2 Organisationseinheiten modellieren............cccceevuenennene 494
B.3 Aktive Geschéftspartner identifizieren...........c.cccecueneee. 495

xiv. ™ [Inhaltsverzeichnis

B.4
B.5
B.6

B.6.1
B.7

Geschiftsanwendungsfille der aktiven Geschéftspartner
1AENtHIZIETEN ... 496

Geschiftsmitarbeiter identifizieren und Akteurmodell

ENTWICKEIN.......oiiiiiiiiicic e 498
Geschiftsprozesse definieren.........coccceevveeveevieniecnienieenne. 499
GAF-Ablaufe modellierencccooevvevvvevviiiiiecee e, 499
Literaturempfehlungencccoceeeveveneineneinenecreenne 500

Inhaltsverzeichnis

XV

1 Einleitung

LIf all you have is a hammer, everything looks like a nail.”

Bernard Baruch

1.1 An wen wendet sich dieses Buch

Das vorliegende Buch ist so aufgebaut, dass es Aspekte fiir diejeni-
gen Leser enthélt, die sich ,,nur iiber die Wurzeln und theoretischen
Grundlagen der Model-Driven Architecture informieren wollen,
aber auch den Bogen zu deren praktischer Anwendung schligt,
sodass auch Praktiker, die Tipps zur konkreten Umsetzung erwarten,
sich in diesem Buch wiederfinden werden.

Speziell werden folgende Themenkomplexe flir die folgenden
Interessengruppen behandelt:

1.1.1 Entscheider/Manager/Projektleiter

Fiir die Unentschiedenen, die nicht sicher sind, ob die Vorgehens-
weisen der MDA zur Bewiltigung ihrer individuellen Anforderun-
gen prinzipiell geeignet sind, bietet das vorliegende Buch erste
Einblicke und die notwendige Grundlage zur fundierten Entschei-
dungsfindung. Fiir alle, die diese Entscheidung bereits getroffen
haben oder kurz davor stehen, wird konkret auf die Auswirkungen
eingegangen, die eine Einfilhrung auf die bestehende Unterneh-
mensorganisation hat bzw. haben sollte und bietet Tipps zur Adap-
tion bestehender Entwicklungsprozesse.

Auch als ,,Know-how Update*, um iiber die Themen auf dem
Laufenden zu bleiben, die aktuell die Softwareentwicklung beschif-
tigen, ist das vorliegende Buch bestens geeignet. Die Basiskonzepte

1.1 An wen wendet sich dieses Buch

und Ideen der MDA werden ausfiihrlich erldutert und in den Kontext
des aktuellen State-of-the-Art der Softwareentwicklung eingeordnet.

1.1.2 Berater

Fiir die Berater unter Thnen liefert das Buch das notwendige Hinter-
grundwissen zu den, oft nur als Buzzwords missbrauchten, Konzep-
ten eines der aktuell interessantesten Bereiche des Software-
Engineerings, das zur fundierten Einschitzung und Einordnung
dieser Ideen in der Praxis bendtigt wird, um eine professionelle
Beratungsleistung in diesem Themenkomplex bieten zu konnen.
Anhand von Beispielen wird gezeigt, wie den Anforderungen des
IT-Alltags mit den Werkzeugen der MDA begegnet werden kann.
Die vorgestellten Bausteine konnen auch in Ansétzen, die nicht den
Stempel MDA tragen, verwendet werden und bilden so eine sinnvol-
le Ergénzung jedes Consulting-Toolkits.

Last-but-not-least werden Antworten auf hdufig —und berech-
tigt — gestellte Fragen zu Machbarkeit und ROI des Ansatzes gege-
ben, die als Argumentationshilfe in Kundengesprichen wertvolle
Dienste leisten konnen.

1.1.3 Architekten und Entwickler

Anhand eines Fallbeispiels werden die im ersten Teil des Buches
theoretisch erarbeiteten Konzepte und Forderungen nach weitestge-
hender Werkzeugunterstiitzung des MDA-Prozesses durch die
Erarbeitung eines Beispielframeworks umgesetzt, das ganz ohne
proprietdr kommerzielle Bausteine auskommt, und ausschlieBlich
mittels Open-Source Technologien realisiert werden kann. Der
Fokus wird dabei vor allem auf das Eclipse-Projekt [Eclipse] sowie
dessen untergeordnete Teilprojekte gelegt, da diese eine fast voll-
stindige Abdeckung der notwendigen Bausteine eines solchen
Frameworks liefern.

Ein mit der MDA-Infrastruktur eng verbundener Uberblick iiber
die aktuellen Softwaretools und Bibliotheken, die zur Realisierung
der vertikalen und horizontalen Doménenaspekte herangezogen
werden, rundet den Themenkomplex fiir die Praktiker unter den
Lesern ab.

1.2 Ziele des Buches

Im Sinne eines Proof-of-Concept sollen in diesem Buch zuerst die
Ziele untersucht werden, zu deren Losung die MDA antritt und
anschliefend die Betrachtung nicht unterschlagen werden, ob der
Ansatz diese Versprechungen mit den aktuell verfiigbaren Techno-

1 Einleitung

logien prinzipiell erfiillen kann. Dabei sollen vor allem die folgen-
den Themenbereiche ndher betrachtet werden:

1.2.1 Wie lasst sich die MDA einordnen?

Im Ansatz MDA finden sich viele Anleihen bekannter und weniger
bekannter Prinzipien, Technologien und Vorgehensweisen aus dem
weiten Feld des Software-Engineering. Wir wollen versuchen, diese
Anleihen zu identifizieren und ihre Bedeutung innerhalb der Model-
Driven Architecture niher zu beleuchten. Da einige Bestandteile
bereits in der Vergangenheit grole Versprechungen beziiglich der
Effektivitdtssteigerung der Softwareentwicklung nicht oder nur
teilweise halten konnten, wollen wir auB3erdem versuchen zu kléren,
ob eine Kombination dieser Einzelteile zum jetzigen Zeitpunkt
eventuell groBere Aussichten auf Erfolg haben kann und die Griinde
fiir unsere Schlussfolgerungen erliutern.

1.2.2 Darstellung der Konzepte der MDA

Hier sollen die technischen Grundlagen der MDA vorgestellt und
die hinterliegenden Prinzipien erldutert werden. Modelle und (Me-
ta-)Modellierung, spezifische Modellarten der MDA, der Plattform-
begriff, Transformationen und Transformationsbeschreibungen
sowie UML sind nur einige Begriffe, die verstanden und angewen-
det werden miissen, um die Vorstellungen der OMG umsetzen zu
konnen. Wir wollen diese Begriffe in ihre {ibergeordneten Themen-
komplexe einordnen und sowohl die spezifischen Einzelheiten, aber
auch die groflen Zusammenhinge ausfiihrlich erldutern, da sie das
Fundament des zweiten Teils der Betrachtungen bilden: der Unter-
suchung der Tragfihigkeit der MDA durch Konzeption und aus-
schnittsweise Implementierung eines Frameworks namens genua
(vgl. Abschnitt 1.2.4) anhand eines Projekt-Fallbeispiels.

1.2.3 Koordination und Kombination

Nicht nur die Machbarkeit der technologischen Umsetzung der
MDA-Prinzipien ist zu zeigen, auch die organisatorischen Aspekte
miissen ndher untersucht werden. So setzt die MDA a priori weder
einen dezidierten Software-Entwicklungsprozess als Grundlage
voraus, noch werden von der OMG selbst irgendwelche Vorschldge
beziiglich des zu verwendenden Prozessmodells gemacht. Zu unter-
suchen ist also, was ein Prozess mindestens leisten muss, um die
zusdtzlichen Anforderungen, die die Vorgehensweise erfordert,
erfiillen zu kdnnen. Beantwortet werden sollen also unter anderem
folgende Fragen: Welche Anforderung stellt MDA an Organisation

1.2 Ziele des Buches

und Prozesse? Welche Implikationen ergeben sich? Und wie kénnen
bestehende Strukturen und Vorgehensmuster so angepasst werden,
dass diese Anforderungen erfiillt werden.

1.2.4 genua - prototypisches MDA Framework

Hier wird versucht die theoretisch erarbeiteten Anforderungen an
eine technische Infrastruktur zur Stiitzung der MDA prototypisch
umzusetzen. In einem Fallbeispiel wird unter dem Namen genua ein
MDA-Framework entwickelt, das aus den geforderten Tools wie
Generatoren, Transformatoren, Profilen usw. besteht, die in den
vorangegangenen Kapiteln als unverzichtbar identifiziert wurden.

Die Technologien, die zur Umsetzung ausgewéhlt wurden, wer-
den erklart und das Zusammenspiel im MDA-Prozess anhand eines
zusammenhéngenden Fallbeispiels auszugsweise erldutert. Unter-
sucht wird so die Tragféhigkeit und Integrierbarkeit der zur Zeit
verfligharen Technologielandschaft gegeniiber Anspriichen der
MDA. Hierbei werden dezidiert nur frei verfligbare Open-Source
Elemente und frei verfiigbare Standards betrachtet.

1.2.5 Fazit - Ist MDA endlich die silberne Kugel?

Die in den vorigen Kapiteln gewonnenen Einsichten und Erkennt-
nisse werden hier in einer komprimierten Form zusammengefasst
und die Tragfahigkeit der ,,Jdee MDA von den Autoren anhand der
gemachten Erfahrungen und theoretischen Uberlegungen bewertet.
Zusitzlich sollen ausgewéhlte Schwachstellen noch einmal explizit
genannt und ein Blick in die Glaskugel auf die ndhere Zukunft der
MDA versucht werden.

1.3 Uberblick und Leitfaden zum Lesen

Die Konzeption des Buchaufbaus folgt einer Dreiteilung: Teil I
(Kapitel 2—5) beschreibt die theoretischen Grundlagen des Ansatzes
(die Architektur der MDA). Im zweiten Teil (Kapitel 6) werden die
Auswirkungen der vorgestellten Konzepte auf die Prozesse und die
Organisation von Unternehmen néher beleuchtet. Teil I1I (Kapitel 7—
9) bringt die Ideen zur Anwendung und setzt sie mit konkreten
Technologien zur Umsetzung in Beziehung.

Es folgt ein Uberblick iiber den Inhalt der einzelnen Kapitel:

1 Einleitung

Kapitel 2: MDA — Uberblick und Orientierung

Hier werden die grundlegenden Konzepte und Begriffe erldutert, auf
denen die MDA basiert. AuBBerdem wird der Ansatz in den , histori-
schen Kontext“ des Software-Engineering eingebettet und die
Beziehungen zwischen ,,alten* Ideen und ,,neuer MDA hergestellt.

Kapitel 3: Modellierung

Als einem der Hauptwerkzeuge der MDA wird der Modellierung ein
eigenes Kapitel gewidmet. Hier werden die entsprechenden grundle-
genden Begriffe und Konzepte eingefiihrt und das Werkzeug der
OMG, die Unified Modeling Language (UML) sowie deren Spezifi-
kationen unter die Lupe genommen. Weitere behandelte Punkte
sind: formale Modellierung, Metamodellierung, MOF, Action
Semantics, UML Repository usw.

Kapitel 4: Modelle der MDA

Hier wird der ,,Lebenszyklus* der Modellarten der MDA betrachtet
und ein erstes durchgéingiges Beispiel flir konkrete Modelle vom
anwendungs-unahdngigen Modell (CIM) bis zur fertigen Applika-
tion gezeigt.

Kapitel 5: Transformation

Der Ubergang von einem Modell in ein anderes wird in der MDA
Transformation genannt. Dieses Kapitel schafft die Grundlagen zu
diesem Themengebiet, die erst die Beschéftigung mit der Erstellung
von Werkzeugen zur automatisierten Transformation sowie der
Generierung von Quellcode als spezielle Unterart ermoglichen.

Kapitel 6: Koordination und Kombination

Nach all den ,,harten Fakten spielen hier die ,,weichen* Aspekte der
Einfiihrung der MDA in bestehende Unternehmen eine Rolle. Die
Integration des Ansatzes in bereits bestehende Software-Prozesse
wird hier ebenso beleuchtet wie die Auswirkung des Ansatzes auf
die Projektleiter und Entwickler bzw. deren bestehende Aufgaben
und Rollen. Weiterhin werden die Anforderungen beleuchtet, die
sich an die Unternehmensorganisation ergeben und die speziellen
Aufgaben in der Einfiihrungsphase (der MDA) néher betrachtet.

Kapitel 7-9: Vorstellung und Durchfiihrung des Fallbeispiels

Anhand eines Fallbeispiels werden hier die im ersten Teil des Bu-
ches erarbeiteten Konzepte dem Lackmustest unterzogen. Konkrete

1.3 Uberblick und Leitfaden zum Lesen

Praktische Anwendung

Organisation&Prozesse

Architektur

Praktische Anwendung

Organisation&Prozesse

Architektur

Praktische Anwendung

Organisation&Prozesse

Architektur

mogliche Losungen fiir technische und konzeptionelle Probleme
werden angegeben und auszugsweise detailliert erldutert.

Kapitel 10: /lost+found

Hier werden die Aspekte aufgegriffen, die wir Thnen nicht vorenthal-
ten wollten, jedoch ,nirgendwo sonst so richtig gepasst haben®.
Weniger ein in sich geschlossenes Kapitel als eine Fundgrube
interessanter Ideen und Gedankengénge finden sich hier Aspekte,
die das Gesamtbild MDA weiter schérfen.

Kapitel 11: Ende gut — alles gut?

Tief durchatmend werden hier die im Laufe der vielen Kapitel
erworbenen Erkenntnisse noch einmal zusammengefasst. Dabei
werden wir auch einen vorsichtigen Ausblick in die Zukunft der
Softwareentwicklung wagen und auch die Moglichkeit und deren
Ursachen fiir den Fall betrachten, dass sich die MDA nicht durch-
setzt. Natiirlich darf an dieser Stelle auch ein ordentliches Schluss-
wort nicht fehlen.

Anhang A: UML Schnellreferenz

Im Sinne einer Referenz werden hier alle dreizehn Diagrammarten
der UML 2.x aufgefiihrt und die wichtigsten Notationselemente
vorgestellt und erldutert.

Anhang B: OOGPM

Ein Mittel, die Welt der Geschéftsprozessmodellierung mit der
MDA zu verbinden, stellt die OOGPM (Objektorientierte Ge-
schiftsprozessmodellierung, [OWS+03]) dar. Hierzu definiert sie
sowohl die Methode als auch die notwendigen Profile, um die
Ergebnisse als UML Modelle festhalten zu konnen. An dieser Stelle
wird die OOGPM kurz vorgestellt und die wichtigsten Ergebnisty-
pen samt entsprechender Beispieldiagramme erléutert.

1.4 Konventionen

Bei der Gestaltung des Buches wurden Konventionen bei der Wahl
der Schrifttypen und der Verwendung von Sprachmitteln verwendet,
die an dieser Stelle kurz erldutert werden:

m Deutsch/Englisch: Grundsétzlich wurde die im Alltag der

Autoren gingige Form gewdhlt (also etwa Bridge und nicht
Briicke). Wo erforderlich wurden diese in die entsprechende

1 Einleitung

Form der anderen Sprache {ibersetzt und in Klammern an den
Originalbegriff angehdngt. Oftmals wurden der Vollstindigkeit
halber beide Formen angegeben, um dem Leser eine Orientie-
rung in den Literaturangaben, zu ermdglichen.

Codebeispiele: Codebeispiele und genereller alle textlichen
Artefakte, wie Ausziige aus Deskriptoren etc., sind in Courier
New angegeben (Beispiel: Klasse Person).

Schliisselworter: Begriffe, die im jeweiligen Kontext eine
prominente Bedeutung besitzen sowie Schliisselkonzepte wur-
den zur Hervorhebung in Kursivschrifi gesetzt.

Literaturverzeichnis: Zur besseren Ubersichtlichkeit wurden
neben dem Gesamtverzeichnis am Ende des Buches die kapitel-
relevanten Eintrige auch am Ende jedes Kapitels aufgefiihrt.

Index: Zum besseren Auffinden relevanter Textstellen bei
Benutzung des Buches als Referenz und Nachschlagewerk wur-
de ein ausfiihrlicher Index erstellt, der am Ende des Buches zu
finden ist und alle relevanten Schliisselbegriffe enthélt.

Marginalien: Zur Erleichterung der Orientierung innerhalb der
einzelnen Kapitel und Abschnitte wurden Leitbegriffe als Mar-
ginalie an den Rand der Seite aufgenommen.

1.5 Weitere Informationen

Weitere Informationen, Errata, Quelltexte sowie ein Diskussionsfo-
rum zum Austausch untereinander und direkt mit uns, finden sich
unter:

www.mda-buch.info

1.5 Weitere Informationen

8

Literatur

[Eclipse]

[OWS+03]

1 Einleitung

Eclipse.org: Eclipse.org Main Page.
http://www.eclipse.org/ (letzter Abruf Mai 2005)

Bernd Oesterreich, Christian Weiss, Claudia Schro-
der, Tim Weilkiens und Alexander Lenhard: Objekt-
orientierte Geschdftsprozessmodellierung mit der
UML. dpunkt, 2003.

2 MDA - Uberblick und
Orientierung

+Als es noch keine Computer gab, war das Programmieren
noch relativ einfach.”

Edsger Wybe Dijkstra

In diesem Kapitel werden wir uns mit den Prinzipien der Model-
Driven Architecture (MDA) vertraut machen sowie Grundlagen und
Basiskonzepte einfiihren, die eine grobe Einordnung der Konzepte
und Techniken ermdglichen und dann in spéteren Kapiteln detaillier-
ter beschrieben werden.

Zu Beginn wollen wir aber einen kleinen Blick zuriick in die Ver-
gangenheit werfen — auf mittlerweile 50 Jahre industrielle Software-
Entwicklung. Dies soll uns dabei helfen, die Motive der Object
Management Group (OMG) zu verstehen, die schlieBlich zur For-
mulierung des Model-Driven Architecture Ansatzes gefiihrt haben.

2.1 Motivation modellgetriebener Ansatze

Software hat sich im Laufe der letzten Jahrzehnte von ihrem ur-
spriinglichen Nischendasein zur nunmehr kritischen Rolle innerhalb
von Unternehmen entwickelt. Viele betriebswirtschaftliche Basis-
operationen laufen heute softwaretechnisch automatisiert oder
zumindest IT-gestiitzt ab. Software ist damit zu einem wichtigen
Erfolgsfaktor und mitunter zu einem entscheidenden Wettbewerbs-
vorteil vieler Unternehmen geworden (vgl. [SF03]).

Dem daraus resultierenden steigenden Bedarf an softwaretechni-

schen Losungen in der betriebswirtschaftlichen Praxis stehen zu-
nehmend gegeniiber:

2.1 Motivation modellgetriebener Ansétze

Abb. 2.1

Software-
Projekte zeigen
stetige Verbes-
serung (Quelle:

[JBCRO1]

ergénzt durch

[SG03))

10

= eine immer schwieriger zu beherrschende Komplexitit,

= stetig steigende Anforderungen an die Leistungsfahigkeit,
Zuverlassigkeit und Qualitét,

m kurze Technologiezyklen, die sowohl die Hardware- als auch
Software-Plattformen betreffen,

» héufige Anforderungsédnderungen,

= und (insbesondere in Zeiten konjunktureller Schwiacheperioden)
ein hoher Druck zur Kostenreduzierung.

Projects Show Steady Improvement

B succeeded B Failed Challenged
(LI 16% 31%

Spétestens mit dem ,,Erkennen™ der so genannten Software-Krise
[NRB76] wurde daher die Forderung nach ingenieurméfiger Soft-
ware-Erstellung immer lauter. Trotz aller Erfahrungen, neuer Tech-
nologien und vielféltiger Forschung fehlen der Software-Industrie
auch heute noch Entwicklungsprozesse, diec an die Planbarkeit,
Zuverlassigkeit, Effektivitdt, Effizienz und Flexibilitdt der ,,alther-
gebrachten® Industrie auch nur annéhernd herankommen.

2 MDA — Uberblick und Orientierung

Ein Versuch, unreflektiert Prozesse aus der Welt der klassischen Knowledge-
Industrie in die Software-Welt zu iibernehmen, scheitert haufig auf Work
Grund der grundsitzlichen Verschiedenheit der materiellen Ferti- vs.

gung und der sich immer neu stellenden Anforderungen an die Industrielle
Entwicklung ,.geistiger Losungen. Die grole Anzahl abgebroche- Fertigung
ner oder weit liber dem urspriinglich angenommenen Budget been-

deter Projekte in der Software-Industrie zeigt das.

So hat sich der relative Anteil erfolgreich durchgefiihrter Software-
Projekte laut Studien der Standish Group von 16% im Jahre 1994
auf 34% im Jahre 2003 zwar immerhin mehr als verdoppelt [SGO03],
andererseits bedeutet dies aber auch, dass immer noch zwei Drittel
der Projekte nicht wie geplant beendet werden (siche auch Abb. 2.1).
Projekt-Beispiele der jiingeren Vergangenheit wie Cheops
[COWOO00], Fiscus [HO04] oder etwa Toll Collect [CTO03] bilden
hier nur die Spitze des Eisbergs.

Immerhin 1ésst sich aber ein Fortschritt feststellen. Wir wollen im
Folgenden einmal Revue passieren lassen, welche Anstrengungen zu
diesen Erfolgen gefiihrt haben.

2.1.1 Die Geschichte der Softwareentwicklung —
ein historischer Abriss

Beginnen mochten wir in den S0er-Jahren: Zu dieser Zeit bestimm- Maschinen-
ten die knappen und teuren Hardware-Ressourcen die Computer- ~ Sprachen
Welt. Die Erstellung von Software spielte deshalb gegeniiber der
Hardware-Entwicklung eine untergeordnete Rolle und erfolgte quasi

,.hebenbei”. Software hatte noch ecine beherrschbare Groflie und

wurde in Maschinensprache binér kodiert.

Die Software-Systeme wurden komplexer und schon bald musste = Assembler-
man erkennen, dass die fiir den Menschen schwer verstindlichen — Sprachen
maschinensprachlichen Bindrcodes fiir Befehle und Operanden nicht

weiter dazu geeignet waren, um Software zu entwickeln. Die Ma-
schinensprachen wurden durch die Assembler-Sprachen (kurz

Assembler) abgelost, die mnemonische Symbole, Marken und

Makros als Arbeitserleichterung fiir den Entwickler brachte. Mne-

monische Symbole 16sten die angesprochenen Binércodierungen ab,

Marken und Makros ermdglichten die Abstraktion von einzelnen
Instruktionen. Der Assemblierer iibersetzte den in Assembler-

Sprache geschriebenen Code in ein Maschinenprogramm.

2.1 Motivation modellgetriebener Ansdtze = 11

Problemorien-
tierte/Hohere
Programmier-
sprachen

Software-Krise
und Software-
Engineering

Strukturierte
Programmierung

Strukturierte

Analyse und

Strukturiertes
Design

12

Die Assembler-Sprachen waren nach wie vor maschinenorientiert,
gefragt waren aber zunehmend Programmiersprachen, mit denen
man die zu behandelnden Probleme direkter formulieren konnte. Die
Programmiersprache FORTRAN (FORmula TRANGslator), die
1954-1958 von Jim Backus entwickelt worden war, gilt als erste
problemorientierte bzw. hohere Programmiersprache. Sie wurde fiir
mathematisch-technische Probleme konzipiert und ist Vorlauferin
vieler weiterer hoherer Programmiersprachen die folgen sollten.
Musste man sich bei der Assembler-Programmierung um Prozessor-
register, Stack und Statusflags weitgehend selbst kiimmern, konnte
man mit den hoheren Programmiersprachen von diesen Dingen
abstrahieren. Ein Compiler erledigte stattdessen diese Arbeit und
sorgte fiir die Ubersetzung in ein ausfiihrbares Programm.

Die Hardware-Preise fielen, der Bedarf an Software wuchs, und
schon bald wurden die programmierten Systeme groBenméBig so
komplex, dass sie unhandhabbar wurden. Auf einer NATO-
Konferenz im Jahre 1968 reagierte man auf diesen Missstand — die
Software-Krise wurde ausgerufen und mit ihr wurde die Forderung
nach einer angemessenen Ingenieursdisziplin immer vehementer.
Bis zu diesem Zeitpunkt war die Software-Erstellung eher als kiinst-
lerische Tatigkeit aufgefasst worden, nun sollte eine strukturierte
Vorgehensweise die ,,Kunst™ verdridngen. In dieser Zeit wurde der
Begriff des Software-Engineering geprigt (vgl. [Bau93] bzw.
[Boe76)).

Mit komfortablen Kontrollstruktur- und Fallunterscheidungsmog-
lichkeiten begann man nun strukturiert — etwa in Pascal oder in C —
zu programmieren [DDH72]. Die neue Disziplin Software-
Engineering hatte sich aber nicht nur strukturierte Programmierung
auf die Fahnen geschrieben, sondern insbesondere auch systemati-
sche Methoden. Diese Liicke wurde unter anderem durch die Struk-
turierte Analyse (SA) [DeM78] und das Strukturierte Design (SD)
[YC79] geschlossen.

In der Strukturierten Analyse verwendete man hierarchisch angeord-
nete Datenflussdiagramme zur abstrakten Modellierung von Prozes-
sen. Mini-Spezifikationen (z. B. in Pseudo-Code) dienten dabei zur
Beschreibung von nicht weiter verfeinerten Prozessen und Data
Dictionaries stellten die einheitliche Datendefinition sicher. Die in
der Strukturierten Analyse ausgemachten Funktionen wurden dann
im Strukturiertem Design in hierarchisch aufgebaute Module zerlegt
und in Strukturdiagrammen festgehalten. Hierbei dienten die Dia-
gramme der Visualisierung von Programmabldufen und der Be-

2 MDA — Uberblick und Orientierung

schreibung der Schnittstellen zwischen den Modulen. Diagramme
bzw. Modelle erhielten in den strukturierten Methoden einen hohen
Stellenwert und ein Markt fiir Modellierungs-Werkzeuge entstand:
Willkommen in der Welt des Computer Aided Software Engineering
(CASE)!

Die Wiederverwendungskrise [Qui94] gegen Ende der 80er-Jahre Wiederverwen-
machte diese Idylle zunichte. Die abermals drastisch in ihrer Kom- dungskrise
plexitit gewachsenen Software-Systeme erzwangen erneut ein

Umdenken bei der Software-Erstellung. Diesmal wollte man insbe-

sondere der Wiederverwendbarkeit von Software Rechnung tragen.

So hatte man zwar im Laufe der Jahre gewaltige Software-Bestdnde

angehiuft, aber gleichzeitig das Problem, diese in geeigneter Form

auch nur teilweise wieder zu verwenden.

Die Losung sollte das Objektorientierte Paradigma liefern; ein Objektorientier-
Ansatz, der der natiirlichen Denkweise sehr nahe kommt: Ein Sys- fes Paradigma
tem besteht aus vielen Objekten und jedes dieser Objekte besitzt ein
definiertes Verhalten, einen inneren Zustand und eine eindeutige
Identitdt. Bereits in den 70er-Jahren hatte man sich diesem Ansatz in
wissenschaftlichen Verdffentlichungen gewidmet, der Durchbruch
sollte erst jetzt erfolgen.

Ole-Johan Dahl und Kristen Nygaard hatten bereits in den 60er-
Jahren eine entsprechende Programmiersprache entwickelt:
SIMULA (SIMUlation LAnguage). Urspriinglich fiir diskrete
Ereignis-Simulation entwickelt, kamen ihre Konzepte so zu spitem
Ruhm — die breite Akzeptanz wiederum, sollte spiter aber Sprachen
wie Smalltalk, C++ und Java vorbehalten bleiben.

Daten und Funktion wurden fortan nicht mehr getrennt voneinan-
der betrachtet, sondern zusammenhéngend in Objekten. Klassen
nahmen dabei die Objekte auf, die dem gleichen Verhaltensschema
folgten und die gleiche innere Struktur besaflen. Vererbung und
Polymorphie sollten fiir die oben angesprochene Wiederverwend-
barkeit Sorge tragen. Um die Ubersetzung des Programm-Codes in
ein ausfithrbares Programm kiimmerte sich weiterhin ein — um OO-
Konstrukte aufgebohrter — Compiler.

Der breiten Akzeptanz folgend schossen Anfang der 90er-Jahre Objektorientierte
adidquate objektorientierte Methoden wie Pilze aus dem Boden - Analyse und
Rumbaughs Object Modeling Technique (OMT) [RBP+91] und Objektorientier-
Boochs Object-Oriented Design (OOD) [B0093] waren bzw. sind tes Design
wohl die zwei Bekanntesten unter ihnen. Sie intensivierten abermals

den Gebrauch von Modellen und entsprechender Modellierungs-

Werkzeuge in der Software-Entwicklung. Aus der Vielzahl der

2.1 Motivation modellgetriebener Ansdtze = 13

Middleware,
Komponenten
und Applika-
tionsserver

Komplexitéts-
beherrschung
als das Problem

Abstraktion als
fortwéhrender
Trend

14

objektorientierten Methoden ging die Unified Modeling Language
(UML) hervor, eine standardisierte Modellierungssprache zur
Spezifikation objektorientierter Systeme.

In jlingster Vergangenheit bekam der Entwickler Unterstiitzung
durch eine Reihe verschiedener Konzepte wie Middleware [MW],
Komponenten und Applikationsservern. Durch ihre Verbreitung
wurden die Rechnergrenzen endgiiltig gesprengt und mit ihr eine
Transparenz der Netzwerkkommunikation geschaffen. Komponen-
ten brachten das Paradigma des Zusammenbaus vorgefertigter
Software-Einheiten. Die beiden Konzepte wurden mithilfe von
Object Request Brokern (ORBs) bzw. Applikationsservern zur
verteilten Objekttechnologie bzw. Distributed Object Technology
(DOT) verheiratet. Zusammengenommen verschafften sie uns
insbesondere Ansétze zur Abstraktion von Verteilung, Persistenz,
Transaktionalitdt und Sicherheit.

2.1.2 Die Gegenwart

Damit sind wir am Ende unserer kleinen Riickblicks angekommen.
Gegenwirtig wird das Objektorientierte Paradigma auf breiter Basis
erfolgreich um- und eingesetzt und ist aus der Entwicklungspraxis
nicht mehr wegzudenken. Mittlerweile sehen wir uns hochkomple-
xen Zielarchitekturen gegeniiber, miissen die ,Jugendsiinden® in
Form bestehender Anwendungen integrieren und dabei die verschie-
denartigsten Technologien einbeziehen. Auch hierbei unterstiitzen
uns Modelle und das damit verbundene Prinzip der Abstraktion,
indem sie helfen, komplexe Sachverhalte kompakt darzustellen.

Welche Schlussfolgerung lasst sich nun ziehen?

Betrachtet man die eben beschriebene Entwicklung der Software-
Entwicklung unter dem Gesichtspunkt eines gemeinsamen ,, Trends*
fallen folgende Punkte besonders ins Auge:

m Der Fortschritt in der Software-Entwicklung ist eng verbunden
mit der Bewiltigung von Komplexitit — mitunter spricht man
deshalb bei der Komplexitétsbeherrschung auch von dem Pro-
blem des Software-Engineering.

= Zu beobachten ist weiterhin, dass immer, wenn die Komplexitét
der zu erstellenden Software-Systeme auf ein nicht mehr zu be-
herrschendes Mal3 angewachsen war, die Losung in der Ver-
gangenheit in einem Abstraktionssprung auf eine hdhere seman-
tische Ebene zu finden war.

2 MDA — Uberblick und Orientierung

Diese Beobachtungen lassen sich auch an der Evolution der Pro-
grammiersprachen festmachen: von Maschinensprachen iiber As-
sembler-Sprachen, Prozeduralen Sprachen hin zu Objektorientierten
Sprachen. Insofern kann bei der Abstraktion von einem fortwihren-
den Trend des Software-Engineering bzw. allgemein der Informatik
gesprochen werden.

4 Abb. 2.2
Steigender
Abstraktionsgrad

Modellierungssprachen

Customer Account

Objektorientierte Sprachen
public class Customer ({
private String name;
[..]
}

Prozedurale Sprachen

void main () {
printf ("Welcome!\n");
[..]

}

Assembler-Sprache
MOV .segm SRC, DST
LDA &SRC&
STA &DST&
[.]

Maschinensprache
00101011 01010111
01101000

10101010 10101011
[.]

Abstraktionsgrad

A4

Zeit

Wie bereits erwihnt sind Modelle ein weiteres Werkzeug, das uns
bei der Beherrschung dieser Komplexitét hilft, indem sie frei nach
dem Motto ,,teile und herrsche einen Teil der selbigen verdecken.
Diese Beobachtung liefert den dritten Punkt, den wir als Trend in
der Historie der betrachteten Entwicklung festmachen wollen:

= Modelle riicken mehr und mehr in den Mittelpunkt des Entwick- ~ Zunehmende

lungsprozesses, insbesondere in Analyse und Entwurf. Gewichtung von
Modellen

Wie geht es weiter?

Angenommen der ausgemachte Trend wire eine Tatsache, wire es
dann nicht konsequent zu folgern, dass Modellierungssprachen die

2.1 Motivation modellgetriebener Ansdtze ® 15

