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Preface

This work provides an introduction to the foundations of three-dimensional com-
puter vision and describes recent contributions to the field, which are of methodical
and application-specific nature. Each chapter of this work provides an extensive
overview of the corresponding state of the art, into which a detailed description of
new methods or evaluation results in application-specific systems is embedded.

Geometric approaches to three-dimensional scene reconstruction (cf. Chapter 1)
are primarily based on the concept of bundle adjustment, which has been developed
more than 100 years ago in the domain of photogrammetry. The three-dimensional
scene structure and the intrinsic and extrinsic camera parameters are determined
such that the Euclidean backprojection error in the image plane is minimised, usu-
ally relying on a nonlinear optimisation procedure. In the field of computer vision,
an alternative framework based on projective geometry has emerged during the last
two decades, which allows to use linear algebra techniques for three-dimensional
scene reconstruction and camera calibration purposes. With special emphasis on the
problems of stereo image analysis and camera calibration, these fairly different ap-
proaches are related to each other in the presented work, and their advantages and
drawbacks are stated. In this context, various state-of-the-art camera calibration and
self-calibration methods as well as recent contributions towards automated camera
calibration systems are described. An overview of classical and new feature-based,
correlation-based, dense, and spatio-temporal methods for establishing point cor-
respondences between pairs of stereo images is given. Furthermore, an analysis of
traditional and newly introduced methods for the segmentation of point clouds and
for the three-dimensional detection and pose estimation of rigid, articulated, and
flexible objects in the scene is provided.

A different class of three-dimensional scene reconstruction methods is made up
by photometric approaches (cf. Chapter 2), which evaluate the intensity distribution
in the image to infer the three-dimensional scene structure. Basically, these methods
can be divided into shape from shadow, photoclinometry and shape from shading,
photometric stereo, and shape from polarisation. As long as sufficient information
about the illumination conditions and the surface reflectance properties is available,
these methods may provide dense depth maps of object surfaces.
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In a third, fundamentally different class of approaches the behaviour of the point
spread function of the optical system used for image acquisition is exploited in or-
der to derive depth information about the scene (cf. Chapter 3). Depth from focus
methods use as a reference the distance between the camera and the scene at which
a minimum width of the point spread function is observed, relying on an appro-
priate calibration procedure. Depth from defocus methods determine the position-
dependent point spread function, which in turn yields absolute depth values for the
scene points. A semi-empirical framework for establishing a relation between the
depth of a scene point and the observed width of the point spread function is intro-
duced.

These three classes of approaches to three-dimensional scene reconstruction are
characterised by complementary properties, such that it is favourable to integrate
them into unified frameworks that yield more accurate and robust results than each
of the approaches alone (cf. Chapter 4). Bundle adjustment and depth from defocus
are combined to determine the absolute scale factor of the scene reconstruction re-
sult, which cannot be obtained by bundle adjustment alone if no a-priori information
is available. Shading and shadow features are integrated into a self-consistent frame-
work to reduce the inherent ambiguity and large-scale inaccuracy of the shape from
shading technique by introducing regularisation terms that rely on depth differences
inferred from shadow analysis. Another integrated approach combines photometric,
polarimetric, and sparse depth information, yielding a three-dimensional reconstruc-
tion result which is equally accurate on large and on small scales. An extension of
this method provides a framework for stereo image analysis of non-Lambertian sur-
faces, where traditional stereo methods tend to fail. In the context of monocular
three-dimensional pose estimation, the integration of geometric, photopolarimetric,
and defocus cues is demonstrated to behave more robustly and is shown to provide
significantly more accurate results than techniques exclusively relying on geometric
information.

The developed three-dimensional scene reconstruction methods are examined in
different application scenarios. A comparison to state-of-the-art systems is provided
where possible. In the context of industrial quality inspection (cf. Chapter 5), the
performance of pose estimation is evaluated for rigid objects (plastic caps, electric
plugs) as well as flexible objects (tubes, cables). The integrated surface reconstruc-
tion methods are applied to the inspection of different kinds of metallic surfaces,
where the achieved accuracies are found to be comparable to those of general-
purpose active scanning devices which, however, require a much higher instrumental
effort.

The developed techniques for object detection and tracking in three-dimensional
point clouds and for pose estimation of articulated objects are evaluated in the con-
text of partially automated industrial production scenarios requiring a safe interac-
tion between humans and industrial robots (cf. Chapter 6). An overview of existing
vision-based robotic safety systems is given, and it is worked out how the developed
three-dimensional detection and pose estimation techniques are related to state-of-
the-art gesture recognition methods in human–robot interaction scenarios.
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The third addressed application scenario is completely different and regards re-
mote sensing of the lunar surface by preparing elevation maps (cf. Chapter 7).
While the spatial scales taken into account differ by many orders of magnitude
from those encountered in the industrial quality inspection domain, the underly-
ing physical processes are fairly similar. An introductory outline of state-of-the-art
geometric, photometric, and combined approaches to topographic mapping of solar
system bodies is given. Especially the estimation of impact crater depths and shapes
is an issue of high geological relevance. Generally, such measurements are based on
the determination of shadow lengths and do not yield detailed elevation maps. It is
demonstrated for lunar craters that three-dimensional surface reconstruction based
on shadow, reflectance, and geometric information yields topographic maps of high
resolution, which are useful for a reliable crater classification. Another geologically
relevant field is the three-dimensional reconstruction of lunar volcanic edifices, es-
pecially lunar domes. These structures are so low that most of them do not appear
in the existing lunar topographic maps. Based on the described photometric three-
dimensional reconstruction methods, the first catalogue to date containing heights
and edifice volumes for a statistically significant number of lunar domes has been
prepared. It is outlined briefly why the determined three-dimensional morphometric
data are essential for deriving basic geophysical parameters of lunar domes, such as
lava viscosity and effusion rate, and how they may help to reveal their origin and
mode of formation.

Finally (cf. Chapter 8), the main results of the presented work and the most im-
portant conclusions are summarised, and possible directions of future research are
outlined.

Heroldstatt, May 2009 Christian Wöhler
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Furthermore, I am grateful to the members of the Geologic Lunar Research
Group, especially Dr. Raffaello Lena, Dr. Charles A. Wood, Paolo Lazzarotti,
Dr. Jim Phillips, Michael Wirths, K. C. Pau, Maria Teresa Bregante, and Richard
Evans, for sharing their experience in many projects concerning lunar observation
and geology.

My thanks are extended to the Springer editorial staff, especially Hermann En-
gesser, Dorothea Glaunsinger, and Gabi Fischer, for their advice and cooperation.

xi



Contents

Part I Methods of 3D Computer Vision

1 Geometric Approaches to Three-dimensional Scene Reconstruction . . 3
1.1 The Pinhole Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Bundle Adjustment Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Geometric Aspects of Stereo Image Analysis . . . . . . . . . . . . . . . . . . . 9

1.3.1 Euclidean Formulation of Stereo Image Analysis . . . . . . . . . . 9
1.3.2 Stereo Image Analysis in Terms of Projective Geometry . . . . 12

1.4 Geometric Calibration of Single and Multiple Cameras . . . . . . . . . . . 17
1.4.1 Methods for Intrinsic Camera Calibration . . . . . . . . . . . . . . . . 17
1.4.2 The Direct Linear Transform (DLT) Method . . . . . . . . . . . . . 18
1.4.3 The Camera Calibration Method by Tsai (1987) . . . . . . . . . . 21
1.4.4 The Camera Calibration Method by Zhang (1999a) . . . . . . . . 25
1.4.5 The Camera Calibration Method by Bouguet (2007) . . . . . . . 27
1.4.6 Self-calibration of Camera Systems from Multiple Views

of a Static Scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4.7 Semi-automatic Calibration of Multiocular Camera Systems 41
1.4.8 Accurate Localisation of Chequerboard Corners . . . . . . . . . . 51

1.5 Stereo Image Analysis in Standard Geometry . . . . . . . . . . . . . . . . . . . 62
1.5.1 Image Rectification According to Standard Geometry . . . . . . 62
1.5.2 The Determination of Corresponding Points . . . . . . . . . . . . . . 66

1.6 Three-dimensional Pose Estimation and Segmentation Methods . . . . 87
1.6.1 Pose Estimation of Rigid Objects . . . . . . . . . . . . . . . . . . . . . . . 88
1.6.2 Pose Estimation of Non-rigid and Articulated Objects . . . . . . 95
1.6.3 Point Cloud Segmentation Approaches . . . . . . . . . . . . . . . . . . 113

2 Photometric Approaches to Three-dimensional Scene Reconstruction 127
2.1 Shape from Shadow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

2.1.1 Extraction of Shadows from Image Pairs . . . . . . . . . . . . . . . . . 128
2.1.2 Shadow-based Surface Reconstruction

from Dense Sets of Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xiii



xiv Contents

2.2 Shape from Shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
2.2.1 The Bidirectional Reflectance Distribution Function (BRDF) 132
2.2.2 Determination of Surface Gradients . . . . . . . . . . . . . . . . . . . . . 137
2.2.3 Reconstruction of Height from Gradients . . . . . . . . . . . . . . . . 142
2.2.4 Surface Reconstruction Based on Eikonal Equations . . . . . . . 144

2.3 Photometric Stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
2.3.1 Classical Photometric Stereo Approaches . . . . . . . . . . . . . . . . 147
2.3.2 Photometric Stereo Approaches Based on Ratio Images . . . . 148

2.4 Shape from Polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
2.4.1 Surface Orientation from Dielectric Polarisation Models . . . 151
2.4.2 Determination of Polarimetric Properties of Rough

Metallic Surfaces for Three-dimensional Reconstruction
Purposes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

3 Real-aperture Approaches to Three-dimensional Scene
Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.1 Depth from Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
3.2 Depth from Defocus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

3.2.1 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
3.2.2 Determination of Small Depth Differences . . . . . . . . . . . . . . . 167
3.2.3 Determination of Absolute Depth Across Broad Ranges . . . . 170

4 Integrated Frameworks for Three-dimensional Scene Reconstruction 181
4.1 Monocular Three-dimensional Scene Reconstruction at Absolute

Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
4.1.1 Combining Motion, Structure, and Defocus . . . . . . . . . . . . . . 183
4.1.2 Online Version of the Algorithm. . . . . . . . . . . . . . . . . . . . . . . . 184
4.1.3 Experimental Evaluation Based on Tabletop Scenes . . . . . . . 185
4.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

4.2 Self-consistent Combination of Shadow and Shading Features . . . . . 196
4.2.1 Selection of a Shape from Shading Solution

Based on Shadow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
4.2.2 Accounting for the Detailed Shadow Structure

in the Shape from Shading Formalism . . . . . . . . . . . . . . . . . . . 200
4.2.3 Initialisation of the Shape from Shading Algorithm

Based on Shadow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
4.2.4 Experimental Evaluation Based on Synthetic Data . . . . . . . . . 204
4.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

4.3 Shape from Photopolarimetric Reflectance and Depth . . . . . . . . . . . . 206
4.3.1 Shape from Photopolarimetric Reflectance . . . . . . . . . . . . . . . 207
4.3.2 Estimation of the Surface Albedo . . . . . . . . . . . . . . . . . . . . . . . 211
4.3.3 Integration of Depth Information . . . . . . . . . . . . . . . . . . . . . . . 212
4.3.4 Experimental Evaluation Based on Synthetic Data . . . . . . . . . 217
4.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

4.4 Stereo Image Analysis of Non-Lambertian Surfaces . . . . . . . . . . . . . . 223



Contents xv

4.4.1 Iterative Scheme for Disparity Estimation . . . . . . . . . . . . . . . . 225
4.4.2 Qualitative Behaviour of the Specular Stereo Algorithm . . . . 229

4.5 Three-dimensional Pose Estimation Based on Combinations of
Monocular Cues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
4.5.1 Appearance-based Pose Estimation

Relying on Multiple Monocular Cues . . . . . . . . . . . . . . . . . . . 231
4.5.2 Contour-based Pose Estimation Using Depth from Defocus . 236

Part II Application Scenarios

5 Applications to Industrial Quality Inspection . . . . . . . . . . . . . . . . . . . . . . 243
5.1 Inspection of Rigid Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

5.1.1 Object Detection by Pose Estimation . . . . . . . . . . . . . . . . . . . . 244
5.1.2 Pose Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

5.2 Inspection of Non-rigid Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
5.3 Inspection of Metallic Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

5.3.1 Inspection Based on Integration of Shadow
and Shading Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

5.3.2 Inspection of Surfaces with Non-uniform Albedo . . . . . . . . . 257
5.3.3 Inspection Based on SfPR and SfPRD . . . . . . . . . . . . . . . . . . . 259
5.3.4 Inspection Based on Specular Stereo . . . . . . . . . . . . . . . . . . . . 266
5.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

6 Applications to Safe Human–Robot Interaction . . . . . . . . . . . . . . . . . . . . 277
6.1 Vision-based Human-Robot Interaction . . . . . . . . . . . . . . . . . . . . . . . . 277

6.1.1 The Role of Gestures in Human–Robot Interaction . . . . . . . . 278
6.1.2 Safe Human–Robot Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 279
6.1.3 Pose Estimation of Articulated Objects in the Context

of Human–Robot Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
6.2 Object Detection and Tracking in Three-dimensional Point Clouds . 291
6.3 Detection and Spatio-temporal Pose Estimation of Human Body

Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
6.4 Three-dimensional Tracking of Human Body Parts . . . . . . . . . . . . . . 296

7 Applications to Lunar Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
7.1 Three-dimensional Surface Reconstruction Methods for Planetary

Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
7.1.1 Topographic Mapping of Solar System Bodies . . . . . . . . . . . . 304
7.1.2 Reflectance Behaviour of Planetary Regolith Surfaces . . . . . 307

7.2 Three-dimensional Reconstruction of Lunar Impact Craters . . . . . . . 311
7.2.1 Shadow-based Measurement of Crater Depth . . . . . . . . . . . . . 311
7.2.2 Three-dimensional Reconstruction of Lunar Impact

Craters
at High Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

7.3 Three-dimensional Reconstruction
of Lunar Wrinkle Ridges and Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . 322



xvi Contents

7.4 Three-dimensional Reconstruction of Lunar Domes . . . . . . . . . . . . . . 325
7.4.1 General Overview of Lunar Mare Domes . . . . . . . . . . . . . . . . 325
7.4.2 Observations of Lunar Mare Domes . . . . . . . . . . . . . . . . . . . . . 328
7.4.3 Image-based Determination of Morphometric Data . . . . . . . . 331
7.4.4 Geophysical Insights Gained from Topographic Data . . . . . . 343

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359



Part I
Methods of 3D Computer Vision



Chapter 1

Geometric Approaches to Three-dimensional
Scene Reconstruction

Reconstruction of three-dimensional scene structure from images was an important
topic already in the early history of photography, which was invented by Niepce
and Daguerre in 1839. The first photogrammetric methods were developed in the
middle of the 19th century by Laussedat and Meydenbauer for mapping purposes
and reconstruction of buildings (Luhmann, 2003). These photogrammetric methods
were based on geometric modelling of the image formation process, exploiting the
perspective projection of a three-dimensional scene into a two-dimensional image
plane. Image formation by perspective projection corresponds to the pinhole cam-
era model. There are different image formation models, describing optical devices
such as fisheye lenses or omnidirectional lenses. In this work, however, we will re-
strict ourselves to the pinhole model since it represents the most common image
acquisition devices.

1.1 The Pinhole Camera Model

In the pinhole camera model, the camera lens is represented by its optical centre,
corresponding to a point situated between the three-dimensional scene and the two-
dimensional image plane, and the optical axis, which is perpendicular to the plane
defined by the lens and passes through the optical centre (Fig. 1.1). The intersection
point between the image plane and the optical axis is termed principal point in the
computer vision literature (Faugeras, 1993). The distance between the optical centre
and the principal point is termed principal distance and is denoted by b. For real
lenses, the principal distance b is always larger than the focal length f of the lens,
and the value of b approaches f if the object distance Z is much larger than b. This
issue will be further examined in Chapter 3.

3
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Fig. 1.1 The pinhole camera model. A scene point Cx defined in the camera coordinate system is
projected into the image point Ix located in the image plane.

Euclidean Formulation

In this work we will utilise a notation similar to the one by Craig (1989) for points,
coordinate systems, and transformation matrices. Accordingly, a point x in the cam-
era coordinate system C is denoted by Cx, where the origin of C corresponds to
the principal point. Similarly, a transformation of a point in the world coordinate
system W into the camera coordinate system C is denoted by a transformation C

WT ,
where the lower index defines the original coordinate system and the upper index the
coordinate system into which the point is transformed. The transformation C

WT cor-
responds to an arbitrary rotation and translation. In this notation, the transformation
is given by Cx = C

WT Wx. A scene point Cx = (x,y,z)T defined in the camera coordi-
nate system C is projected on the image plane into the point Ix, defined in the image
coordinate system I, such that the scene point Cx, the optical centre, and the image
point Ix are connected by a straight line in three-dimensional space (Fig. 1.1). Obvi-
ously, all scene points situated on this straight line are projected into the same point
in the image plane, such that the original depth information z gets lost. Elementary
geometrical considerations yield for the point Ix = (û, v̂) in the image coordinate
system:

û = −b
x
z

v̂ = −b
y
z
. (1.1)

The coordinates û and v̂ in the image plane are measured in the same metric units
as x, y, z, and b. The principal point is given in the image plane by û = v̂ = 0. In
contrast, pixel coordinates in the coordinate system of the camera sensor are denoted
by u and v.

While it may be useful to regard the camera coordinate system C as identical
to the world coordinate system W for a single camera, it is favourable to explicitly
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define a world coordinate system as soon as multiple cameras are involved. The
orientation and translation of each camera i with respect to this world coordinate
system is then expressed by Ci

WT , transforming a point Wx from the world coordinate
system W into the camera coordinate system Ci. The transformation Ci

WT is com-
posed of a rotational part Ri, corresponding to an orthonormal matrix of size 3× 3
determined by three independent parameters, e.g. the Euler rotation angles (Craig,
1989), and a translation vector ti denoting the offset between the coordinate systems.
This decomposition yields

Cix = Ci
WT
(Wx
)

= Ri
Wx+ ti. (1.2)

Furthermore, the image formation process is determined by the intrinsic parameters
{c j}i of each camera i, some of which are lens-specific while others are sensor-
specific. For a pinhole camera equipped with a digital sensor, these parameters com-
prise the principal distance b, the effective number of pixels per unit length ku and kv
along the horizontal and the vertical image axis, respectively, the pixel skew angle
θ , and the coordinates u0 and v0 of the principal point in the image plane. For most
modern camera sensors, the skew angle amounts to θ = 90◦ and the pixels are of
quadratic shape with ku = kv.

For a real lens system, however, the observed image coordinates of scene points
may deviate from those given by Eq. (1.1) due to the effect of lens distortion. In
this work we employ the lens distortion model by Brown (1966, 1971) which has
been extended by Heikkilä and Silvén (1997) and by Bouguet (1999). The distorted
coordinates Ixd of a point in the image plane are obtained from the undistorted
coordinates Ix according to

Ixd = (1 + k1r2 + k3r4 + k5r6) Ix+ dt , (1.3)

where Ix = (û, v̂)T and r2 = û2 + v̂2. If radial distortion is present, straight lines in
the object space crossing the optical axis still appear straight in the image, but the
observed distance of a point in the image from the principal point deviates from the
distance expected according to Eq. (1.1). The vector

dt =

(

2k2ûv̂ + k4(r2 + 2û2)
k2(r2 + 2v̂2)+ 2k4ûv̂

)

(1.4)

is termed tangential distortion. The occurrence of tangential distortion implies that
straight lines in the object space crossing the optical axis appear bent in some direc-
tions in the image.

When a film is used as an imaging sensor, û and v̂ directly denote metric distances
on the film with respect to the principal point, which has to be determined by an
appropriate calibration procedure (cf. Section 1.4). When a digital camera sensor is
used, the transformation

Sx = S
IT
(Ix
)

(1.5)
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from the image coordinate system into the sensor coordinate system is defined in the
general case by an affine transformation S

IT (as long as the sensor has no “exotic”
architecture such as a hexagonal pixel raster, where the transformation would be still
more complex). The corresponding coordinates Sx = (u,v)T are measured in pixels.

At this point it is useful to define a projection function P

(

Ci
WT,{c j}i,

W x
)

which

projects a point Wx defined in the world coordinate system into the sensor coordinate
system of camera i by means of a perspective projection as defined in Eq. (1.1) with

Six = P

(

Ci
WT,{c j}i,

W x
)

. (1.6)

Since Eq. (1.1) is based on Euclidean geometry, it is nonlinear in z, implying that the
function P is nonlinear as well. It depends on the extrinsic camera parameters de-
fined by the transformation Ci

WT and on the lens-specific and sensor-specific intrinsic
camera parameters {c j}i.

Formulation in Terms of Projective Geometry

To circumvent the nonlinear formulation of perspective projection in Euclidean
geometry, it is advantageous to express the image formation process in the more
general mathematical framework of projective geometry (Faugeras, 1993; Birch-
field, 1998). A point x = (x,y,z)T in three-dimensional Euclidean space is repre-
sented in three-dimensional projective space by the homogeneous coordinates x̃ =
(X ,Y,Z,W )T = (x,y,z,1)T . Overall scaling is unimportant, such that (X ,Y,Z,W )T

is equivalent to (αX ,αY,αZ,αW )T for any nonzero value of α . To recover the Eu-
clidean coordinates from a point given in three-dimensional projective space, the
first three coordinates X , Y , and Z are divided by the fourth coordinate W according
to x = (X/W,Y/W,Z/W)T . The general transformation in three-dimensional pro-
jective space is a matrix multiplication by a 4×4 matrix. For the projection from a
three-dimensional world into a two-dimensional image plane a matrix of size 3×4
is sufficient. Hence, analogous to Eq. (1.1), in projective geometry the projection of
a scene point Ci x̃ defined in the camera coordinate system Ci into the image coordi-
nate system Ii is given by the linear relation

Ii x̃ =





−b 0 0 0
0 −b 0 0
0 0 1 0





Ci x̃. (1.7)

This formulation of perspective projection is widely used in the fields of computer
vision (Faugeras, 1993) and computer graphics (Foley et al., 1993). An important
class of projective transforms is defined by the essential matrix, containing the
extrinsic parameters of two pinhole cameras observing a scene from two differ-
ent viewpoints. The fundamental matrix is a generalisation of the essential matrix
and contains as additional information the intrinsic camera parameters (Birchfield,
1998). A more detailed explanation of the essential and the fundamental matrix will
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be given in Section 1.3 in the context of the epipolar constraint of stereo image
analysis.

In the formulation of projective geometry, the transformation from the world
coordinate system W into the camera coordinate system Ci is defined by the 3× 4
matrix

[Ri | ti] . (1.8)

The projection from the coordinate system Ci of camera i into the sensor coordinate
system Si is given by the matrix

Ai =





αu αu cotθ u0

0 αv/sinθ v0

0 0 1



 , (1.9)

with αu, αv, θ , u0, and v0 as the intrinsic parameters of the pinhole camera i. In
Eq. (1.9), the scale parameters αu and αv are defined according to αu = −bku and
αv = −bkv. The complete image formation process can then be described in terms
of the projective 3×4 matrix Pi which is composed of a perspective projection along
with the intrinsic and extrinsic camera parameters according to

Si x̃ = Pi
Wx̃ = Ai [Ri | ti]

Wx̃, (1.10)

such that Pi = Ai [Ri | ti]. For each camera i, the linear projective transformation Pi
describes the image formation process in projective space.

1.2 Bundle Adjustment Methods

Most geometric methods for three-dimensional scene reconstruction from multiple
images are based on establishing corresponding points in the images. For a scene
point Wx observed in N images, the corresponding image points Six in each image
i, where i = 1, . . . ,N, can be determined manually or by automatic correspondence
search methods. Given the extrinsic and intrinsic camera parameters, each image
point Six defines a ray in three-dimensional space, and in the absence of measure-
ment errors all N rays intersect in the scene point Wx.

First general scene reconstruction methods based on images acquired from dif-
ferent views were developed e.g. by Kruppa (1913) and Finsterwalder (1899).
Overviews of these early methods are given by Aström (1996) and Luhmann (2003).
They aim for a determination of intrinsic and extrinsic camera parameters and the
three-dimensional coordinates of the scene points. Kruppa (1913) presents an ana-
lytical solution for the scene structure and extrinsic camera parameters from a min-
imal set of five corresponding image points.

Classical bundle adjustment methods (Brown, 1958; Luhmann, 2003; Lourakis
and Argyros, 2004) jointly recover scene points and camera parameters from a set
of K corresponding image points. The measured image coordinates of the scene
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points in the images of the N cameras are denoted by the sensor coordinates Sixk,
where i = 1, . . . ,N and k = 1, . . . ,K. The image coordinates inferred from the extrin-
sic camera parameters Ci

WT , the intrinsic camera parameters {c j}i, and the K scene
point coordinates Wxk are given by Eq. (1.6). Bundle adjustment corresponds to a
minimisation of the reprojection error

EB =
N

∑
i=1

K

∑
k=1

∥

∥

∥

Si
Ii T−1

(

P

(

Ci
WT,{c j}i,

W xk

)

− Sixk

)∥

∥

∥

2
. (1.11)

The transformation by Si
Ii T−1 in Eq. (1.11) ensures that the backprojection error is

measured in Cartesian image coordinates. It can be omitted if a film is used for
image acquisition, on which Euclidean distances are measured in a Cartesian coor-
dinate system, or as long as the pixel raster of the digital camera sensor is orthogonal
(θ = 90◦) and the pixels are quadratic (αu = αv). This special case corresponds to
Si
Ii T in Eq. (1.5) describing a similarity transform.

The bundle adjustment approach can be used for calibration of the intrinsic and
extrinsic camera parameters, reconstruction of the three-dimensional scene struc-
ture, or estimation of object pose. Depending on the scenario, some or all of the
parameters Ci

WT , {c j}i, and Wxk may be unknown and are obtained by a minimisa-
tion of the reprojection error EB with respect to the unknown parameters. As long as
the scene is static, utilising N simultaneously acquired images (stereo image analy-
sis, cf. Section 1.3) is equivalent to evaluating a sequence of N images acquired by
a single moving camera (structure from motion).

Minimisation of Eq. (1.11) involves nonlinear optimisation techniques such as
the Gauss-Newton or the Levenberg-Marquardt approach (Press et al., 1992). The
reprojection error of scene point Wxk in image i influences the values of Ci

WT and
{c j}i only for images in which this scene point is also detected, leading to a sparse
set of nonlinear equations. The sparsity of the optimisation problem is exploited
in the algorithm by Lourakis and Argyros (2004). The error function defined by
Eq. (1.11) may have a large number of local minima, such that reasonable initial
guesses for the parameters to be estimated have to be provided. As long as no a-
priori knowledge about the camera positions is available, a general property of the
bundle adjustment method is that it only recovers the scene structure up to an un-
known constant scale factor, since an increase of the mutual distances between the
scene points by a constant factor can be compensated by accordingly increasing the
mutual distances between the cameras and their distances to the scene. However,
this scale factor can be obtained if additional information about the scene, such as
the distance between two scene points, is known.

Difficulties may occur in the presence of false correspondences or gross errors
of the determined point positions in the images, corresponding to strong deviations
of the distribution of reprojection errors from the assumed Gaussian distribution.
Lourakis and Argyros (2004) point out that in realistic scenarios the assumption of
a Gaussian distribution of the measurement errors systematically underestimates the
fraction of large errors. Searching for outliers in the established correspondences can
be performed e.g. using the random sample consensus (RANSAC) method (Fischler
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and Bolles, 1981) in combination with a minimal case five point algorithm (Nister,
2004). Alternatively, it is often useful to reduce the weight of large reprojection er-
rors, which corresponds to replacing the L2 norm in Eq. (1.11) by a suitable different
norm. This optimisation approach is termed M-estimator technique (Rey, 1983).

A further drawback of the correspondence-based geometric bundle adjustment
approach is the fact that correspondences can only be reliably extracted in textured
image parts, leading to a sparse three-dimensional reconstruction result in the pres-
ence of large weakly or repetitively textured regions.

1.3 Geometric Aspects of Stereo Image Analysis

The reconstruction of three-dimensional scene structure based on two images ac-
quired from different positions and viewing directions is termed stereo image anal-
ysis. In this section we will regard the “classicial” Euclidean approach to this impor-
tant field of image-based three-dimensional scene reconstruction (cf. Section 1.3.1)
as well as its formulation in terms of projective geometry (cf. Section 1.3.2).

1.3.1 Euclidean Formulation of Stereo Image Analysis

In this section, we begin with an introduction in terms of Euclidean geometry, es-
sentially following the derivation described by Horn (1986). We assume that the
world coordinate system is identical with the coordinate system of camera 1, i.e.
the transformation matrix C1

W T corresponds to unity while the relative orientation of

camera 2 with respect to camera 1 is given by C2
W T and is assumed to be known. In

Section 1.4 we will regard the problem of camera calibration, i.e. the determination
of the extrinsic and intrinsic camera parameters. A point I1 x = (û1, v̂1)

T in image 1
corresponds to a ray through the origin of the camera coordinate system according
to

C1 x =





x1

y1

z1



=





û1s
v̂1s
bs



 , (1.12)

where s is assumed to be a positive real number. In the coordinate system of cam-
era 2, according to Eq. (1.2) the points on this ray have the coordinates

C2x =





x2

y2

z2



= R C1 x+ t =





(r11û1 + r12v̂1 + r13b)s+ t1
(r21û1 + r22v̂1 + r23b)s+ t2
(r31û1 + r32v̂1 + r33b)s+ t3



 (1.13)

with ri j as the elements of the orthonormal rotation matrix R and ti as the elements
of the translation vector t (cf. Eq. (1.2)). In the image coordinate system of camera 2,
the coordinates of the vector I2 x = (û2, v̂2)

T are given by
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Fig. 1.2 Definition of epipolar geometry. The epipolar lines of the image points I1 x and I2 x are
drawn as dotted lines, respectively.

û2

b
=

x2

z2
and

v̂2

b
=

y2

z2
, (1.14)

assuming identical principal distances for both cameras. With the abbreviations

x2 = ds+ p, y2 = es+ q, z2 = f s+ r

we now obtain the relations

û2

b
=

d
f

+
f p−dr

f
1

f s+ r
v̂2

b
=

e
f

+
f q− er

c
1

f s+ r

describing a straight line connecting the point (p/r,q/r)T for s = 0 with the point
(d/ f ,e/ f )T for s→ ∞. The first of these points is the image of the principal point
of camera 1, i.e. the origin of camera coordinate system 1, in the image of camera 2,
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while the second point corresponds to the vanishing point of the ray in camera 2. The
straight line describes a ray from the principal point of camera 2 which is parallel
to the given ray through the principal point of camera 1. These geometric relations
are illustrated in Fig. 1.2. The optical centre of camera 1 is at C1c1, and the scene
point Wx = C1x projects into the point I1 x in image 1. The optical centre C2c2 of
camera 2 is projected to I1 c2 in image 1, and the vanishing point in image 1 of the
ray from camera 2 to the scene point Wx is given by I1 q2. The image points I1 c2,
I1 x, and I1 q2 are located on a straight line, which corresponds to the intersection
line between the image plane and a plane through the scene point Wx and the optical
centres C1 c1 and C2 c2. A similar line is obtained for image 2. These lines are termed
epipolar lines. A scene point projected to a point on the epipolar line in image 1 is
always located on the corresponding epipolar line in image 2 constructed according
to Fig. 1.2. This restriction on the image positions of corresponding image points is
termed epipolar constraint. Each epipolar line is the intersection line of the image
plane with an epipolar plane, i.e. a plane which contains the optical centres of both
cameras. In image 1, all epipolar lines intersect in the image point I1 c2 of the optical
centre of camera 2, and vice versa. For real camera systems, the image plane may
be of limited extent and will not always include the image of the optical centre of
the other camera, respectively.

As long as the extrinsic relative camera orientation given by the rotation matrix
R and the translation vector t are known, it is straightforward to compute the three-
dimensional position of a scene point Wx with image coordinates I1 x = (û1, v̂1)

T and
I2 x = (û2, v̂2)

T , expressed as C1 x and C2 x in the two camera coordinate systems. It
follows from Eqs. (1.13) and (1.14) that

(

r11
û1

b
+ r12

v̂1

b
+ r13

)

z1 + t1 =
û2

b
z2

(

r21
û1

b
+ r22

v̂1

b
+ r23

)

z1 + t2 =
v̂2

b
z2

(

r31
û1

b
+ r32

v̂1

b
+ r33

)

z1 + t3 = z2.

Any two of these equations can be used to solve for z1 and z2. For the three-
dimensional positions of the scene points we then obtain

C1x =





x1

y1

z1



=





û1/b
v̂1/b

1



z1

C2x =





x2

y2

z2



=





û2/b
v̂2/b

1



z2. (1.15)

Eq. (1.15) allows to compute the coordinates Cix of a scene point in any of the
two camera coordinate systems based on the measured pixel positions of the cor-
responding image points, given the relative orientation of the cameras defined by
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the rotation matrix R and the translation vector t. Note that all computations in
this section have been performed based on the metric image coordinates given by
Ii x = (ûi, v̂i)

T , which are related to the pixel coordinates given by Six = (ui,vi)
T in

the sensor coordinate system by Eq. (1.5).

1.3.2 Stereo Image Analysis in Terms of Projective Geometry

At this point it is illustrative to regard the derivation of the epipolar constraint in the
framework of projective geometry. Two cameras regard a scene point Wx̃ which is
projected into the vectors I1 x̃′ and I2 x̃′ defined in the two image coordinate systems.
Since these vectors are defined in homogeneous coordinates, Wx̃ is of size 4× 1
while I1 x̃′ and I2 x̃′ are of size 3× 1. The cameras are assumed to be pinhole cam-
eras with the same principal distance b, and I1 x̃′ and I2 x̃′ are given in normalised
coordinates (Birchfield, 1998), i.e. the vectors are scaled such that their last (third)
coordinates are 1. Hence, their first two coordinates represent the position of the
projected scene point in the image with respect to the principal point, measured in
units of the principal distance b, respectively. As a result, the three-dimensional vec-
tors I1 x̃′ and I2 x̃′ correspond to the Euclidean vectors from the optical centres to the
projected points in the image planes.

The Essential Matrix

According to the epipolar constraint, the vector I1 x̃′ from the first optical centre to
the first projected point, the vector I2 x̃′ from the second optical centre to the second
projected point, and the vector t connecting the two optical centres are coplanar.
This condition can be expressed as

I1 x̃′T
(

t×R I2 x̃′
)

= 0, (1.16)

where R and t denote the rotational and translational part of the coordinate trans-
formation from the first into the second camera coordinate system. We now define
[t]× as the 3×3 matrix for which we have [t]× y = t×y for any 3×1 vector y. The

matrix [t]× is termed cross product matrix of the vector t. For t = (d,e, f )T , it is
straightforward to show that

[t]× =





0 − f e
f 0 −d
−e d 0



 (1.17)

(Birchfield, 1998). Eq. (1.16) can then be rewritten as

I1 x̃′T
(

[t]×R I2 x̃′
)

= I1 x̃′T E I2 x̃′ = 0, (1.18)
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where E = [t]×R is termed essential matrix and describes the transformation from
the coordinate system of one pinhole camera into the coordinate system of the other
pinhole camera. Eq. (1.18) shows that the epipolar constraint can be written as a
linear equation in homogeneous coordinates, and it completely describes the geo-
metric relationship between corresponding points in a pair of stereo images. The
essential matrix contains five parameters, three for the relative rotation between the
cameras, two for the direction of translation. It is not possible to recover the abso-
lute magnitude of translation as increasing the distance between the cameras can be
compensated by increasing the depth of the scene point by the same amount, thus
leaving the coordinates of the image points unchanged. The determinant of the es-
sential matrix is zero, and its two non-zero eigenvalues are equal (Birchfield, 1998).

The Fundamental Matrix

We now assume that the image points are not given in normalised coordinates but
in sensor pixel coordinates by the projective 3×1 vectors S1 x̃ and S2 x̃. If the lenses
are assumed to be distortion-free, the transformation from the normalised camera
coordinate system into the sensor coordinate system is given by Eq. (1.9), leading
to the linear relations

S1 x̃ = A1
I1 x̃′

S2 x̃ = A2
I2 x̃′. (1.19)

The matrices A1 and A2 contain the pixel size, pixel skew, and pixel coordinates of
the principal point of the cameras, respectively. If lens distortion has to be taken into
account e.g. according to Eqs. (1.3) and (1.4), the corresponding transformations
may become nonlinear. Eqs. (1.18) and (1.19) yield the expressions

(

A−1
2

S2 x̃
)T (

t×RA−1
1

S1 x̃
)

= 0
S2 x̃T A−T

2

(

t×RA−1
1

S1 x̃
)

= 0
S2 x̃T F S1 x̃ = 0, (1.20)

where F = A−T
2 EA−1

1 is termed fundamental matrix and provides a representation
of both the intrinsic and the extrinsic parameters of the two cameras. The matrix
F is always of rank 2 (Hartley and Zisserman, 2003), i.e. one of its eigenvalues is
always zero. Eq. (1.20) is valid for all corresponding image points S1 x̃ and S2 x̃ in the
images.

The fundamental matrix F relates a point in one stereo image to the line of all
points in the other stereo image that may correspond to that point according to the
epipolar constraint. In a projective plane, a line l̃ is defined such that for all points
x̃ on the line the relation x̃T l̃ = 0 is fulfilled (Birchfield, 1998). At the same time,
this relation indicates that in a projective plane, points and lines have the same rep-
resentation and are thus dual with respect to each other. Especially, the epipolar line
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S2 l̃ in image 2 which corresponds to a point S1 x̃ in image 1 is given by S2 l̃ = F S1 x̃.
Eq. (1.20) immediately shows that this relation must hold since all points S2 x̃ in im-
age 2 which may correspond to the point S1 x̃ in image 1 are located on the line S2 l̃.
Accordingly, the line S1 l̃ = FT S2 x̃ in image 1 is the epipolar line corresponding to
the point S1 x̃ in image 2.

For an arbitrary point S1 x̃ in image 1 except the epipole ẽ1, the epipolar line
S2 l̃ = F S1 x̃ contains the epipole ẽ2 in image 2 (Hartley and Zisserman, 2003). The
epipoles ẽ1 and ẽ2 are defined in the sensor coordinate system of camera 1 and 2,
respectively. We thus have ẽT

2

(

F S1 x̃
)

=
(

ẽT
2 F
) S1 x̃ = 0 for all S1 x̃, which implies

ẽT
2 F = 0. Accordingly, ẽ2 is the left null-vector of F , corresponding to the eigenvec-

tor belonging to the zero eigenvalue of FT . The epipole ẽ1 in image 1 is given by
the right null-vector of F according to F ẽ1 = 0, i.e. it corresponds to the eigenvector
belonging to the zero eigenvalue of F .

Projective Reconstruction of the Scene

In the framework of projective geometry, image formation by a pinhole camera is
defined by the projection matrix P of size 3× 4 as defined in Eq. (1.10). A pro-
jective scene reconstruction by two cameras is defined by

(

P1,P2,{Wx̃i}
)

, where P1

and P2 denote the projection matrix of camera 1 and 2, respectively, and {Wx̃i} are
the scene points reconstructed from a set of point correspondences. Hartley and Zis-
serman (2003) show that a projective scene reconstruction is always ambigous up
to a projective transformation H, where H is an arbitrary 4× 4 matrix. Hence, the
projective reconstruction given by

(

P1,P2,{Wx̃i}
)

is equivalent to the one defined by
(

P1H,P2H,{H−1 Wx̃i}
)

.
It is possible to obtain the camera projection matrices P1 and P2 from the funda-

mental matrix F in a rather straightforward manner. Without loss of generality, the
projection matrix P1 may be chosen such that P1 = [I | 0], i.e. the rotation matrix R
is the identity matrix and the translation vector t is zero, such that the world coordi-
nate system W corresponds to the coordinate system C1 of camera 1. The projection
matrix of the second camera then corresponds to

P2 =
[

[ẽ2]×F | ẽ2

]

. (1.21)

A more general form of P2 is

P2 =
[

[ẽ2]×F + ẽ2 vT | λ ẽ2
]

, (1.22)

where v is an arbitrary 3×1 vector and λ a non-zero scalar (Hartley and Zisserman,
2003). Eqs. (1.21) and (1.22) show that the fundamental matrix F and the epipole
ẽ2, which is uniquely determined by F since it corresponds to its left null-vector,
determine a projective reconstruction of the scene.

If two corresponding image points are situated exactly on their respective epipo-
lar lines, Eq. (1.20) is exactly fulfilled, such that the rays described by the image
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points S1 x̃ and S2 x̃ intersect in the point Wx̃ which can be determined by triangulation
in a straightforward manner. We will return to this scenario in Section 1.5 in the con-
text of stereo image analysis in standard geometry, where the fundamental matrix
F is assumed to be known. The search for point correspondences only takes place
along corresponding epipolar lines, such that the world coordinates of the resulting
scene points are obtained by direct triangulation. If, however, an unrestricted search
for correspondences is performed, Eq. (1.20) is generally not exactly fulfilled due to
noise in the measured coordinates of the corresponding points, and the rays defined
by them do not intersect. The projective scene point Wx̃ in the world coordinate sys-
tem is obtained from S1 x̃ and S2 x̃ based on the relations S1 x̃ = P1

Wx̃ and S2 x̃ = P2
Wx̃,

which can be combined into a linear equation of the form G Wx̃ = 0. The homoge-
neous scale factor is eliminated by computing the cross product S1 x̃× (P1

Wx̃) = 0,
which allows to express the matrix G as

G =











u1p̃(3)T
1 − p̃(1)T

1

v1p̃(3)T
1 − p̃(2)T

1

u2p̃(3)T
2 − p̃(1)T

2

v2p̃(3)T
2 − p̃(2)T

2











, (1.23)

where S1 x̃ = (u1,v1,1)T , S2 x̃ = (u2,v2,1)T , and p̃( j)T
i corresponds to the jth row

of the camera projection matrix Pi. The linear system of equations G Wx̃ = 0 is
overdetermined since Wx̃ only has three independent components due to its arbitrary
projective scale, and generally only a least-squares solution exists due to noise in the
measurements of S1 x̃ and S2 x̃. The solution for Wx̃ corresponds to the unit singular
vector that belongs to the smallest singular value of G.

However, as merely an algebraic error rather than a physically motivated geomet-
ric error is minimised by this linear approach to determine Wx̃, Hartley and Zisser-
man (2003) suggest a projective reconstruction of the scene points by minimisation
of the backprojection error in the sensor coordinate system. While S1 x̃ and S2 x̃ cor-
respond to the measured image coordinates of a pair of corresponding points, the
estimated point correspondences which exactly fulfill the epipolar constraint (1.20)
are denoted by S1 x̃(e) and S2 x̃(e). We thus have S2 x̃(e)T F S1 x̃(e) = 0. The point S1 x̃(e)

lies on an epipolar line S1 l̃ and S2 x̃(e) lies on the corresponding epipolar line S2 l̃.
However, any other pair of points lying on the lines S1 l̃ and S2 l̃ also satisfies the
epipolar constraint. Hence, the points S1 x̃(e) and S2 x̃(e) have to be determined such
that the sum of the squared Euclidean distances d2(S1 x̃,S1 l̃) and d2(S2 x̃,S2 l̃) in the
sensor coordinate system between S1 x̃ and S1 l̃ and between S2 x̃ and S2 l̃, respectively,
i.e. the backprojection error, is minimised. Here, d(Sx̃, S l̃) denotes the perpendicular
distance between the point Sx̃ and the line S l̃. This minimisation approach is equiv-
alent to bundle adjustment as long as the distance d(Sx̃, S l̃) is an Euclidean distance
in the image plane rather than merely in the sensor coordinate system, which is the
case for image sensors with zero skew and square pixels.

In each of the two images, the epipolar lines in the two images form a so-called
pencil of lines, which is an infinite number of lines which all intersect in the same
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Fig. 1.3 In each of the two images, the epipolar lines form a pencil of lines. The intersection
points correspond to the epipoles ẽ1 and ẽ2. Corresponding pairs of epipolar lines are numbered
consecutively.

point (cf. Fig. 1.3). For the pencils of epipolar lines in image 1 and 2, the intersec-
tion points correspond to the epipoles ẽ1 and ẽ2. Hence, the pencil of epipolar lines
can be parameterised by a single parameter t, such that an epipolar line in image 1
can be written as S1 l̃(t). The corresponding epipolar line S2 l̃(t) in image 2 is readily
obtained based on the fundamental matrix F . Now the backprojection error term
can be formulated as d2(S1 x̃, S1 l̃(t))+ d2(S2 x̃, S2 l̃(t)) and thus becomes a function
of the single scalar variable t. Minimising the error term with respect to t effectively
corresponds to finding the real roots of a polynomial of degree 6 (Hartley and Zis-
serman, 2003). The next step consists of selecting the points S1 x̃(e) and S2 x̃(e) which
are closest to the lines S1 l̃(tmin) and S2 l̃(tmin), respectively, in terms of the Euclidean
distance in the sensor coordinate system. The projective scene point Wx̃ in the world
coordinate system is obtained by replacing the measured normalised image point co-

ordinates (u1,v1) and (u2,v2) in Eq. (1.23) by the normalised coordinates (u(e)
1 ,v(e)

1 )

and (u(e)
2 ,v(e)

2 ) of the estimated image points S1x(e) and S2x(e). Then an exact solution
and not just a least-squares solution of the linear system of equations G W x̃ = 0 with
G given by Eq. (1.23) exists since the estimated image points S1 x̃(e) and S2 x̃(e) have
been constructed such that they fulfill the epipolar constraint exactly, and the rays
defined by S1 x̃(e) and S2 x̃(e) intersect in the point Wx̃. Hence, in this case the solution
for Wx̃ is the unit singular vector of G that belongs to its zero singular value.

Estimating the fundamental matrix F and, accordingly, the projective camera
matrices P1 and P2 and the projective scene points Wx̃i from a set of point corre-
spondences between the images can be regarded as the first (projective) stage of
camera calibration. Subsequent calibration stages consist of determining a metric
(Euclidean) scene reconstruction and camera calibration. These issues will be re-
garded further in Section 1.4.6 in the context of self-calibration of camera systems.
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1.4 Geometric Calibration of Single and Multiple Cameras

Camera calibration aims for a determination of the transformation parameters be-
tween the camera lens and the image plane as well as between the camera and the
scene based on the acquisition of images of a calibration rig with a known spatial
structure. In photogrammetry, the transformation between the camera lens and the
image plane is termed interior orientation. It is characterised by the matrix A of
the intrinsic camera parameters, which contains the principal distance b, the pixel
position (u0,v0) of the principal point in the image plane, the direction-dependent
pixel scale, the pixel skew, and the lens distortion parameters (cf. Section 1.1). The
exterior orientation of the camera, i.e. its orientation with respect to the scene, is
defined by the rotation matrix R and the translation vector t which relate the cam-
era coordinate system and the world coordinate system to each other as outlined in
Section 1.1.

In this section, we first outline early camera calibration approaches exclu-
sively devoted to the determination of the intrinsic camera parameters. We then
describe classical techniques for simultaneous intrinsic and extrinsic camera cal-
ibration which are especially suited for fast and reliable calibration of standard
video cameras and lenses which are commonly used in computer vision applica-
tions (Tsai, 1987; Zhang, 1999a; Bouguet, 2007). Furthermore, a short overview of
self-calibration techniques is given. The section is concluded by a description of
the semi-automatic calibration procedure for multi-camera systems introduced by
Krüger et al. (2004), which is based on a fully automatic extraction of control points
from the calibration images.

1.4.1 Methods for Intrinsic Camera Calibration

According to the detailed survey by Clarke and Fryer (1998), early approaches to
camera calibration in the field of aerial photography in the first half of the 20th cen-
tury mainly dealt with the determination of the intrinsic camera parameters, which
was carried out in a laboratory. This was feasible in practice due to the fact that aerial
(metric) camera lenses are focused to infinity in a fixed manner and do not contain
iris elements. The principal distance, in this case being equal to the focal length,
was computed by observing the angles through the lens to a grid plate displaying
finely etched crosses. By analysing the values for the principal distance obtained
along several radial lines in the image plane, an average “calibrated” value was se-
lected that best compensated the effects of radial distortion, which was only taken
into account in an implicit manner. The principal point was determined based on
an autocollimation method. In stereoplotting devices, radial distortion was compen-
sated by optical correction elements. Due to the low resolution of the film used for
image acquisition, there was no need to take into account tangential distortion.

In these scenarios, important sources of calibration errors are the considerable
difference in temperature between the laboratory and during flight, leading e.g. to
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insufficient flatness of the glass plates still used for photography at that time and
irregular film shrinkage (Hothmer, 1958). Hence, so-called field calibration tech-
niques were introduced in order to determine the camera parameters under the con-
ditions encountered during image acquisition. Radial distortion curves were pro-
duced based on stereo images of the flat surfaces of frozen lakes which were just
about to melt, thus showing a sufficient amount of texture on their icy surfaces to
facilitate stereo analysis. Other field calibration techniques rely on terrestrial control
points (Merrit, 1948). A still different method is based on the well-known angular
positions of stars visible in the image (Schmid, 1974). Although this method turned
out to yield very accurate calibration results, an essential drawback is the necessity
to identify each star and to take into account corrections for atmospheric refraction
and diurnal aberration.

An analytic model of radial and tangential lens distortion based on a power series
expansion has been introduced by Brown (1958) and by Brown (1966), which is still
utilised in modern calibration approaches (cf. also Eqs. (1.3) and (1.4)). These ap-
proaches involve the simultaneous determination of lens parameters, extrinsic cam-
era orientation, and coordinates of control points in the scene in the camera coor-
dinate system, based on the bundle adjustment method. A different method for the
determination of radial and tangential distortion parameters is plumb line calibra-
tion (Brown, 1971), exploiting the fact that straight lines in the real world remain
straight in the image. Radial and tangential distortions can directly be inferred from
deviations from straightness in the image. These first calibration methods based on
bundle adjustment with additional parameters for lens distortion, focal length, po-
sition of the principal point, flatness of the photographic plate, and film shrinkage
(Brown, 1958, 1966, 1971) are usually termed on-the-job calibration (Clarke and
Fryer, 1998).

1.4.2 The Direct Linear Transform (DLT) Method

In its simplest form, the direct linear transform (DLT) calibration method (Abdel-
Aziz and Karara, 1971) aims for a determination of the intrinsic and extrinsic camera
parameters according to Eq. (1.1). This goal is achieved by establishing an appropri-
ate transformation which translates the world coordinates of known control points
in the scene into image coordinates. An illustrative description of the DLT method
is given by Kwon (1998). The DLT method assumes a pinhole camera, for which,
according to the introduction given in Section 1.1, it is straightforward to derive the
relation





û
v̂
−b



= c R





x− x0

y− y0

z− z0



 . (1.24)

In Eq. (1.24), R denotes the rotation matrix that relates the world coordinate system
to the camera coordinate system as described in Section 1.1, û and v̂ the metric pixel
coordinates in the image plane relative to the principal point, and x, y, z are the



1.4 Geometric Calibration of Single and Multiple Cameras 19

components of a scene point Wx in the world coordinate system. The values x0, y0,
and z0 can be inferred from the translation vector t introduced in Section 1.1, while
c is a scalar scale factor. This scale factor amounts to

c =− b
r31(x− x0)+ r32(y− y0)+ r33(z− z0)

, (1.25)

where the coefficients ri j denote the elements of the rotation matrix R. Assuming
rectangular sensor pixels without skew, the coordinates of the image point in the
sensor coordinate system, i.e. the pixel coordinates, are given by u− u0 = kuû and
v−v0 = kvv̂, where u0 and v0 denote the position of the principal point in the sensor
coordinate system. Inserting Eq. (1.25) into Eq. (1.24) then yields the relations

u−u0 = − b
ku

r11(x− x0)+ r12(y− y0)+ r13(z− z0)

r31(x− x0)+ r32(y− y0)+ r33(z− z0)

v− v0 = − b
kv

r21(x− x0)+ r22(y− y0)+ r23(z− z0)

r31(x− x0)+ r32(y− y0)+ r33(z− z0)
(1.26)

Rearranging Eq. (1.26) results in expressions for the pixel coordinates u and v which
only depend on the coordinates x, y, and z of the scene point and eleven constant
parameters that comprise intrinsic and extrinsic camera parameters:

u =
L1x + L2y + L3z+ L4

L9x + L10y + L11z+ 1

v =
L5x + L6y + L7z+ L8

L9x + L10y + L11z+ 1
. (1.27)

If we use the abbreviations bu = b/ku, bv = b/kv, and D =−(x0r31 +y0r32 + z0r33),
the parameters L1 . . .L11 can be expressed as

L1 =
u0r31−bur11

D

L2 =
u0r32−bur12

D

L3 =
u0r33−bur13

D

L4 =
(bur11−u0r31)x0 +(bur12−u0r32)y0 +(bur13−u0r33)z0

D

L5 =
v0r31−bvr21

D

L6 =
v0r32−bvr22

D

L7 =
v0r33−bvr23

D

L8 =
(bvr21− v0r31)x0 +(bvr22− v0r32)y0 +(bvr23− v0r33)z0

D


