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Preface

Discrete differential geometry (DDG) is a new and active mathematical terrain where
differential geometry (providing the classical theory of smooth manifolds) interacts with
discrete geometry (concerned with polytopes, simplicial complexes, etc.), using tools and
ideas from all parts of mathematics. DDG aims to develop discrete equivalents of the
geometric notions and methods of classical differential geometry. Current interest in this
field derives not only from its importance in pure mathematics but also from its relevance
for other fields such as computer graphics.

Discrete differential geometry initially arose from the observation that when a no-
tion from smooth geometry (such as that of a minimal surface) is discretized “properly”,
the discrete objects are not merely approximations of the smooth ones, but have spe-
cial properties of their own, which make them form a coherent entity by themselves.
One might suggest many different reasonable discretizations with the same smooth limit.
Among these, which one is the best? From the theoretical point of view, the best dis-
cretization is the one which preserves the fundamental properties of the smooth theory.
Often such a discretization clarifies the structures of the smooth theory and possesses im-
portant connections to other fields of mathematics, for instance to projective geometry,
integrable systems, algebraic geometry, or complex analysis. The discrete theory is in a
sense the more fundamental one: the smooth theory can always be recovered as a limit,
while it is a nontrivial problem to find which discretization has the desired properties.

The problems considered in discrete differential geometry are numerous and in-
clude in particular: discrete notions of curvature, special classes of discrete surfaces (such
as those with constant curvature), cubical complexes (including quad-meshes), discrete
analogs of special parametrization of surfaces (such as conformal and curvature-line
parametrizations), the existence and rigidity of polyhedral surfaces (for example, of a
given combinatorial type), discrete analogs of various functionals (such as bending en-
ergy), and approximation theory. Since computers work with discrete representations of
data, it is no surprise that many of the applications of DDG are found within computer
science, particularly in the areas of computational geometry, graphics and geometry pro-
cessing.

Despite much effort by various individuals with exceptional scientific breadth, large
gaps remain between the various mathematical subcommunities working in discrete dif-
ferential geometry. The scientific opportunities and potential applications here are very
substantial. The goal of the Oberwolfach Seminar “Discrete Differential Geometry” held
in May–June 2004 was to bring together mathematicians from various subcommunities
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working in different aspects of DDG to give lecture courses addressed to a general math-
ematical audience. The seminar was primarily addressed to students and postdocs, but
some more senior specialists working in the field also participated.

There were four main lecture courses given by the editors of this volume, corre-
sponding to the four parts of this book:

I: Discretization of Surfaces: Special Classes and Parametrizations,
II: Curvatures of Discrete Curves and Surfaces,

III: Geometric Realizations of Combinatorial Surfaces,
IV: Geometry Processing and Modeling with Discrete Differential Geometry.

These courses were complemented by related lectures by other participants. The topics
were chosen to cover (as much as possible) the whole spectrum of DDG—from differen-
tial geometry and discrete geometry to applications in geometry processing.

Part I of this book focuses on special discretizations of surfaces, including those
related to integrable systems. Bobenko’s “Surfaces from Circles” discusses several ways
to discretize surfaces in terms of circles and spheres, in particular a Möbius-invariant
discretization of Willmore energy and S-isothermic discrete minimal surfaces. The latter
are explored in more detail, with many examples, in Bücking’s article. Pinkall constructs
discrete surfaces of constant negative curvature, documenting an interactive computer
tool that works in real time. The final three articles focus on connections between quad-
surfaces and integrable systems: Schief, Bobenko and Hoffmann consider the rigidity of
quad-surfaces; Hoffmann constructs discrete versions of the smoke-ring flow and Hashi-
moto surfaces; and Suris considers discrete holomorphic and harmonic functions on quad-
graphs.

Part II considers discretizations of the usual notions of curvature for curves and
surfaces in space. Sullivan’s “Curves of Finite Total Curvature” gives a unified treatment
of curvatures for smooth and polygonal curves in the framework of such FTC curves. The
article by Denne and Sullivan considers isotopy and convergence results for FTC graphs,
with applications to geometric knot theory. Sullivan’s “Curvatures of Smooth and Discrete
Surfaces” introduces different discretizations of Gauss and mean curvature for polyhedral
surfaces from the point of view of preserving integral curvature relations.

Part III considers the question of realizability: which polyhedral surfaces can be em-
bedded in space with flat faces. Ziegler’s “Polyhedral Surfaces of High Genus” describes
constructions of triangulated surfaces with n vertices having genus O.n2/ (not known to
be realizable) or genus O.n logn/ (realizable). Timmreck gives some new criteria which
could be used to show surfaces are not realizable. Lutz discusses automated methods to
enumerate triangulated surfaces and to search for realizations. Bokowski discusses heuris-
tic methods for finding realizations, which he has used by hand.

Part IV focuses on applications of discrete differential geometry. Schröder’s “What
Can We Measure?” gives an overview of intrinsic volumes, Steiner’s formula and Had-
wiger’s theorem. Wardetzky shows that normal convergence of polyhedral surfaces to a
smooth limit suffices to get convergence of area and of mean curvature as defined by the



Preface vii

cotangent formula. Desbrun, Kanso and Tong discuss the use of a discrete exterior calcu-
lus for computational modeling. Grinspun considers a discrete model, based on bending
energy, for thin shells.

We wish to express our gratitude to the Mathematisches Forschungsinstitut Ober-
wolfach for providing the perfect setting for the seminar in 2004. Our work in discrete
differential geometry has also been supported by the Deutsche Forschungsgemeinschaft
(DFG), as well as other funding agencies. In particular, the DFG Research Unit “Poly-
hedral Surfaces”, based at the Technische Universität Berlin since 2005, has provided
direct support to the three of us (Bobenko, Sullivan, Ziegler) based in Berlin, as well as
to Bücking and Lutz. Further authors including Hoffmann, Schief, Suris and Timmreck
have worked closely with this Research Unit; the DFG also supported Hoffmann through
a Heisenberg Fellowship. The DFG Research Center MATHEON in Berlin, through its
Application Area F “Visualization”, has supported work on the applications of discrete
differential geometry. Support from MATHEON went to authors Bücking and Wardetzky
as well as to the three of us in Berlin. The National Science Foundation supported the
work of Grinspun and Schröder, as detailed in the acknowledgments in their articles.

Our hope is that this book will stimulate the interest of other mathematicians to
work in the field of discrete differential geometry, which we find so fascinating.

Alexander I. Bobenko
Peter Schröder
John M. Sullivan
Günter M. Ziegler Berlin, September 2007
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Part I

Discretization of Surfaces:

Special Classes and Parametrizations



Discrete Differential Geometry, A.I. Bobenko, P. Schröder, J.M. Sullivan and G.M. Ziegler, eds.

Oberwolfach Seminars, Vol. 38, 3–35
c� 2008 Birkhäuser Verlag Basel/Switzerland

Surfaces from Circles

Alexander I. Bobenko

Abstract. In the search for appropriate discretizations of surface theory it is crucial
to preserve fundamental properties of surfaces such as their invariance with respect to
transformation groups. We discuss discretizations based on Möbius-invariant building
blocks such as circles and spheres. Concrete problems considered in these lectures
include the Willmore energy as well as conformal and curvature-line parametrizations
of surfaces. In particular we discuss geometric properties of a recently found discrete
Willmore energy. The convergence to the smooth Willmore functional is shown for
special refinements of triangulations originating from a curvature-line parametrization
of a surface. Further we treat special classes of discrete surfaces such as isothermic,
minimal, and constant mean curvature. The construction of these surfaces is based on
the theory of circle patterns, in particular on their variational description.

Keywords. Circular nets, discrete Willmore energy, discrete curvature lines, isothermic
surfaces, discrete minimal surfaces, circle patterns.

1. Why from circles?

The theory of polyhedral surfaces aims to develop discrete equivalents of the geomet-
ric notions and methods of smooth surface theory. The latter appears then as a limit of
refinements of the discretization. Current interest in this field derives not only from its
importance in pure mathematics but also from its relevance for other fields like computer
graphics.

One may suggest many different reasonable discretizations with the same smooth
limit. Which one is the best? In the search for appropriate discretizations, it is crucial
to preserve the fundamental properties of surfaces. A natural mathematical discretization
principle is the invariance with respect to transformation groups. A trivial example of this
principle is the invariance of the theory with respect to Euclidean motions. A less trivial
but well-known example is the discrete analog for the local Gaussian curvature defined as
the angle defect G.v/ D 2� �P ˛i ; at a vertex v of a polyhedral surface. Here the ˛i
are the angles of all polygonal faces (see Figure 3) of the surface at vertex v. The discrete
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FIGURE 1. Discrete surfaces made from circles: general simplicial sur-
face and a discrete minimal Enneper surface.

Gaussian curvature G.v/ defined in this way is preserved under isometries, which is a
discrete version of the Theorema Egregium of Gauss.

In these lectures, we focus on surface geometries invariant under Möbius transfor-
mations. Recall that Möbius transformations form a finite-dimensional Lie group gener-
ated by inversions in spheres; see Figure 2. Möbius transformations can be also thought

R

CBA

FIGURE 2. Inversion B 7! C in a sphere, jABjjAC j D R2. A sphere
and a torus of revolution and their inversions in a sphere: spheres are
mapped to spheres.

as compositions of translations, rotations, homotheties and inversions in spheres. Alter-
natively, in dimensions n � 3, Möbius transformations can be characterized as conformal
transformations: Due to Liouville’s theorem any conformal mapping F W U ! V be-
tween two open subsets U; V � Rn; n � 3, is a Möbius transformation.
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Many important geometric notions and properties are known to be preserved by
Möbius transformations. The list includes in particular:

� spheres of any dimension, in particular circles (planes and straight lines are treated
as infinite spheres and circles),
� intersection angles between spheres (and circles),
� curvature-line parametrization,
� conformal parametrization,
� isothermic parametrization (conformal curvature-line parametrization),
� the Willmore functional (see Section 2).

For discretization of Möbius-invariant notions it is natural to use Möbius-invariant
building blocks. This observation leads us to the conclusion that the discrete conformal or
curvature-line parametrizations of surfaces and the discrete Willmore functional should
be formulated in terms of circles and spheres.

2. Discrete Willmore energy

The Willmore functional [42] for a smooth surface S in 3-dimensional Euclidean space is

W.S/ D 1

4

Z
S

.k1 � k2/2dA D
Z
S

H 2dA�
Z
S

KdA:

Here dA is the area element, k1 and k2 the principal curvatures, H D 1
2
.k1 C k2/ the

mean curvature, and K D k1k2 the Gaussian curvature of the surface.
Let us mention two important properties of the Willmore energy:

� W.S/ � 0 andW.S/ D 0 if and only if S is a round sphere.
� W.S/ (and the integrand .k1 � k2/2dA) is Möbius-invariant [1, 42].

Whereas the first claim almost immediately follows from the definition, the second is a
nontrivial property. Observe that for closed surfacesW.S/ and

R
S
H 2dA differ by a topo-

logical invariant
R
KdA D 2��.S/. We prefer the definition of W.S/ with a Möbius-

invariant integrand.
Observe that minimization of the Willmore energyW seeks to make the surface “as

round as possible”. This property and the Möbius invariance are two principal goals of
the geometric discretization of the Willmore energy suggested in [3]. In this section we
present the main results of [3] with complete derivations, some of which were omitted
there.

2.1. Discrete Willmore functional for simplicial surfaces

Let S be a simplicial surface in 3-dimensional Euclidean space with vertex set V , edgesE
and (triangular) faces F . We define the discrete Willmore energy of S using the circum-
circles of its faces. Each (internal) edge e 2 E is incident to two triangles. A consistent
orientation of the triangles naturally induces an orientation of the corresponding circum-
circles. Let ˇ.e/ be the external intersection angle of the circumcircles of the triangles
sharing e, meaning the angle between the tangent vectors of the oriented circumcircles (at
either intersection point).
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Definition 2.1. The local discrete Willmore energy at a vertex v is the sum

W.v/ D
X
e3v

ˇ.e/ � 2�:

over all edges incident to v. The discrete Willmore energy of a compact simplicial surface
S without boundary is the sum over all vertices

W.S/ D 1

2

X
v2V

W.v/ D
X
e2E

ˇ.e/ � �jV j:

Here jV j is the number of vertices of S .

ˇi

ˇi

˛i

v

ˇ1

ˇ2

ˇn

FIGURE 3. Definition of discrete Willmore energy.

Figure 3 presents two neighboring circles with their external intersection angle ˇi
as well as a view “from the top” at a vertex v showing all n circumcircles passing through
v with the corresponding intersection angles ˇ1; : : : ; ˇn. For simplicity we will consider
only simplicial surfaces without boundary.

The energy W.S/ is obviously invariant with respect to Möbius transformations.
The star S.v/ of the vertex v is the subcomplex of S consisting of the triangles

incident with v. The vertices of S.v/ are v and all its neighbors. We call S.v/ convex if
for each of its faces f 2 F.S.v// the star S.v/ lies to one side of the plane of f and
strictly convex if the intersection of S.v/ with the plane of f is f itself.

Proposition 2.2. The conformal energy W.v/ is non-negative and vanishes if and only if
the star S.v/ is convex and all its vertices lie on a common sphere.

The proof of this proposition is based on an elementary lemma.

Lemma 2.3. Let P be a (not necessarily planar) n-gon with external angles ˇi . Choose
a point P and connect it to all vertices of P. Let ˛i be the angles of the triangles at the
tip P of the pyramid thus obtained (see Figure 4). Then

nX
iD1

ˇi �
nX
iD1

˛i ;

and equality holds if and only if P is planar and convex and the vertex P lies inside P.
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�i

ˇi

P

ˇiC1

ıi

˛i

˛iC1

�iC1

FIGURE 4. Proof of Lemma 2.3

Proof. Denote by �i and ıi the angles of the triangles at the vertices of P , as in Figure 4.
The claim of Lemma 2.3 follows from summing over all i D 1; : : : ; n the two obvious
relations

ˇiC1 � � � .�iC1 C ıi /
˛i D � � .�i C ıi /:

All inequalities become equalities only in the case when P is planar, convex and con-
tains P . �

For P in the convex hull of P we have
P
˛i � 2� . As a corollary we obtain a

polygonal version of Fenchel’s theorem [21]:

Corollary 2.4.
nX
iD1

ˇi � 2�:

Proof of Proposition 2.2. The claim of Proposition 2.2 is invariant with respect to Möbius
transformations. Applying a Möbius transformation M that maps the vertex v to infinity,
M.v/ D 1, we make all circles passing through v into straight lines and arrive at the
geometry shown in Figure 4 with P DM.1/. Now the result follows immediately from
Corollary 2.4. �

Theorem 2.5. Let S be a compact simplicial surface without boundary. Then

W.S/ � 0;
and equality holds if and only if S is a convex polyhedron inscribed in a sphere, i.e., a
Delaunay triangulation of a sphere.

Proof. Only the second statement needs to be proven. By Proposition 2.2, the equality
W.S/ D 0 implies that the star of each vertex of S is convex (but not necessarily strictly
convex). Deleting the edges that separate triangles lying in a common plane, one obtains
a polyhedral surface SP with circular faces and all strictly convex vertices and edges.
Proposition 2.2 implies that for every vertex v there exists a sphere Sv with all vertices
of the star S.v/ lying on it. For any edge .v1; v2/ of SP two neighboring spheres Sv1

and
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Sv2
share two different circles of their common faces. This implies Sv1

D Sv2
and finally

the coincidence of all the spheres Sv . �

2.2. Non-inscribable polyhedra

The minimization of the conformal energy for simplicial spheres is related to a classical
result of Steinitz [40], who showed that there exist abstract simplicial 3-polytopes without
geometric realizations as convex polytopes with all vertices on a common sphere. We call
these combinatorial types non-inscribable.

Let S be a simplicial sphere with vertices colored in black and white. Denote the
sets of white and black vertices by Vw and Vb , respectively, V D Vw [ Vb . Assume
that there are no edges connecting two white vertices and denote the sets of the edges
connecting white and black vertices and two black vertices by Ewb andEbb , respectively,
E D Ewb [Ebb . The sum of the local discrete Willmore energies over all white vertices
can be represented as X

v2Vw

W.v/ D
X
e2Ewb

ˇ.e/ � 2� jVw j:

Its non-negativity yields
P
e2Ewb

ˇ.e/ � 2� jVw j. For the discrete Willmore energy of S
this implies

W.S/ D
X
e2Ewb

ˇ.e/C
X
e2Ebb

ˇ.e/ � �.jVw j C jVbj/ � �.jVw j � jVbj/: (2.1)

Equality here holds if and only if ˇ.e/ D 0 for all e 2 Ebb and the star of any white
vertices is convex, with vertices lying on a common sphere. We come to the conclusion
that the polyhedra of this combinatorial type with jVw j > jVbj have positive Willmore
energy and thus cannot be realized as convex polyhedra all of whose vertices belong to a
sphere. These are exactly the non-inscribable examples of Steinitz (see [24]).

One such example is presented in Figure 5. Here the centers of the edges of the
tetrahedron are black and all other vertices are white, so jVw j D 8; jVbj D 6. The esti-
mate (2.1) implies that the discrete Willmore energy of any polyhedron of this type is at
least 2� . The polyhedra with energy equal to 2� are constructed as follows. Take a tetra-
hedron, color its vertices white and chose one black vertex per edge. Draw circles through
each white vertex and its two black neighbors. We get three circles on each face. Due to
Miquel’s theorem (see Figure 10) these three circles intersect at one point. Color this new
vertex white. Connect it by edges to all black vertices of the triangle and connect pairwise
the black vertices of the original faces of the tetrahedron. The constructed polyhedron has
W D 2� .

To construct further polyhedra with jVw j > jVbj, take a polyhedron OP whose num-
ber of faces is greater than the number of vertices j OF j > j OV j. Color all the vertices black,
add white vertices at the faces and connect them to all black vertices of a face. This yields
a polyhedron with jVw j D j OF j > jVbj D j OV j. Hodgson, Rivin and Smith [27] have found
a characterization of inscribable combinatorial types, based on a transfer to the Klein
model of hyperbolic 3-space. Their method is related to the methods of construction of
discrete minimal surfaces in Section 5.
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FIGURE 5. Discrete Willmore spheres of inscribable (W D 0) and
non-inscribable (W > 0) types.

The example in Figure 5 (right) is one of the few for which the minimum of the
discrete Willmore energy can be found by elementary methods. Generally this is a very
appealing (but probably difficult) problem of discrete differential geometry (see the dis-
cussion in [3]).

Complete understanding of non-inscribable simplicial spheres is an interesting
mathematical problem. However the existence of such spheres might be seen as a problem
for using the discrete Willmore functional for applications in computer graphics, such as
the fairing of surfaces. Fortunately the problem disappears after just one refinement step:
all simplicial spheres become inscribable. Let S be an abstract simplicial sphere. Define
its refinement SR as follows: split every edge of S in two by inserting additional vertices,
and connect these new vertices sharing a face of S by additional edges (1! 4 refinement,
as in Figure 7 (left)).

Proposition 2.6. The refined simplicial sphere SR is inscribable, and thus there exists a
polyhedron SR with the combinatorics of SR and W.SR/ D 0.

Proof. Koebe’s theorem (see Theorem 5.3, Section 5) states that every abstract simplicial
sphere S can be realized as a convex polyhedron S all of whose edges touch a common
sphere S2. Starting with this realization S it is easy to construct a geometric realization SR
of the refinement SR inscribed in S2. Indeed, choose the touching points of the edges of
S with S2 as the additional vertices of SR and project the original vertices of S (which lie
outside of the sphere S2) to S2. One obtains a convex simplicial polyhedron SR inscribed
in S2. �

2.3. Computation of the energy

For derivation of some formulas it will be convenient to use the language of quaternions.
Let f1; i; j;kg be the standard basis

ij D k; jk D i; ki D j; ii D jj D kk D �1

of the quaternion algebra H. A quaternion q D q01C q1iC q2jC q3k is decomposed in
its real part Re q WD q0 2 R and imaginary part Im q WD q1iC q2jC q3k 2 Im H. The
absolute value of q is jqj WD q20 C q21 C q22 C q23 .
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We identify vectors in R3 with imaginary quaternions

v D .v1; v2; v3/ 2 R3  ! v D v1iC v2jC v3k 2 Im H

and do not distinguish them in our notation. For the quaternionic product this implies

vw D �hv;wi C v � w; (2.2)

where hv;wi and v � w are the scalar and vector products in R3.

Definition 2.7. Let x1; x2; x3; x4 2 R3 Š Im H be points in 3-dimensional Euclidean
space. The quaternion

q.x1; x2; x3; x4/ WD .x1 � x2/.x2 � x3/�1.x3 � x4/.x4 � x1/�1

is called the cross-ratio of x1; x2; x3; x4.

The cross-ratio is quite useful due to its Möbius properties:

Lemma 2.8. The absolute value and real part of the cross-ratio q.x1; x2; x3; x4/ are
preserved by Möbius transformations. The quadrilateral x1; x2; x3; x4 is circular if and
only if q.x1; x2; x3; x4/ 2 R.

Consider two triangles with a common edge. Let a; b; c; d 2 R3 be their other
edges, oriented as in Figure 6.

b

d

a

c

ˇ

FIGURE 6. Formula for the angle between circumcircles.

Proposition 2.9. The external angle ˇ 2 Œ0; �� between the circumcircles of the triangles
in Figure 6 is given by any of the equivalent formulas:

cos.ˇ/ D �Re q
jqj D �

Re .abcd/
jabcd j

D ha; cihb; d i � ha; bihc; di � hb; cihd; aijajjbjjcjjd j : (2.3)

Here q D ab�1cd�1 is the cross-ratio of the quadrilateral.

Proof. Since Re q, jqj and ˇ are Möbius-invariant, it is enough to prove the first formula
for the planar case a; b; c; d 2 C, mapping all four vertices to a plane by a Möbius
transformation. In this case q becomes the classical complex cross-ratio. Considering the
arguments a; b; c; d 2 C one easily arrives at ˇ D � � arg q. The second representation
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follows from the identity b�1 D �b=jbj for imaginary quaternions. Finally applying (2.2)
we obtain

Re .abcd/ D ha; bihc; d i � ha � b; c � d i
D ha; bihc; d i C hb; cihd; ai � ha; cihb; d i:

�

2.4. Smooth limit

The discrete energy W is not only a discrete analogue of the Willmore energy. In this
section we show that it approximates the smooth Willmore energy, although the smooth
limit is very sensitive to the refinement method and should be chosen in a special way.
We consider a special infinitesimal triangulation which can be obtained in the limit of
1! 4 refinements (see Figure 7 (left)) of a triangulation of a smooth surface. Intuitively
it is clear that in the limit one has a regular triangulation such that almost every vertex is
of valence 6 and neighboring triangles are congruent up to sufficiently high order in � (�
being of the order of the distances between neighboring vertices).

'3 '2

'1

�b

b

a

�c

c

�a

B

C
A

ˇ

FIGURE 7. Smooth limit of the discrete Willmore energy. Left: The
1 ! 4 refinement. Middle: An infinitesimal hexagon in the parameter
plane with a (horizontal) curvature line. Right: The ˇ-angle correspond-
ing to two neighboring triangles in R3.

We start with a comparison of the discrete and smooth Willmore energies for an
important modeling example. Consider a neighborhood of a vertex v 2 S, and represent
the smooth surface locally as a graph over the tangent plane at v:

R2 3 .x; y/ 7! f .x; y/ D
�
x; y;

1

2
.k1x

2 C k2y2/C o.x2 C y2/
�
2 R3; .x; y/! 0:

Here x; y are the curvature directions and k1; k2 are the principal curvatures at v. Let
the vertices .0; 0/, a D .a1; a2/ and b D .b1; b2/ in the parameter plane form an acute
triangle. Consider the infinitesimal hexagon with vertices �a; �b; �c;��a;��b;��c, (see
Figure 7 (middle)), with b D a C c. The coordinates of the corresponding points on the
smooth surface are

f .˙�a/ D �.˙a1;˙a2; �ra C o.�//;
f .˙�c/ D �.˙c1;˙c2; �rc C o.�//;
f .˙�b/ D .f .˙�a/C f .˙�c//C �2R; R D .0; 0; r C o.�//;
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where

ra D 1

2
.k1a

2
1 C k2a22/; rc D 1

2
.k1c

2
1 C k2c22/; r D .k1a1c1 C k2a2c2/

and a D .a1; a2/; c D .c1; c2/.
We will compare the discrete Willmore energy W of the simplicial surface com-

prised by the vertices f .�a/; : : : ; f .��c/ of the hexagonal star with the classical Will-
more energy W of the corresponding part of the smooth surface S . Some computations
are required for this. Denote by �A D f .�a/; �B D f .�b/; �C D f .�c/ the vertices of
two corresponding triangles (as in Figure 7 (right)), and also by jaj the length of a and by
ha; ci D a1c1 C a2c2 the corresponding scalar product.

Lemma 2.10. The external angle ˇ.�/ between the circumcircles of the triangles with the
vertices .0; A;B/ and .0; B; C / (as in Figure 7 (right)) is given by

ˇ.�/ D ˇ.0/Cw.b/C o.�2/; � ! 0; w.b/ D �2 g cosˇ.0/ � h
jaj2jcj2 sinˇ.0/

: (2.4)

Here ˇ.0/ is the external angle of the circumcircles of the triangles .0; a; b/ and .0; b; c/
in the plane, and

g D jaj2rc.r C rc/C jcj2ra.r C ra/C r2

2
.jaj2 C jcj2/;

h D jaj2rc.r C rc/C jcj2ra.r C ra/� ha; ci.r C 2ra/.r C 2rc/:
Proof. Formula (2.3) with a D �C; b D A; c D C C �R; d D �A� �R yields for cosˇ

hC;C C �RihA;AC �Ri � hA;C ihAC �R;C C �Ri � hA;C C �RihAC �R;C i
jAjjC jjAC �RjjC C �Rj ;

where jAj is the length of A. Substituting the expressions for A;C;R we see that the term
of order � of the numerator vanishes, and we obtain for the numerator

jaj2jcj2 � 2ha; ci2 C �2hC o.�2/:
For the terms in the denominator we get

jAj D jaj
�
1C r2a

2jaj2 �
2 C o.�2/

�
; jAC �Rj D jaj

�
1C .r C ra/2

2jaj2 �2 C o.�2/
�

and similar expressions for jC j and jC C �Rj. Substituting this to the formula for cosˇ
we obtain

cosˇ D 1 � 2
� ha; ci
jajjcj

�2
C �2

jaj2jcj2
�
h� g�1 � 2� ha; cijajjcj

�2��C o.�2/:
Observe that this formula can be read as

cosˇ.�/ D cosˇ.0/C �2

jaj2jcj2
�
h � g cosˇ.0/

�C o.�2/;
which implies the asymptotics (2.4). �
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The term w.b/ is in fact the part of the discrete Willmore energy of the vertex v
coming from the edge b. Indeed the sum of the angles ˇ.0/ over all 6 edges meeting at v
is 2� . Denote by w.a/ and w.c/ the parts of the discrete Willmore energy corresponding
to the edges a and c. Observe that for the opposite edges (for example a and�a) the terms
w coincide. Denote by W�.v/ the discrete Willmore energy of the simplicial hexagon we
consider. We have

W�.v/ D .w.a/C w.b/C w.c//C o.�2/:
On the other hand the part of the classical Willmore functional corresponding to the ver-
tex v is

W�.v/ D 1

4
.k1 � k2/2S C 0.�2/;

where the area S is one third of the area of the hexagon or, equivalently, twice the area of
one of the triangles in the parameter domain

S D �2jajjcj sin �:

Here � is the angle between the vectors a and c. An elementary geometric consideration
implies

ˇ.0/ D 2� � �: (2.5)

We are interested in the quotient W�=W� which is obviously scale-invariant. Let us nor-
malize jaj D 1 and parametrize the triangles by the angles between the edges and by the
angle to the curvature line; see Figure 7 (middle).

.a1; a2/ D .cos�1; sin�1/; (2.6)

.c1; c2/ D
� sin �2

sin �3
cos.�1 C �2 C �3/; sin �2

sin �3
sin.�1 C �2 C �3/

�
:

The moduli space of the regular lattices of acute triangles is described as follows,

ˆ D f� D .�1; �2; �3/ 2 R3j 0 � �1 < �

2
; 0 < �2 <

�

2
; 0 < �3 <

�

2
;
�

2
< �2C�3g:

Proposition 2.11. The limit of the quotient of the discrete and smooth Willmore energies

Q.�/ WD lim
�!0

W�.v/

W�.v/

is independent of the curvatures of the surface and depends on the geometry of the trian-
gulation only. It is

Q.�/ D 1 � .cos 2�1 cos �3 C cos.2�1 C 2�2 C �3//2 C .sin 2�1 cos�3/2

4 cos�2 cos�3 cos.�2 C �3/ ; (2.7)

and we have Q > 1. The infimum infˆQ.�/ D 1 corresponds to one of the cases when
two of the three lattice vectors a; b; c are in the principal curvature directions:

� �1 D 0, �2 C �3 ! �
2

,
� �1 D 0, �2 ! �

2
,

� �1 C �2 D �
2

, �3 ! �
2

.
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Proof. The proof is based on a direct but rather involved computation. We used the Math-
ematica computer algebra system for some of the computations. Introduce

Qw WD 4w

.k1 � k2/2S :

This gives in particular

Qw.b/ D 2 hC g.2 cos2 � � 1/
.k1 � k2/2jaj3jcj3 cos � sin2 �

D 2
hC g�2 ha;ci2

jaj2jcj2 � 1
�

.k1 � k2/2ha; ci.jaj2jcj2 � ha; ci2/ :

Here we have used the relation (2.5) between ˇ.0/ and � . In the sum over the edges
Q D Qw.a/C Qw.b/C Qw.c/ the curvatures k1; k2 disappear and we get Q in terms of the
coordinates of a and c:

Q D 2
�
.a21c

2
2 C a22c21/.a1c1 C a2c2/C a21c21.a22 C c22/C a22c22.a21 C c21/

C 2a1a2c1c2
�
.a1 C c1/2 C .a2 C c2/2

��
=�

.a1c1 C a2c2/
�
a1.a1 C c1/C a2.a2 C c2/

��
.a1 C c1/c1 C .a2 C c2/c2

��
:

Substituting the angle representation (2.6) we obtain

Q D sin 2�1 sin 2.�1 C �2/C 2 cos�2 sin.2�1 C �2/ sin 2.�1 C �2 C �3/
4 cos�2 cos�3 cos.�2 C �3/ :

One can check that this formula is equivalent to (2.7). Since the denominator in (2.7)
on the space ˆ is always negative we have Q > 1. The identity Q D 1 holds only
if both terms in the nominator of (2.7) vanish. This leads exactly to the cases indicated
in the proposition when the lattice vectors are directed along the curvature lines. Indeed
the vanishing of the second term in the nominator implies either �1 D 0 or �3 ! �

2
.

Vanishing of the first term in the nominator with �1 D 0 implies �2 ! �
2

or �2C�3 ! �
2

.
Similarly in the limit �3 ! �

2
the vanishing of�

cos 2�1 cos�3 C cos.2�1 C 2�2 C �3/
�2
=cos�3

implies �1 C �2 D �
2

. One can check that in all these cases Q.�/! 1. �

Note that for the infinitesimal equilateral triangular lattice �2 D �3 D �
3

the result is
independent of the orientation �1 with respect to the curvature directions, and the discrete
Willmore energy is in the limit Q D 3=2 times larger than the smooth one.

Finally, we come to the following conclusion.

Theorem 2.12. Let S be a smooth surface with Willmore energyW.S/. Consider a sim-
plicial surface S� such that its vertices lie on S and are of degree 6, the distances between
the neighboring vertices are of order �, and the neighboring triangles of S� meeting at
a vertex are congruent up to order �3 (i.e., the lengths of the corresponding edges differ
by terms of order at most �4), and they build elementary hexagons the lengths of whose
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opposite edges differ by terms of order at most �4. Then the limit of the discrete Willmore
energy is bounded from below by the classical Willmore energy

lim
�!0

W.S�/ �W.S/: (2.8)

Moreover, equality in (2.8) holds if S� is a regular triangulation of an infinitesimal cur-
vature-line net of S , i.e., the vertices of S� are at the vertices of a curvature-line net of
S.

Proof. Consider an elementary hexagon of S� . Its projection to the tangent plane of the
central vertex is a hexagon which can be obtained from the modeling one considered
in Proposition 2.11 by a perturbation of vertices of order o.�3/. Such perturbations con-
tribute to the terms of order o.�2/ of the discrete Willmore energy. The latter are irrelevant
for the considerations of Proposition 2.11. �

Possibly minimization of the discrete Willmore energy with the vertices constrained
to lie on S could be used for computation of a curvature-line net.

2.5. Bending energy for simplicial surfaces

An accurate model for bending of discrete surfaces is important for modeling in computer
graphics. The bending energy of smooth thin shells (compare [22]) is given by the integral

E D
Z
.H �H0/2dA;

where H0 and H are the mean curvatures of the original and deformed surface, respec-
tively. For H0 D 0 it reduces to the Willmore energy.

To derive the bending energy for simplicial surfaces let us consider the limit of fine
triangulations, where the angles between the normals of neighboring triangles become
small. Consider an isometric deformation of two adjacent triangles. Let � be the external
dihedral angle of the edge e, or, equivalently, the angle between the normals of these
triangles (see Figure 8) and ˇ.�/ the external intersection angle between the circumcircles
of the triangles (see Figure 3) as a function of � .

� 2

X4

X1

3

1

X3

l3

X2

l1

l2

FIGURE 8. Defining the bending energy for simplicial surfaces.
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Proposition 2.13. Assume that the circumcenters of two adjacent triangles do not coin-
cide. Then in the limit of small angles � ! 0 the angle ˇ between the circles behaves as
follows:

ˇ.�/ D ˇ.0/C l

4L
�2 C o.�3/:

Here l is the length of the edge and L ¤ 0 is the distance between the centers of the
circles.

Proof. Let us introduce the orthogonal coordinate system with the origin at the middle
point of the common edge e, the first basis vector directed along e, and the third basis
vector orthogonal to the left triangle. Denote by X1; X2 the centers of the circumcir-
cles of the triangles and by X3; X4 the end points of the common edge; see Figure 8.
The coordinates of these points are X1 D .0;�l1; 0/; X2 D .0; l2 cos �; l2 sin �/;X3 D
.l3; 0; 0/; X4 D .�l3; 0; 0/. Here 2l3 is the length of the edge e, and l1 and l2 are the dis-
tances from its middle point to the centers of the circumcirlces (for acute triangles). The
unit normals to the triangles are N1 D .0; 0; 1/ and N2 D .0;� sin �; cos �/. The angle ˇ
between the circumcircles intersecting at the point X4 is equal to the angle between the
vectors A D N1� .X4�X1/ and B D N2 � .X4�X2/. The coordinates of these vectors
are A D .�l1;�l3; 0/, B D .l2;�l3 cos �;�l3 sin �/. This implies for the angle

cosˇ.�/ D l23 cos � � l1l2
r1r2

; (2.9)

where ri D
q
l2i C l23 ; i D 1; 2 are the radii of the corresponding circumcircles. Thus

ˇ.�/ is an even function, in particular ˇ.�/ D ˇ.0/CB�2C o.�3/. Differentiating (2.9)
by �2 we obtain

B D l23
2r1r2 sinˇ.0/

:

Also formula (2.9) yields

sinˇ.0/ D l3L

r1r2
;

where L D jl1 C l2j is the distance between the centers of the circles. Finally combining
these formulas we obtain B D l3=.2L/. �

This proposition motivates us to define the bending energy of simplicial surfaces as

E D
X
e2E

l

L
�2:

For discrete thin-shells this bending energy was suggested and analyzed by Grinspun et al.
[23, 22]. The distance between the barycenters was used for L in the energy expression,
and possible advantages in using circumcenters were indicated. Numerical experiments
demonstrate good qualitative simulation of real processes.

Further applications of the discrete Willmore energy in particular for surface restora-
tion, geometry denoising, and smooth filling of a hole can be found in [8].
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3. Circular nets as discrete curvature lines

Simplicial surfaces as studied in the previous section are too unstructured for analytical
investigation. An important tool in the theory of smooth surfaces is the introduction of
(special) parametrizations of a surface. Natural analogues of parametrized surfaces are
quadrilateral surfaces, i.e., discrete surfaces made from (not necessarily planar) quadrilat-
erals. The strips of quadrilaterals obtained by gluing quadrilaterals along opposite edges
can be considered as coordinate lines on the quadrilateral surface.

We start with a combinatorial description of the discrete surfaces under considera-
tion.

Definition 3.1. A cellular decomposition D of a two-dimensional manifold (with bound-
ary) is called a quad-graph if the cells have four sides each.

A quadrilateral surface is a mapping f of a quad-graph to R3. The mapping f is
given just by the values at the vertices of D, and vertices, edges and faces of the quad-
graph and of the quadrilateral surface correspond. Quadrilateral surfaces with planar faces
were suggested by Sauer [35] as discrete analogs of conjugate nets on smooth surfaces.
The latter are the mappings .x; y/ 7! f .x; y/ 2 R3 such that the mixed derivative fxy is
tangent to the surface.

Definition 3.2. A quadrilateral surface f W D ! R3 all faces of which are circular (i.e.,
the four vertices of each face lie on a common circle) is called a circular net (or discrete
orthogonal net).

Circular nets as discrete analogues of curvature-line parametrized surfaces were
mentioned by Martin, de Pont, Sharrock and Nutbourne [32, 33] . The curvature-lines
on smooth surfaces continue through any point. Keeping in mind the analogy to the
curvature-line parametrized surfaces one may in addition require that all vertices of a
circular net are of even degree.

A smooth conjugate net f W D ! R3 is a curvature-line parametrization if and only
if it is orthogonal. The angle bisectors of the diagonals of a circular quadrilateral intersect
orthogonally (see Figure 9) and can be interpreted [14] as discrete principal curvature
directions.

FIGURE 9. Principal curvature directions of a circular quadrilateral.
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There are deep reasons to treat circular nets as a discrete curvature-line parametriza-
tion.

� The class of circular nets as well as the class of curvature-line parametrized surfaces
is invariant under Möbius transformations.
� Take an infinitesimal quadrilateral .f .x; y/; f .xC�/; y/; f .xC�/; yC�/; f .x; yC
�// of a curvature-line parametrized surface. A direct computation (see [14]) shows
that in the limit � ! 0 the imaginary part of its cross-ratio is of order �3. Note that
circular quadrilaterals are characterized by having real cross-ratios.
� For any smooth curvature-line parametrized surface f W D ! R3 there exists a

family of discrete circular nets converging to f . Moreover, the convergence is C1,
i.e., with all derivatives. The details can be found in [5].

One more argument in favor of Definition 3.2 is that circular nets satisfy the con-
sistency principle, which has proven to be one of the organizing principles in discrete
differential geometry [10]. The consistency principle singles out fundamental geometries
by the requirement that the geometry can be consistently extended to a combinatorial grid
one dimension higher. The consistency of circular nets was shown by Cieśliński, Doliwa
and Santini [19] based on the following classical theorem.

Theorem 3.3 (Miquel). Consider a combinatorial cube in R3 with planar faces. Assume
that three neighboring faces of the cube are circular. Then the remaining three faces are
also circular.

Equivalently, provided the four-tuples of black vertices coming from three neigh-
boring faces of the cube lie on circles, the three circles determined by the triples of points
corresponding to three remaining faces of the cube all intersect (at the white vertex in
Figure 10). It is easy to see that all vertices of Miquel’s cube lie on a sphere. Mapping the
vertex shared by the three original faces to infinity by a Möbius transformation, we obtain
an equivalent planar version of Miquel’s theorem. This version, also shown in Figure 10,
can be proven by means of elementary geometry.

FIGURE 10. Miquel’s theorem: spherical and planar versions.
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Finally note that circular nets are also treated as a discretization of triply orthogo-
nal coordinate systems. Triply orthogonal coordinate systems in R3 are maps .x; y; z/ 7!
f .x; y; z/ 2 R3 from a subset of R3 with mutually orthogonal fx; fy ; fz . Due to the clas-
sical Dupin theorem, the level surfaces of a triply orthogonal coordinate system intersect
along their common curvature lines. Accordingly, discrete triply orthogonal systems are
defined as maps from Z3 (or a subset thereof) to R3 with all elementary hexahedra lying
on spheres [2]. Due to Miquel’s theorem a discrete orthogonal system is uniquely deter-
mined by the circular nets corresponding to its coordinate two-planes (see [19] and [10]).

4. Discrete isothermic surfaces

In this section and in the following one, we investigate discrete analogs of special classes
of surfaces obtained by imposing additional conditions in terms of circles and spheres.

We start with minor combinatorial restrictions. Suppose that the vertices of a quad-
graph D are colored black or white so that the two ends of each edge have different
colors. Such a coloring is always possible for topological discs. To model the curvature
lines, suppose also that the edges of a quad-graph D may consistently be labelled ‘C’
and ‘�’, as in Figure 11 (for this it is necessary that each vertex has an even number
of edges). Let f0 be a vertex of a circular net, f1; f3; : : : ; f4N�1 be its neighbors, and

FIGURE 11. Labelling the edges of a discrete isothermic surface.

f2; f4; : : : ; f4N its next-neighbors (see Figure 12 (left)). We call the vertex f0 generic if
it is not co-spherical with all its neighbors and a circular net f W D ! R3 generic if all
its vertices are generic.

Let f W D! R3 be a generic circular net such that every vertex is co-spherical with
all its next-neighbors. We will call the corresponding sphere central. For an analytical de-
scription of this geometry let us map the vertex f0 to infinity by a Möbius transformation
M.f0/ D 1, and denote by Fi D M.fi /, the images of the fi , for i D 1; : : : ; 4N .
The points F2; F4; : : : ; F4N are obviously coplanar. The circles of the faces are mapped
to straight lines. For the cross-ratios we get

q.f0; f2k�1; f2k; f2kC1/ D
F2k � F2kC1
F2k � F2k�1

D z2kC1
z2k�1

;

where z2kC1 is the coordinate of F2kC1 orthogonal to the plane P of F2; F4; : : : ; F4N .
(Note that since f0 is generic none of the zi vanishes.) As a corollary we get for the
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product of all cross-ratios:
nY
kD1

q.f0; f2k�1; f2k; f2kC1/ D 1: (4.1)

f1

f7f6 f8

f5

f4 f3 f2

f0

P

z1

F7

F8

F1

F6

z5

F5

F4

F3

z3

F2

z7

FIGURE 12. Central spheres of a discrete isothermic surface: combi-
natorics (left), and the Möbius normalized picture for N D 2 (right).

Definition 4.1. A circular net f W D ! R3 satisfying condition (4.1) at each vertex is
called a discrete isothermic surface.

This definition was first suggested in [6] for the case of the combinatorial square
grid D D Z2. In this case if the vertices are labelled by fm;n and the corresponding
cross-ratios by qm;n WD q.fm;n; fmC1;n; fmC1;nC1; fm;nC1/, the condition (4.1) reads

qm;nqmC1;nC1 D qmC1;nqm;nC1:

Proposition 4.2. Each vertex fm;n of a discrete isothermic surface f W Z2 ! R3 has a
central sphere, i.e., the points fm;n, fm�1;n�1, fmC1;n�1, fmC1;nC1 and fm�1;nC1 are co-
spherical. Moreover, for generic circular maps f W Z2 ! R3 this property characterizes
discrete isothermic surfaces.

Proof. Use the notation of Figure 12, with f0 � fm;n, and the same argument with the
Möbius transformationM which maps f0 to1. Consider the plane P determined by the
points F2; F4 and F6. Let as above zk be the coordinates of Fk orthogonal to the plane
P. Condition (4.1) yields

F8 � F1
F8 � F7 D

z1

z7
:

This implies that the z-coordinate of the point F8 vanishes, thus F8 2 P . �

The property to be discrete isothermic is also 3D-consistent, i.e., can be consistently
imposed on all faces of a cube. This was proven first by Hertrich-Jeromin, Hoffmann and
Pinkall [26] (see also [10] for generalizations and modern treatment).

An important subclass of discrete isothermic surfaces is given by the condition that
all the faces are conformal squares, i.e., their cross ratio equals�1. All conformal squares
are Möbius equivalent, in particular equivalent to the standard square. This is a direct
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discretization of the definition of smooth isothermic surfaces. The latter are immersions
.x; y/ 7! f .x; y/ 2 R3 satisfying

kfxk D kfyk; fx ? fy ; fxy 2 spanffx; fxg; (4.2)

i.e., conformal curvature-line parametrizations. Geometrically this definition means that
the curvature lines divide the surface into infinitesimal squares.

FIGURE 13. Right-angled kites are conformal squares.

The class of discrete isothermic surfaces is too general and the surfaces are not
rigid enough. In particular one can show that the surface can vary preserving all its black
vertices. In this case, one white vertex can be chosen arbitrarily [7]. Thus, we introduce a
more rigid subclass. To motivate its definition, let us look at the problem of discretizing
the class of conformal maps f W D ! C for D � C D R2. Conformal maps are
characterized by the conditions

jfxj D jfy j; fx ? fy : (4.3)

To define discrete conformal maps f W Z2 	 D ! C, it is natural to impose these two
conditions on two different sub-lattices (white and black) of Z2, i.e., to require that the
edges meeting at a white vertex have equal length and the edges at a black vertex meet
orthogonally. This discretization leads to the circle patterns with the combinatorics of the
square grid introduced by Schramm [37]. Each circle intersects four neighboring circles
orthogonally and the neighboring circles touch cyclically; see Figure 14 (left).

FIGURE 14. Defining discrete S-isothermic surfaces: orthogonal circle
patterns as discrete conformal maps (left) and combinatorics of S-quad-
graphs (right).
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The same properties imposed for quadrilateral surfaces with the combinatorics of
the square grid f W Z2 	 D ! R3 lead to an important subclass of discrete isothermic
surfaces. Let us require for a discrete quadrilateral surface that:

� the faces are orthogonal kites, as in Figure 13,
� the edges meet at black vertices orthogonally (black vertices are at orthogonal cor-

ners of the kites),
� the kites which do not share a common vertex are not coplanar (locality condition).

Observe that the orthogonality condition (at black vertices) implies that one pair of
opposite edges meeting at a black vertex lies on a straight line. Together with the locality
condition this implies that there are two kinds of white vertices, which we denote by
c
and
s . Each kite has white vertices of both types and the kites sharing a white vertex of
the first kind
c are coplanar.

These conditions imposed on the quad-graphs lead to S-quad-graphs and S-isother-
mic surfaces (the latter were introduced in [7] for the combinatorics of the square grid).

Definition 4.3. An S-quad-graph D is a quad-graph with black and two kinds of white
vertices such that the two ends of each edge have different colors and each quadrilateral
has vertices of all kinds; see Figure 14 (right). Let Vb.D/ be the set of black vertices. A
discrete S-isothermic surface is a map

fb W Vb.D/! R3;

with the following properties:

1. If v1, . . . , v2n 2 Vb.D/ are the neighbors of a
c -vertex in cyclic order, then fb.v1/,
. . . , fb.v2n/ lie on a circle in R3 in the same cyclic order. This defines a map from
the
c -vertices to the set of circles in R3.

2. If v1; : : : ; v2n 2 Vb.D/ are the neighbors of an
s -vertex, then fb.v1/, . . . , fb.v2n/
lie on a sphere in R3. This defines a map from the
s -vertices to the set of spheres
in R3.

3. If vc and vs are the 
c - and 
s -vertices of a quadrilateral of D, then the circle
corresponding to vc intersects the sphere corresponding to vs orthogonally.

Discrete S-isothermic surfaces are therefore composed of tangent spheres and tan-
gent circles, with the spheres and circles intersecting orthogonally. The class of discrete
S-isothermic surfaces is obviously invariant under Möbius transformations.

Given a discrete S-isothermic surface, one can add the centers of the spheres and
circles to it giving a map V.D/! R3. The discrete isothermic surface obtained is called
the central extension of the discrete S-isothermic surface. All its faces are orthogonal
kites.

An important fact of the theory of isothermic surfaces (smooth and discrete) is the
existence of a dual isothermic surface [6]. Let f W R2 	 D ! R3 be an isothermic
immersion. Then the formulas

f �
x D

fx

kfxk2 ; f �
y D �

fy

kfyk2


