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Preface

In the Riemann zeta function ((s), the non-real zeros or Riemann zeros,
denoted p, play an essential role mainly in number theory, and thereby gen-
erate considerable interest. However, they are very elusive objects. Thus, no
individual zero has an analytically known location; and the Riemann Hy-
pothesis, which states that all those zeros should lie on the critical line, i.e.,
have real part %, has challenged mathematicians since 1859 (exactly 150 years
ago).

For analogous symmetric sets of numbers {vy}, such as the roots of a
polynomial, the eigenvalues of a finite or infinite matrix, etc., it is well known
that symmetric functions of the {vy} tend to have more accessible properties
than the individual elements vg. And, we find the largest wealth of explicit
properties to occur in the (generalized) zeta functions of the generic form

Zeta(s,a) = , (v +a)~®

(with the extra option of replacing vy, here by selected functions f(vy)).

Not surprisingly, then, zeta functions over the Riemann zeros have been
considered, some as early as 1917. What is surprising is how small the litera-
ture on those zeta functions has remained overall. We were able to spot them
in barely a dozen research articles over the whole twentieth century and in
none of the books featuring the Riemann zeta function. So the domain exists,
but it has remained largely confidential and sporadically covered, in spite of
a recent surge of interest.

Could it then be that those zeta functions have few or uninteresting prop-
erties? In actual fact, their study yields an abundance of quite explicit results.
The significance or usefulness of the latter may then be questioned: at this
moment, we can only answer that regarding the Riemann zeros, any explicit
result, even of a collective nature, is of potential value. Hence we may turn
over the idea that zeta functions over the Riemann zeros have stagnated be-
cause they were not so interesting: it could also be that those functions have
lagged behind in their use simply because their properties never came to be
fully displayed.
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viii Preface

So, the primary aim of this monograph is to fill that very specific but
definite gap, by offering a coherent and synthetic description of the zeta
functions over the Riemann zeros (and immediate extensions thereof); we
call them “superzeta” functions here for brevity. Modeled on special-function
handbooks (our main reference case being the Hurwitz zeta function ((s, a)),
this book centers on delivering extensive lists of concrete explicit properties
and tables of handy special-value formulae for superzeta functions, grouped
in three core chapters plus Appendix B (for the variant case built over zeros
of Selberg zeta functions). In that core, we mainly wish to provide readers,
assuming they have specific queries about superzeta functions, with a broad
panel of explicit answers. For such a purpose, the key contents of the book
may be just Chap. 5 (for initial orientation) and the final results, including 20
tables of special-value formulae. The rest of the text is rather backstage mate-
rial, showing justifications, perspective, and references for those end results.

For the reasons given above, we grade no individual result or formula as
more or less “useful,” but place them all on an equal footing. Our main
justification to date for tackling those superzeta functions is simply “Because
they’re there” (like a famous mountaineer’s reply).

We now outline the contents.

Two introductory chapters review our main analytical techniques: miscel-
laneous notation and tools, specially the Mellin transformation (Chap. 1), and
zeta-regularized products (Chap. 2). The next two chapters, still introductory,
survey the Riemann zeta function itself (and close kin, the Dirichlet beta and
Hurwitz zeta functions), so as to make the book reasonably self-contained and
tutorial. All review sections are, however, filtered hierarchically: the aspects
most central to us are exposed in detail, others more sketchily (and a few just
get mentioned). We do not try to compete with the many exhaustive trea-
tises on the Riemann zeta function; on the other hand, a shorter tutorial like
ours might suit readers seeking to learn about that function from a purely
analytical, as opposed to number-theoretical, angle.

The next two chapters begin to address the superzeta functions themselves:
Chap. 5 gives an overview, and the following one introduces Explicit Formulae
from number theory, which are then applied to superzeta functions (and
compared to Selberg trace formulae for spectral zeta functions).

Chapters 7-10 form the core of the study: three kinds of superzeta func-
tions are thoroughly described in the first three chapters, then extended to
zeros of more general L- or zeta-functions in Chap. 10; except for Chap.9,
every core chapter (plus Appendix B for the Selberg case) culminates in de-
tailed Tables of special-value formulae.

To close, Chap. 11 shows one application of a superzeta function: a recently
obtained asymptotic criterion for the Riemann Hypothesis (based on the
Keiper-Li coefficients used by Li’s criterion). Finally, four Appendices treat
extra issues (A: some numerical aspects; B: extension to zeta functions over
zeros of Selberg zeta functions; C: on (log|¢])?™+1) (1), etc.; D: an English
translation of Mellin’s seminal 1917 paper in German).



Preface ix

As we aim to throw light on an unpublicized subject on which this is
the very first book as far as we know, our text is kept concrete and ex-
pository through the first half at least, favoring elementary and economical
techniques. Exercises are also proposed in the form of peripheral results left
for the reader to derive. Our wish is to have built a compact reference guide,
a kind of “Everything you always wanted to know about superzeta func-
tions ...” handbook. For the sake of improvement, we gratefully welcome
any error reports from readers (and will post errata as needed).

This text is thus directed at readers interested in analytical aspects of
number theory. It ought to be accessible to mathematicians from the graduate
level; its main assumed background is in analysis (real and complex: series
and integrals, analytic and special functions, asymptotics).

Kok ok Kok Kok ok Kok ko

For this study, I am primarily indebted to Prof. P. Cartier who initiated our
collaboration on trace formulae in the late 80s, ushering me into an area
entirely new to me; I express to him my gratitude for his stimulating help
and encouragement.

This book could never have been born without the moral support, the help,
and guidance from colleagues in the Institut de Physique Théorique (CEA-
Saclay), the Orsay area, and the Chevaleret campus (The Math. Departments
of the Paris 6-7 Universities); I can only thank them collectively here, but
most warmly, for their assistance.

My deepest thanks to my spouse Estelle, for her enduring patience, un-
derstanding, and support at all times but specially during the completion of
the writing which seemed to stretch forever; this strain was also shared from
a greater distance by our daughters Magali and Sandrine: my thanks go to
them too.

Saclay, July 2009 André Voros
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Chapter 1
Introduction

1.1 Symmetric Functions

The non-real zeros of the Riemann zeta function

[e%
-

)= i k~*  (Res>1), (1.1)

k=1

called the Riemann zeros and usually denoted p, are most elusive quantities.
Thus, no individual Riemann zero is analytically known; and the Riemann
Hypothesis (RH): Re p = 3 (Vp), has stayed unresolved since 1859 [92].

For analogous finite or infinite sets of numbers {vy}, like the roots of a
polynomial, the eigenvalues of a matrix, or the discrete spectrum of a linear
operator, the symmetric functions of {vi} tend to be much more accessible.
Some common types of additive symmetric functions, to be denoted Theta,
Zeta and (log Delta) here, are formally given by

Theta(z) def Yo e,
def —s
Zeta(s) = >z %,
Delta(a) def [T (zk +a) or, if this diverges,
(log Delta)(™(a) def (=)™t (m —1)! >, (zx +a)~™ for some m > 1,

where xp, = vy, or some other function f(vx) (such that no zx = 0 and, e.g.,
Re z — +00). It is useful to allow at least the a-shift in this remapping,
thereby obtaining a two-variable or generalized zeta function, in analogy with

the Hurwitz function (s, a) % Yoo (k+a)=*:

Zeta(s,a) < 3, (xx + a)~. (1.2)

Here we think of s as the main argument, the variable in which analyticity
properties and special values are studied, and of a as an (auxiliary) shift

A. Voros, Zeta Functions over Zeros of Zeta Functions, Lecture Notes 1
of the Unione Matematica Italiana 8, DOI 10.1007/978-3-642-05203-3_1,
(© Springer-Verlag Berlin Heidelberg 2010



2 1 Introduction

parameter which adds flexibility; i.e., we view Zeta(s,a) as a parametric

family in the type Zeta(s) (accordingly denoting Zeta'(s, a) def 0sZeta(s,a)).
The gain with Zeta(s, a) is that it encompasses the last three types above:

Zeta(s) = Zeta(s,0),
def /
Delta(a) = exp|—Zeta'(0, a)]

(when Delta is an infinite product, this is zeta-regularization, see Chap. 2),
(log Delta)™ (a) = (—1)™" L (m — 1)! Zeta(m, a);

while the Zeta type is simply a Mellin transform of the Theta type, as

oo
Zeta(s,a) = / Theta(z) e ** 257 1dz.
0

I'(s)

So, formally, all those types of symmetric functions look interchangeable
and their properties convertible from one to the other. However, experience
(especially from spectral theory) tells that zeta functions are those which
display the most explicit properties, reaching to computable special values
(values at integers) as in the case of ((s) itself.

Again from spectral techniques we borrow the idea that, besides the above
shift operation, nonlinear remappings z; = f(vx) may prove suitable before
building the symmetric functions. For instance, if {vi} is the spectrum of a
Laplacian on a manifold, both choices z; = v; and xp = /vx have their own
merits: on the circle, with the spectrum {n?},cz, the resulting Theta-type
functions are, respectively, a Jacobi 6 function and coth z/2, a generating
function for the Poisson summation formula as in (1.13); whereas on a com-
pact hyperbolic surface (normalized to curvature —1), an even better choice
than (/v is 7 = (vx — )2, as the Selberg trace formula shows. (This
formula expresses additive symmetric functions of precisely the latter xj as
dual sums carried by the periodic geodesics of the surface, see Sect.6.3.1.)

It is then very natural to study symmetric functions of the Riemann zeros
in a similar manner, and this has happened. Indeed,

e Some zeta functions built over the Riemann zeros have appeared in a few
works, as early as 1917

e A universal tool exists to evaluate fairly general additive symmetric func-
tions of the Riemann zeros: the Guinand—Weil “Explicit Formulae.”

Still, we feel that our subject (zeta functions over the Riemann zeros) re-
mains far from exhausted. For one thing, the existing studies are surprisingly
few over a long stretch of time; they are neither systematic nor error-free, are
often unaware of one another, and none has made it to the classic textbooks



1.2 Essential Basic Notation 3

on ((s); consequently there is no comprehensive, easily accessible treatment
of zeta functions over the Riemann zeros. Calculations in this field continue
to appear on a case-by-case basis.

Neither do the classic Explicit Formulae settle the issue of these zeta
functions as mere special instances: on the contrary, the most interesting
particular zeta functions over the Riemann zeros lie outside the standard
range of validity (i.e., of convergence) of those formulae.

In contrast, a dedicated study of these zeta functions uncovers a wealth
of explicit results, many of which were not given or even suspected in the
literature. The question of the importance or usefulness of those results will
not be addressed: the answer may lie in an undefined future.

There is no standardized terminology for zeta functions over zeros of zeta
functions. Chakravarty [17] used the name “secondary zeta functions,” but to
denote several Dirichlet series apart from ((x) itself which is the “primary”
zeta function (that which supplies its zeros). Here, to have a short and spe-
cific name, we choose to call “superzeta” functions all second-generation zeta
functions built over zeros of other, “primary”, zeta functions.

We continue this introduction with some essential notation, then we will
recall the most basic tools that will often serve later.

1.2 Essential Basic Notation

As a rule, we refer to [1,33].
Bernoulli polynomials (definition by generating function):

oo

=Y B B =1 B =y-}.) (3
n=0 '

e? —

ze

0 n
Bernoulli numbers: B, =B,(0) or i E B, z
ez —1 o n! (1.4)

(B():l, Blz—%, B2:%,...;B2m+1:0form:1 2,)
1 = z"
Eul bers: = E, —
uler numbers cosh 2 nz::o ol (15)

(E():l, Ezzf]., E4:5,...; E2m+1 :0f0rm:0,1,...).

Digamma function ¥ (x) and Euler’s constant ~:

O(@) Y[/ (2); v =—(1) ~ 0.5772156649 . (1.6)



