£
W

The Business
Manager’s Guide to
Software Projects

ApPress

The Business
Manager’s Guide to
Software Projects

A Framework for Decision-
Making, Team Collaboration,
and Effectiveness

Jonathan Peter Croshy

Apress’

The Business Manager's Guide to Software Projects: A Framework for
Decision-Making, Team Collaboration, and Effectiveness

Jonathan Peter Crosby
Baden, Switzerland

ISBN-13 (pbk): 978-1-4842-9230-3 ISBN-13 (electronic): 978-1-4842-9231-0
https://doi.org/10.1007/978-1-4842-9231-0

Copyright © 2023 by Jonathan Peter Crosby

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Editorial Assistant: Gryffin Winkler

Cover image designed by Isaac Soler at eStudioCalamar.

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-9231-0

Table of Contents

About the AULNOr ... ————— Xi
About the Technical REVIEWETcccumnsssssmmmmnmsmmssssssssssssnnsssesssssssssnnns Xiii
Acknowledgments.......ccccceeeemmmmmmnmmmmnmmnmnnnnmnnnssnsssnsssssssssnsnnnnnnnnnnnnnnnnnns XV
o - - T Xvii
INtroduction........cccinnmeeeenmmnnnnnnssssss s Xix
Part I: Conceptual GUIdecccrrrrssssnmmnnmmsssssnnnnmmssssssnsnssssssssnnnnsnns 1
Chapter 1: Architecture and Construction..........cccccirrrrnsssssnsnnnnsssesssnes 3
Chapter 2: Planning and SCOPEcccceeerrrrrssssssssssssnnssssssssssssssnnssssssssssns 7
The Right DIMENSIONScceeerrererrniresesere s ssssessnses 8
Hogwarts Castle—Keeping Within a Budgetc.ccocevivvnvninnnsnsnennsensenennns 9
WOrKing TOGELNEN.......cccrererirrirere s s sae e 11

Ski Resort—Software Development Methodologies.........ccveereverrerierreresenseriennes 11
Cranes—KnOWIEAgE WOTKEIScccevreveererrerersensssesessessssessessessessssessessessessssensesses 14
Chapter 3: Teething Troublesccccirrnssemnnmnssssnnnmmsssssnmssssssssessssnnn 17
Conceptual MiStaKes........ccoivirrnienennnnne s enes 18
Conceptual Mistake Example 1—Different Measurementsccccccveeveenne 19
Conceptual Mistake Example 2—Where’s the Restroom, Please? 20
Conceptual Mistake Example 3—Where’s My Suitcase?.........cccecvvvveeriereenne 21
Conceptual ReMedies.........ccocveriernininire s 21
Fixing Issues Centrally—Why Is the Tap Water Dirty?..........ccoervrvvrcencnne. 22
Beauty vs. Practicalitycccuvviennininininsnsn s 22

TABLE OF CONTENTS

Chapter 4: Greenfield Constructionccccusseemnrnssssnnnnssssnssssssssnnns 25
Houses and Cable Cars—To Buy or to Build?............ccocevevreirnicnnieneneccrenienens 27
Hollywood Fagades—The Work Behind the Scenes..........cccovverrrenerencrenscnene 29

Chapter 5: Laying the Right Foundationccccmmmmmnininnnssssssssnnnnnnns 35
Sydney Opera House—Experimental Projects........ccccovvvvnirennsnsennennsessenennns 36
The Show Must Go On—Complete Replacementcccvvvvvnvninennsensennen 41

Chapter 6: Renovating and Extendingc..ccousssesmsssssssssnsssssanssssnsssssns 45
UNTOreSEEN WOrK.......ccoveceriieriresire e 47

Chapter 7: Technical Debt...........cccunnmmmmmmmnmmnmmmmmmssssssnm—————m 49
Clearing Up the MESSccvevererrererensssesesse e ssssessessessssessessessesssssssessessessssensenses 50
Three Heating Systems—Consolidating Redundanciescccccevvecrncenenenene 51
The Leaning Tower of Pisa—Adding New Features.........c..ccccevvvnvnirienniensennenn 52

Preserving KnOW-HOW ... e 54

Chapter 8: Maintenanceccccunissmseesmmmmmmmmsssssssssmseeessssssssssmms 57
Swimming Pool Water—Incomplete Data Loads...........ccccvverievninsennenesensenennn, 58
Occasional Maintenance TaSKScccevvrerrererinnensessesiesessessessessssessessessessssessessens 59

Chapter 9: Differences Between Physical Construction and

Software Developmentccocccmminnennnmnisssnmmmsssssemssssnssasmm——— 61
Chapter 10: More Metaphors.........ccccurnnsnnnnmmssssnsnsssssssssesssssssssssssnnnnes 65
Dentistry—Choosing the Right TOOISccccceerrvrninrcrre e 66
Deep Roots—Linked SYSTEmScccccvrenerenerercrrcesee e 67
Gently Down the Stream—Data FIOWccccorvernnesnenenese e 69
Measuring QUAIILY.........ccvueeremsererssnerreserrssesessse s ses e sessssessnnes 70

iv

TABLE OF CONTENTS

Part II: Practical Guide.........ccounssummmmmssnnsmssssnssnsssnnnsssssnssssssnnssssnns 73
Chapter 11: The Practical Sideccccussemmmmnsssnnnnmnssssnnnmsssssssssssssnnnns 75
Chapter 12: Plan and Prepare......c.ccccusrussssnnnmsssssssssssssssssssssssssssssssnnnnss 77
Getting Off to @ GOOd Start.........c.cccvrivrirrnrr e ———— 77
EXECULIVE SUPPOIL... o 80
WOIK CUITUFE .. 82
Working Better TOGETher ..o 86
Integrating the TEAMS ..o s 88
INVESE iN EMPIOYEESvecerereerierersere st ses s s se s e sss s e ssesaesessessesnees 90
Realistic TIMElINES ... s 93
Managing DependenCies.........cccvurrereninnssesie s sse s e snens 94
IT INFraSTrUCTUIE ... 96
Supporting the Development TEAMS ..o 96
AULOMALION.....ccececc s 97
OUESOUICING....veteerereriererse st s s sa e a e sae s e e e s e a e s a e e s e aesaese e e naeenees 98
AcCoUNTADIlITYovereece e ————————— 100
Aligning the Strategy ... ————— 101
The Benefits of AQIlityccccccvvrirenninrrr e 102
SEttiNG OUL......ooir e ——————— 103

o (0o TS [0 ST 103
PrOJECE SUCCESSvvveerrrerrrseserrese s s s se e e s se s snanis 104
MIlESTONES........ccieriircr e —— 105
Project Organization..........ccccvevrrrienenensensesessssessese s s s e sessessessessssessessenes 106
ReSPONSIDIlItIES......cccieiricircier e 106
MEthodOoIOgYcccveeriirir e ——————— 108

TABLE OF CONTENTS

ManNAging RiSKSccccvveririiriie s s e s s s se s s sse s sesssssnesaesaeas 113
Interacting SUCCESSTUIYccverererreriere e enes 113
Active LiSteNing......c.ccoovviiririennsrene s 115
Effective COmMMUNICALIONcoveeeeeeeeeeee e s 116
ASSUMPLIONS ..o e s nne 117
EXCESSIVE JAIGON......cvecercereereeere s s e e 117
UDIQUItOUS LANQUAGEceeeecereereeeree e seenes 119
Differences of OPiNioN..........cccvrinnnni e 120
DOS ANA DON'TS ... 121
FEEUDACK ... 122
Motivation and Demotivation ... 123
Differences of OPINIONccocuecernrernennns s 126
Managing StakehOoIAEIScccvvvrrierererrrrere s 126
Communication EQUIPMENT........ccccvirvvrinrenerr e sessese e sessessessees 128
Software Project CURUIEccvceveverreriene s sese e s saesessesaeenes 129
LT 10 T] o S 129
WOrking TOGELNEr ..o s 130
| L ST 132
Time Managementcocvveererrnnenrnese s s 134
BUSINESS LOGICcveveerreeressesersese s sssse s e s s s s s e sessssssssssssanes 135
Thinking Things TAFOUQA........ccccvererrrrrere e 136
DOCUMENTALION.......ceeriiiririere s 137
Chapter 13: Define......cccsssemmsanmssansssnnsssnsssassssnssssnsssansssassssnsssansssanssas 141
BUY VS. BUIl ...t 141
TEAMS.....eceeece e re e e se s e re e e e e s e nnn e 144
Rockstar Programmer vs. Rockstar Teamc.ccoeoeernecnnncnenencrnscneneens 145
StAKENOIUENS ... e 146

TABLE OF CONTENTS

The Right People for the Job ... 147
Team PitfallS ..o 149
REQUIrEMENTS.......cceiereircre e s 150
Defining the ReqUIrEMENtS ..o 151
Waterfall vs. Agile ReqUIrements...........ccoveerrencrnsenenesesese s 157
User ReqUIrEMENTS........ccovirireresin s ss s 158
User Stories and USE CaSES.........cccocrereererererermeserresesesese s sessesesseesennes 162
Decide and Be PreCiSe........covverererercrererernscsese s se s sesesessenens 166
Your Dependency 0N OTNErScoeerrecrerrenerencrrsese e 167
Your Impact on Ohers ... 169
QUAIEY .. bbb 170
Data QUALILYccoerreerrererenesere s nneens 171
IT AUGIES. ...t 173
Security and Data ACCESSccoverervrerinsesrnesesese s s seans 173
SECUNTY veverrreserine s r e 173
DAtA ACCESS.....ceereereererresresesse s e s s se s s re s s re e re e e nnnnnens 174
SOftWANE DESIGN....civieeerereriererrere s s e sr e e sae e e e naennens 175
High-LeVel DESIGNccvceruerrrieriereresesseresesss e sse s ssesesessesasssssessessessssessessens 175
LOW-LEVEI DESIONevereerreieriereriesesseresesessesessessesessessessesssssssessesassessessesnes 176
Detailed Planning..........coccvvrvenininiinnin s seas 177
The Trouble with EStIMates ... 177
o 10] 1174 T S 178
TeSt Planningcoccvvvvennininsin s sse s s s se s sne e saens 180
Maintenance Planning.........cccccvvvvenininnnne s s ssessesens 181
Handling CRANGESc..cccvrererercrinerere sttt se s sse s 182
PItFalIS—Part 1 ... s 183

vii

TABLE OF CONTENTS

Chapter 14: Develop ..c.cccerrrssssnsnmrsssssnssessssssssssssssnsssssssssnsssssssnnsssssnnns 185
Getting INto the FIOW.........cccor et 186
Effective CoMMUNICALIONcoveeeeeeeeeeceer s 187
The Right TOOIS fOr the JOb ..o 189
Design Patterns and Other Best PractiCes........couvuvvvrrnsennnnesenissesssesessesensanes 191
USEr INTEITACEc.covrerricciri s 193
SOftWAre VEIrSIONINGccvveruerrererrereressssersessesssssssessessessssessessesssssssessesssssssensessens 195
000 o O 196

Chapter 15: Test.......cccuimmmismmmmsssnmmsssnsmsssnsssssnsesssnsesssnsssssssssssnnssssnnssss 203
TYPES OF TESIS .. e 203

User Acceptance TeStS (UATS)......cvurererrerererersenerresesesesessssesesesessesessssesennes 203
0T L] T 204
INtegration TESTS ..o 205
SYSIEM TESLS ..o ——— 205
Regression TESTS........ccuiiiiininine s sn s snens 205
Penetration TESESccovrerereser e 206
SIMOKE TESTS ... e 206
Load and Performance TeStScccccrrererrererenerrnsesesese s 206
Business Readingss TESISccovvrrererenernscrere e 207
A/B TESES.....ceeeeereeerensesesre e se s s 207
TeSt AULOMALIONccervrcerrcse e 207
TESE DALA ... s 208
Further ASpects 0f TESHINGcccvvrierirnrrrr e 210

viii

TABLE OF CONTENTS

Chapter 16: Training, Going Live, and Maintenancecc.ccccunrissnnns 213
USEN TrAINING ...cvcceeciecie s e 214
Support and MaintenNANCE..........ccceverrrririrnnsre e 214

Monitoring and ANAIYEICSccocreeererrerererere e 216
GOING LIVE ..o sesss s e se s e se e e e e s sessssnnsssnnsnns 217
Pitfalls—Part 2ccocviirirrirr s s 219

Part lll: Technical GUIdE.......ccccmmrerrssssnmnnmsesssssnsnnsesssssssnnnesssssnnns 221

Chapter 17: The Technical Sidecocseerrrrrrsssssssssnnsnnsssssssssssssssssnsenes 223

Chapter 18: Coding and DeSIignccccrusssemnmmsssssnnsssssssnssssssssnnnssssnnns 225
Theme Parks, Jenga, and More—Structuring Codeccvrvvrrerrerrerensersersenns 225
SySteM INTEITACEScuceeeccr e e e 228
Scalability in Software Projectsccoveererresrnscrrese e 229

Scalable IT SYSTEMScceoerecrrcr e 230
Reasons for SCaliNg.......c.ccouvrvrrinnnsnin s snens 232
BOMIENECKS......ceeeeeee e 232
Sports Stadium—Software State ..o ——— 233

Chapter 19: Metaphors for Technical Terms.......cccccerrrrssssssssssssnnnnnas 237
Who Are You? What Are You Allowed t0 SEE7.......cccvvvrvcernsennnenensesesesesessenens 237
Winter Stock—Caching Dataccccveviernnnininennserene e sesseenes 238
To Wait or Not £0 WaL.........ccccoeeeriinriinerns s 238
B0OMErang—SyYNCRIONOUS.........ccoueeverereruercreneseseses e ses e sse e e ses e e ssesessenes 239
Doing Something Else in the Meantime—Asynchronous.............ccccecevvcnvennenn 239
Fire and FOrget........covvnrnrinrnrrssesesese s s snenes 239
Airport Conveyor Belt—Memory LEaKcccvvvernenmrnnersnsessssesessesessssessssenens 240
Switch Off the Lights—Bits and BYLESccccevvrvererrnnienene s sesesseneneens 241

ix

TABLE OF CONTENTS

Chapter 20: Tricky Areas in Technical Developmentcccevvinnns 243
DALES ... ——————————— 243
AL ... ———————————— 244
CACNE ..o ———————————— 244
Spot the DIfferenCel........covicrcrr s 244
Interfaces to Legacy SYSIEMScccvvvrrrrerieninrensere s sese e sss s e s s 245
Testing and Test Data.........c.ccvcvverininin e 245
Messy and Undocumented Code Base.........ccccevveeereccrencenenesensseressesessesessenes 245
SEArCh FEATUNE......ccvecre e e 245
PerfOrmManCecccveviiininers e e e e s 246

Chapter 21: To SUM UP ...cceeeemmiiiinmnnsssssssmmmmmmmmssssssssssssssssssssssssssssnsnes 247

Appendix A: Collaborationcccccrermmsssssssssnnnmsesssssssssssssssesssssssssnnnns 249

Appendix B: GIOSSArY.....cuuseummmssssnnmmsssssnnsssssssnssssssssssnssssssnnsssssssnnsssss 265

Appendix C: References and Further Readingcccunsuenssssnsssssnnas 283

INA@X...uuunnnnnnnnnnnsssssssnsnssssssssnnsssssssnsssssssssssssssnsssnsssssnsnsnnsnnnsnnnnnnnnnnnnnnns 291

About the Author

Jonathan Peter Crosby is a software
developer, performance engineer, and
consultant who has worked in the field for over
20 years.

Having gained his professional experience
at a range of companies from start-ups to blue
chips, he also founded and cofounded three

small tech companies—the first one at the

age of 33. Jonathan works at the crossroads of
technology and business. The best project outcome, he finds, is achieved
through sharing the business and technical knowledge—a reason that

he likes to involve all team members in important project decisions.
Jonathan believes that effective communication is the cornerstone of every
successful software project.

About the Technical Reviewer

Juval Lowy is the founder of IDesign and a
master software architect. Over the past 20
years, Juval has led the industry with some
of his ideas such as microservices serving

as the foundation of software design and
development. In his master classes, Juval has
mentored thousands of architects across the
globe, sharing his insights, techniques, and

breakthroughs, and has helped hundreds
of companies meet their commitments.
Juval participated in the Microsoft internal strategic design reviews
and is a frequent speaker at major international software development
conferences. He is the author of several bestsellers, and his latest

book is Righting Software (Addison-Wesley, 2019), which contains his
groundbreaking ideas on system and project design.

Juval published numerous articles, regarding almost every aspect of
modern software development and architecture. Microsoft recognized
Juval as a Software Legend, as one of the world's top experts and industry
leaders.

xiii

https://urldefense.com/v3/__https://en.wikipedia.org/wiki/Microservices*History__;Iw!!NLFGqXoFfo8MMQ!rN4mtm9wlSZIw6MtlOsjrGci-FaNRFLaVclybOJaNXhVu2A_bT8U1bwFJmtkqItn-mKy4IG1Ur4QndcxL6WkooyIGy0JCw0d$
https://urldefense.com/v3/__http://www.idesign.net/Leadership/Conferences/*Juval*20Lowy__;IyU!!NLFGqXoFfo8MMQ!rN4mtm9wlSZIw6MtlOsjrGci-FaNRFLaVclybOJaNXhVu2A_bT8U1bwFJmtkqItn-mKy4IG1Ur4QndcxL6WkooyIG08U7rFI$
https://urldefense.com/v3/__https://www.amazon.com/dp/0136524036__;!!NLFGqXoFfo8MMQ!rN4mtm9wlSZIw6MtlOsjrGci-FaNRFLaVclybOJaNXhVu2A_bT8U1bwFJmtkqItn-mKy4IG1Ur4QndcxL6WkooyIG0NcTydN$
https://urldefense.com/v3/__http://www.idesign.net/Leadership/Articles/*Juval*20Lowy__;IyU!!NLFGqXoFfo8MMQ!rN4mtm9wlSZIw6MtlOsjrGci-FaNRFLaVclybOJaNXhVu2A_bT8U1bwFJmtkqItn-mKy4IG1Ur4QndcxL6WkooyIG3RgFCGq$

Acknowledgments

First and foremost, I'd like to thank my wife, Mirjam, for all her support
over the years. This book would not have been possible without her. I am
also very much indebted to everyone who has shared their knowledge with
me such as teachers, colleagues, friends, family, authors, and countless
others. Many people dedicate so much of their time to help others learn
and progress; this is my chance to thank you all.

No one would have understood what I'm trying to say without the
fantastic help of my main copy editor, Leila Johnston. Thank you so much
for your skill, expertise, and attention to detail. You helped me with every
aspect of this book and have been an absolute joy to work with.

Visually, the book came to life thanks to your beautiful illustrations,
Danira Spahi¢—you understood exactly what I was looking for. I often
outlined a rough idea in just a few words, and based on this you created
illustrations even better than I could have imagined. Since finishing the
final image, I've really missed working with you!

As afirst-time author, I find it incredible how many people are
prepared to spend their spare time helping with such a book project. A
great big thank you to my mom, Carolyn, for always having emphasized
the importance of languages. Your time and expertise in helping me realize
this book are highly appreciated. My sincere gratitude goes out to Ben
Smith for sharing his invaluable hands-on project experience. A massive
thank you also to my dad, Tony, and my brother, James, as well as to Minh
Vuong, Peter Smith, Charles Smith, Philipp Ochsner, Jon P. Smith, and
Marc Mettler for proofreading the book. Thanks also to Ymyr Osman and
Reto Scheiwiller for your wonderful ideas and inspirations.

Preface

Understanding what technology can and can’t do has become
a core competency that every part of the business must have.

—Gene Kim, Kevin Behr, and George Spafford
[Kim, Behr & Spafford 2013]

The meeting room had cleared when Daniel leaned forward and asked,
“Johnny, what is a system interface exactly?” I was so glad he asked.

The question lit a spark and inspired me to write this book. Daniel is a
friend and former colleague who's well-educated in finance. He’s the
author of some of the best business requirements I've come across. We
had cooperated on projects before, and I'm certain I had used the term
“interface” a few times previously. Had I kept him in the dark all this time
by overusing IT jargon? On a broader scale, how can we fill this knowledge
gap between IT teams and business specialists? What resources are out
there to help business people pick up the essentials? Not many,

I discovered.

What, then, would be the best way to explain the basics of software
projects? I began taking note of the examples I used for making technical
topics clearer. After 8 years of collecting explanations, I've finally found
the time to compile these into a book, and I'm delighted to now present
my ideas to you. I aim to demystify the underlying concepts of software
projects to let you in on the act.

Almost every company today is becoming a software company to some
extent, yet software projects still suffer a high failure rate for a multitude of
reasons. I'm convinced, though, that a better understanding between IT
and business teams will help avoid common pitfalls.

xvii

PREFACE

As I've aimed to make this book an easy read, I must apologize now
for any oversimplifications. The goal is to get the message across in simple
terms rather than to cover every possible permutation.

In answering Daniel’s preceding question, I used the metaphor of
pipes and cables leading to a house. Instead of electricity or fresh water,

a system will typically send data. I'll elaborate on this example later in
the book.

Experience has taught me just how effective metaphors can be in
illustrating many aspects of software. In discussions between techies
and the business side, the right metaphor has the power to portray a
complex technical topic in an instant. Examples based on the design and
construction of buildings work particularly well. No one would dispute the
idea. If you want to add a new level to the Leaning Tower of Pisa, you'll need
to secure the foundation first. Likewise, before adding new visible features
to a piece of software, you may first need to invest in the underlying code
structure.

xviii

Introduction

What we do not understand we do not possess.

—Goethe

Helping teams achieve higher success rates in software projects is one of
the main goals of this book. The key is to establish common ground on
software project concepts among all the stakeholders in your project.

When creating software, some poor decisions are made that would
never be made when building or renovating a house. Would you, for
instance, create a beautiful new bathroom in a house that would be torn
down in 18 months? No? I've worked on software projects where people
made decisions just like that. If you were working on your own house
project, you'd certainly take the time to check every aspect of it. Your
business team really needs to do the same in a software project. Too often
though, these teams lack the time necessary to collaborate well with the IT
teams. Assigning them sufficient time to focus on the project will enable
the business teams to think things through more carefully and make
a fuller contribution to the project—optimizing the chances of project
success. Also, while any serious company will keep its buildings in good
condition, many tend to neglect some of their core business systems for
years. By bringing the non-techies into the act, it follows that the mixed
teams will make better decisions.

Metaphors, illustrations, and genuine examples can help reveal the
core concepts. Some good metaphors can be found in techie books, yet
I doubt any non-IT people would buy these and skip the technical stuff
just to read the metaphor section. I therefore decided to write this guide
specifically for the audience that would benefit most.

Xix

INTRODUCTION

I'd like to mention a book my new boss at a finance company sent
me shortly before I started the new job. The book, on asset management,
was incredibly helpful in giving me a grasp of many important topics and
common terms. It sped up my learning quite dramatically when I started
in the new role. Similarly, this guide is full of practical advice for people
with little or no background knowledge in software projects. On the other
hand, you may have participated in such projects already, but haven’t felt
quite at ease with all the technicalities. I've seen business people showing
a keen interest when someone makes an effort to explain technical terms
in an interesting way.

Having worked in the field for over 20 years, I've drawn on my
experience and that of my extended network to present a collection of
ideas that will be relevant to your software project, alongside working
methods that I know to be effective. So far in my career, I've been lucky
to work for some fantastic clients, from start-ups to blue chips. Although
most of the software projects were implemented successfully, my focus
here is mainly on the problematic ones. The examples here serve well to
show you what went wrong and how you can prevent any similar issues
in your own projects. As the book aims to cater for a wide audience, I find
myself treading a fine line between describing things in plain language and
trying not to alienate or bemuse the software community.

Finally, I'd like to highlight the importance of communication.
Though relevant in all types of projects, this factor is, I believe, especially
critical in software projects. How can teams make good decisions if not
through effective communication and coherent terminology that’s clear to
everyone involved?

INTRODUCTION

Who This Book Is For

Technology and digitalization is neither a threat nor an end in
itself, but will provide us and our clients with added value at
various levels. So, let’s go for it together!

—Christoph Hartgens

Written with business people in mind, the book offers you a key to the
world of software projects. An essential part of the digital transformation
is about involving the business teams much more. The software projects
need you because your decisions and involvement will be crucial to the
project outcome. The book will not teach you how to program but will
give you an overview of the steps and processes involved in creating a
piece of software. Concrete, real-life examples will introduce you to the
basic concepts, with a focus on your role and your deliverables at the
same time. Whether you're a subject matter expert, a manager, or a user
representative, you'll find this guide invaluable. Your newly acquired
knowledge will help you reach the market faster and meet your customers’
needs far more effectively.

While researching for this volume, I was astonished to find that very
few books on software address this audience. That’s why I aim to give you a
complete picture of how the various parts of a project fit together.

7z)q ‘_ Has your boss nominated you to represent your department
/- {’)‘ in a software project? Do you need to review and sign off
= ,ﬁ_ formal IT project documents? Have you felt overwhelmed in

e
&

meetings when an IT specialist reels off a stream of IT jargon?

The information here will also enable project sponsors and line
managers to gain a better insight into project best practices. The rich set
of illustrated themes will help visualize the common steps. Even beginner
software developers can enhance their knowledge of the more practical
side of projects. A project manager, meanwhile, could present copies of
this book as essential reading to the team.

INTRODUCTION

Company executives know they need to understand both the potential
and the pitfalls of IT. A company may need to reshape its digital strategy,
for example. This digital transformation must be carried by everyone in
the company. One of the most important developments is in bringing
traditional businesses into the digital age. IT cannot do this alone—the
business teams must also be involved. At the same time, business-critical
software projects will require some executive decisions. Therefore, specific
sections focus on helping executives make decisions that are well-
informed.

The technical project members involved in a software project are often
outnumbered by the business professionals—and their input is a great
asset in any project. To fully utilize this business knowledge, the team
must know how to apply it best. Team discussions and decisions will be
very effective when all members understand the core concepts of both
the business and technology sides. One of the biggest barriers that people
face is, in fact, the techie language, which is mostly incomprehensible
to anyone without a background in computing. You may feel too
embarrassed to comment or ask questions in the face of it, even if you have
avalid contribution to make.

Learning the basics of software projects is therefore a bit like learning
anew language. The more you understand, the more involved you can be.
Similarly, by broadening your software project know-how, you'll be able
to participate effectively—who knows, you might even start to enjoy the
projects (more)!

Business and IT teams that communicate well together are incredibly
powerful—this essential element of good communication is often the
missing link in unsuccessful projects. Also, by applying best practices,
you'll enable your business to adapt better to changes and keep its
competitive edge. These days, we witness how traditional businesses such
as book stores, taxi services, and record companies are shaken by global
software solutions. Which sector will be next? All businesses really need to
be software savvy now to survive.

xxii

INTRODUCTION

I sincerely hope this book will help you build a strong foundation for
your software projects. Lastly, I welcome your feedback and would highly
appreciate your participation in this exciting topic. Please visit the book
website at www. SoftwareGuide.blog.

How to Use This Book

In using a conversational tone, I imagine that I'm interacting with you
directly. My aim is to make the information as accessible as possible—
enabling you to rapidly increase your knowledge and engage effectively in
your next project.

Structure of the Book

The book is divided into three main parts. Part 1, “Conceptual Guide,” will
help you understand the main concepts behind software development.
The metaphors offer a high level of abstraction and allow you to
understand something new much faster. Not only will you feel more
at home in an unfamiliar place, but you'll also gain a more holistic
perspective on software projects. I make comparisons between software
development and physical construction projects, as everyone can relate to
building a house. After identifying the commonalities between renovating
and building from scratch, we’ll look at the differences between the two.
In software as in physical construction, creating something new can vary
distinctly from modifying a structure that already exists. Finally, we’ll
explore some further metaphors as we extend beyond the construction
comparison.

Part 2, “Practical Guide,” focuses on best practices in the hands-on
side of software projects, both large and small. We'll look at the whys and
then the hows. This part of the book, which runs through the various

xxiii

http://www.softwareguide.blog

INTRODUCTION

stages of a project, focuses on the topics most relevant to you, the business
professional. A brief outline of the technical side of things will give you a
bird’s-eye view of what goes on behind the scenes at the same time.

Part 3, “Technical Guide,” digs a little deeper into some of the common
technical topics that all projects need to address. The relevance of this
part of the book to you will depend on your role and interest. Again,
metaphors and analogies help describe the technical concepts in a clear
and interesting way.

Iintroduce the necessary terminology gradually, giving you the chance
to become familiar with the terms. “Appendix B: Glossary” at the end of
the book explains the technical terms in plain English. Additionally, the
appendixes expand on some of the topics introduced in the main part of
the book.

References

The quotations and extracts, all referenced, are based on best practices
or on research findings. Also, when you find a topic of particular interest,
you can delve into some of the related materials listed in “Appendix C:
References and Further Reading.” There, you'll find a selection of books,
online resources, and videos to choose from.

The references to source materials are presented as: [Horowitz 2014],
for example. Additionally, if an author has asked me to include the page
numbers, then this format is used: [Brooks 1995 p. 55].

XXiv

INTRODUCTION

The Value of Metaphors

The value of metaphors should not be underestimated.
Metaphors have the virtue of an expected behavior that is
understood by all. Unnecessary communication and misun-
derstandings are reduced. Learning and education are
quicker. In effect, metaphors are a way of internalizing and
abstracting concepts, allowing one’s thinking to be on a higher
plane and low-level mistakes can be avoided.

—Fernando J. Corbatd

Before digging deeply into any unknown topic, it’s important to build a
mental framework that helps put things in place. The powerful effect of
metaphors and analogies makes them indispensable when explaining
software projects. Here, we'll take a brief look at the general topic of
metaphors.

As aleadership coach and author, Dr. Peter Fuda states

o “metaphors stimulate creative thinking by inviting
the reader to discover complementary and related
meanings and applications

o metaphors make complex stuff simple by introducing
you to an idea and making it much easier to explore
once you're inside it

e metaphors use familiar imagery and hence make a
topic easier to recall”
[Fuda 2012]
Now, without further ado, let's dive in and begin with a look at the

main metaphor used here—a software project is like a construction

project.

PART |

Conceptual Guide

CHAPTER 1

Architecture
and Construction

In Part 1, “Conceptual Guide,” we look at the tasks involved in building
software that are similar to those in physical construction. Software
architecture is named thus for a reason—you’ll see many similarities
between designing software and physical buildings. The architect’s team
will create plans for all the construction work including things like the
electrical wiring, the plumbing system, the landscape design, and so on.
The same goes for software. In this case, the architect considers data flows,
user interaction, sequence diagrams, and many other elements in the
process of planning, discussing, and building. You'll find more information
on the various roles in software projects in “Appendix A: Collaboration.”
What happens if you radically change your mind about the house
you're having built during the planning phase? That’s doable. Parts of the
building will have to be redesigned, and costs will need to be adjusted;
but it’s certainly achievable. How about if you change your mind when
the building is half completed? That’s a lot trickier to deal with. At best,
the changes can be artfully worked into the ongoing construction; but
in the worst case, most of the building might have to be torn down and
rebuilt. That’s not to say it can’t be done—just that it'll be very costly and
time-consuming. Although modern software projects cater better for late
changes, radical ones will continue to cause higher costs and delays.

© Jonathan Peter Crosby 2023 3
]. P. Crosby, The Business Manager’s Guide to Software Projects,
https://doi.org/10.1007/978-1-4842-9231-0_1

https://doi.org/10.1007/978-1-4842-9231-0_1

CHAPTER 1 ARCHITECTURE AND CONSTRUCTION

Treating software construction as similar to building con-
struction suggests that careful preparation is needed and illu-
minates the difference between large and small projects.

—[McConnell 2004]

As the home buyer, you may not care much about the exact route of
the drainage pipes in your new house, but you'll be very interested in the
layout of the kitchen. The construction plans will be adjusted to reflect
your choices. Similarly, some areas and details in software design are more
relevant to the non-IT professionals than others—you probably won’t need
to know about all the “plumbing” or the “under the hood” techie stuff.

In construction, the interconnection of the various building elements
and materials is fundamental. The materials must be weatherproof and
also easily replaceable. The paint, windows, wood, and bricks all have
different lifespans, for instance. The windows may need replacing after 25
years, but the bricks will typically last much longer. Software parts have
different lifespans too. The support for a software component may end
next year and will therefore need to be replaced, for example. In both
areas of work, the architect and development team need to make sure the
structure will be sufficiently functional to keep all the parts independent
and updateable.

Additionally, just as a residential area isn’t designed to be converted
into a theme park later, software cannot easily be converted into
something much bigger either. The architect needs to start from a new
plan in both cases.

Inevitably, the fiddly bits end up taking the most time. Any professional
floor tiler will confirm how the shaping of the small pieces takes a lot
longer than laying out the whole tiles. The trimming work is also a big part
of software development.

Despite all the planning and preparation, unexpected factors will
almost certainly crop up and create extra work. In a rather extreme case,

CHAPTER 1 ARCHITECTURE AND CONSTRUCTION

the house of a former colleague of mine began to sink while still under
construction. The architect arranged for 12 large concrete piles to be
driven into the ground around the house to stabilize the foundation.
Another kind of complication would be the discovery that the building you
were about to renovate was a heritage building. The structure would be
subject to certain laws, and you'd probably need to comply with additional
rules, adding further costs. You might be inclined to think that nothing
comparable could happen in software projects, but you'd be surprised.
Many unforeseen factors can suddenly appear and necessitate extra work.
The team may have overlooked an important stakeholder or a critical
business case, new regulations may have come into force, or a security
breach could be discovered, to name just a few.

Note To ensure that the terms used throughout the book are clear, |
will use the word construction when referring to physical construction
and development when describing software development.

As in most human activities of any complexity, a software project
begins with planning...

CHAPTER 2

Planning and Scope

All projects require some degree of planning, depending on the size

and complexity of the project. At its core, a project is about managing

an abundance of small decisions and dependencies. This requires high-
quality communication on all levels. And just as a physical model can help
us visualize a new building, creating a working prototype is also useful in
software development. This prototype gives users and stakeholders a good
idea of how the product will look. Modern software methodologies usually
create screen mockups rather than prototypes—these mockups are easier
to produce and give a good visual impression.

The planners, at the same time, will need to conduct a survey before
embarking on a project plan. Just as a feasibility analysis should first be
carried out to check the viability of digging a tunnel, the same needs to be
done for a large software project.

Feasibility studies are preliminary studies undertaken in the
very early stage of a project. They tend to be carried out when
a project is large or complex, or where there is some doubt or
controversy regarding the proposed development.

—[Feasibility Studies 2017]

© Jonathan Peter Crosby 2023 7
]. P. Crosby, The Business Manager’s Guide to Software Projects,
https://doi.org/10.1007/978-1-4842-9231-0_2

https://doi.org/10.1007/978-1-4842-9231-0_2

CHAPTER 2 PLANNING AND SCOPE

The Right Dimensions

Figure 2-1. How many lanes should you plan for?

When building a new highway (Figure 2-1), one of the things the planners
will need to decide on is the width of the bridges that will cross it. Let’s say
that the highway will initially comprise three-lane roads in both directions.
Should the planners future-proof all the bridges to leave scope for adding
another three lanes later? How would these wider bridges affect costs?

If the roads can currently cope with around 2,000 vehicles per hour but
the number increases to 10,000 after a few years, then further construction
may be required. This situation is comparable to the number of concurrent
users of a software application. Software for creating team reports would
naturally require a leaner technical setup than an online ticket system
where 200,000 people may be trying to buy concert tickets at the same
time, for instance.

8

CHAPTER 2 PLANNING AND SCOPE

Although future-proofing might seem a good idea, it can sometimes
backfire. Here’s one example: Some 30 years ago, a highway tunnel was
built under the main railway station in Zurich, Switzerland, in anticipation
of a future road. Today, there is still no road connected to this segment,
and there probably never will be. Imagine the complexity of building a
tunnel underneath a large station, as well as the high cost incurred. Trying
to foresee the distant future is equally hard in software projects. Making
absolutely everything configurable to allow for future changes is not
always the best approach—it will make the software a lot more expensive
to produce and maintain.

When building a new house, the homeowner may request the builder
to place empty tubes in the walls that will be useful later if additional
cables need to be laid. If not required, these tubes can usually just remain
in place with no extra work or cost involved. The opposite is true for
software, however. Because every new feature needs to be tested and
maintained, features that aren’t needed now should not be built.

Hogwarts Castle—Keeping Within a Budget

Some people may dream of living in a castle or a palace (Figure 2-2), but
common sense usually dictates that you build something more modest
with an affordable budget. If you plan to build your own house, you'll
naturally think very carefully about what you need and what you can
afford. The initial outline will include the size and type of house you want
and the number of bedrooms and bathrooms you require. This process
will involve some hard decisions. Can the kids share a bedroom? Do I
really need an office? Can I afford a pool? How much can we spend on the
kitchen? You'll also consider hundreds of minor details. Do I need a power
socket here or a light switch there? Your house project will include an
abundance of decisions both large and small. Some decisions will be hard
to make, and not every wish can be fulfilled.

