Design
Patterns In
.NET Core 3

Reusable Approaches in (# and F#
for Object-Oriented Software Design

Second Edition

Dmitri Nesteruk

Design Patterns in
.NET Core 3

Reusable Approaches in C#
and F# for Object-Oriented
Software Design

Second Edition

Dmitri Nesteruk

Apress’

Design Patterns in .NET Core 3: Reusable Approaches in C# and F# for
Object-Oriented Software Design

Dmitri Nesteruk
St. Petersburg, c.St-Petersburg, Russia

ISBN-13 (pbk): 978-1-4842-6179-8 ISBN-13 (electronic): 978-1-4842-6180-4
https://doi.org/10.1007/978-1-4842-6180-4

Copyright © Dmitri Nesteruk 2020, corrected publication 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484261798. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6180-4

Table of Contents

About the AULNOFcoiiiiiieenriiieenrinss s an s nnn e s annn e e s nnnnnes xi
About the Technical REVIEWETcucuiseesrrsssssnnsmsssssnnssssssssssssssssnssssssssnnsssssssnnssssssnns Xiii
LT LT T] | XV
Part I: Introduction ... - 1
Chapter 1: The SOLID Design PrinCiplesccccuuseessrssssssssssssssnssssssssnsssssssssnsssssssnnnsssss 3
Single Responsibility PrinCIple.......c.ccoiviiininnsrr e 3
0pen-CloSed PriNCIPIE......c.cciiiirireresrse s s e nne s 6
Liskov Substitution PrinCIpIe........cccviviinininnrrsn s 13
Interface Segregation PriNCIPIEccccvvvririnnnnsn e e 15
Parameter ODJECL........cucveririrrire s e e 19
Dependency INVErsion PriNCIPIE.......ccccverrierererersere s ses s s e e sse s saesessessessessssessessessssessensesaes 20
Chapter 2: The Functional Perspectiveccousemrrmsssssnssmssssnssssssssnsssssssssssssssssssnssss 25
LT o 10 N 5 T 25
FUunctional LIteralS in GHccccecrirre s rirses s s e s see s se s e e ssesaesse s e e saesaesesaesnesaesassnsesnesnnnsens 27
Storing FUNCHIONS iN G ... 28
FUunctional LIterals in FHf........ccocviviniee i siiries s e ssssssessesesesssessesss s s ssssssesssssssssessessssssssnesnnnnees 30
{01110 10 LTRSS 32
Functional-Related Language FEAtUIESc..cvivvrvriereverserreresrssessesse e sessessessesssssssessessesessessesnes 33
Part lI: Creational Patternscccunseemmmnmmsssssssnnmmsssssssnsssssssssssnsssssssssnssnnnsnns 35
Chapter 3: BUIlUEr.......occcurrmisennmmssssnnnsmsssssnssesssssssssssssssssessssnsnssssssnnnsssssnnnnsssssnnnnsnnss 37
S o132 T 37
SIMPIE BUIIAET...c..eveeerec et s 39
LT3 2 10T o [T 40

iii

TABLE OF CONTENTS

CommUNICAtING INTENT.......cceerecrrre e e sr e e a e sa e e aennen 4
0] 4T LT = 11 o T RS 43
ST [0 T g o 1= g (- 46
Builder Extension with RECUISIVE GENEIICSc.ceeererrererrererensereresesresesessesessesessssesessesessesesessesenns 48
Lazy FUNCHONAI BUIAETcccvieerreserrrcsenese s s sr s e s 53
DSL Construction in ..o s s snes 56
11114 7R 57
Chapter 4: FACtOriesccccrruissennmmsssssnnsmsssssnsssssssnssssssssnnsssssssnsnssssssnnssessssnnnsssssnnnnssss 59
BT 14T TSP 59
Lt T (0] 111300 61
Asynchronous Factory Method ... s 62
(1 0] PSS 63
L=l o (o 0] o SRS 64
PhySiCal SEPArAtiONccceveiirierere s s a e e s a e e s e e e s 65

BV 053 12 T B =T (0] S 65
Delegate FACIOrES iN 0Gcoovvvvrrerererrerreresessessesse s sessessessessesesessesasssssessesaessssssnesseseesssnensesaes 69
FUNCHONAL FACTIOTY ..ot e s e e s 71
SUMIMAIY ...t e e e s e s se e e e e e e e e Re e s a e se e e e nRe e s ra e nensn e nrnnnns 72
Chapter 5: Prototype.......ccccuiiemmmmnsssemnmmmsssssnmmmssssnmmmsssssmmssssssmssssssnnsesssssssssssssnnnsnss 73
Deep vS. SNAIIOW COPYING....ccviierierrnennssesesrese e ss e ss e sn s sss s ssssessssssessssesns 73
ICIONEADIE IS BAU ..ot e 74
Deep Copying with @ Special INTErfaCeccevivverrerierererrrre e 75
Deep-Copying ODJECLS.couiirireree e e p et 76
Duplication via Copy CONSIIUCTIONccvvereriirsrer s s 78
SEHANZALION ... 79
Prototype FACLOIY.......ccccevcercres e e s 81
11104 RS 82

iv

TABLE OF CONTENTS

Chapter 6: Singletoncccuremrrnssennnmmmssssmmnssssrss s 85
Singleton by CONVENTION ..o e s 85
Classic Implementation............ccuinniin s 86

Lazy Loading and Thread Safety........c.ccvinininnnsninn s sessesnens 87
Singletons and Inversion of CONTIOL..........ccvciirinninsn s 92
BT 111 T TSRS 95

Part IlI: Structural Patternsccovueemmmmssesmmsssesnmmssssmmsssssnmsssssssssssnssssssssnnnns 97

Chapter 7: Adapterccccuiiemmmmmssssnnmmmissnnmmnssssnmmsssssnmesssssseesssnssessssnssesssnnnnsess 99
B3] 14T 99
V0 T S 101
AdAPLEr TEMPOTAIIES ... ccveireceriererre s s r s e s s r e e s e e re b e e e e e e pe e e e naennens 102
The Problem with Hashing........cccovviniiiininnsn s s 106
Property Adapter (SUITOQALE)ccocrererrrererererene s s 108
GENEeriC Value AQAPIET ... e e 110
Adapter in Dependency INJECHONccviviirinierie e e ne s 118
Adapters in the .NET FFamMEWOIKcccvrerrierierieriessnsessesessessssesessesssssssessessesssssssessesssssssessessens 121
£ 1§14 7 122

Chapter 8: Britlge.......ccusmmsmmmsanmssansssnsssansssassssnsssansssassssnsssansssansssnsssansssansssnsssansssans 123
Conventional Bridge ... s s s b e s e e 123
Dynamic Prototyping Bridgeccccoeeerrrererenereseres s se s e nenns 127
B30T 1117 o SRS 130

Chapter 9: COMPOSIteccuvmrmsemmssmmmsssmmsssssssssssssssssss s s s s sas s sssnsnsansnsnns 131
Grouping GraphiC ODJECTSvcvverere s a e e e nnen 131
NEUral NETWOTKScvieiirieirincirse e e 134
Shrink Wrapping the COMPOSITE.........ccoviriirrnn e 137
Composite SPECIfiCatioN ... —————————— 139
£ T 140

TABLE OF CONTENTS

Chapter 10: DeCOratorccuuseurrmssssnsnmsssssnnsesssssnssssssssnssesssssnnsssssssnnssssssnnnssssssnnnnss 141
Custom STriNG BUIIAET ...t 141
AdAPLEr-DECOIATON........coeirecererer e e e e ne s 143
Multiple Inheritance with INterfaces ... 144
Multiple Inheritance with Default Interface MEMDErSccocvvvvirirnininr e 148
Dynamic Decorator COMPOSITION........cccvirieriernrirrerere s se e saens 149
Static Decorator COMPOSITIONccovvevrrrerierr e sae e e nnen 152
FUNCLIONAI DECOTALON..........ccerercerieeriee e e 154
SUMIMAIY ..ttt R e e e e R e e e e e e e Re e R e e e e e Re e Re R e e e e e Re R e e e e e Renrs 155

Chapter 11: Facade...........ciunmmimmmmmmmmmmss s 157
MAGIC SQUAIEScveeeerreerieeresesese e e s e e e nnae e p e e e e nns 158
Building a Trading TErMINAL.........ccccoverernsmnrnesese e s sessesenns 163
An Advanced TerMINal..........ccccovrernnmsesnrssse s 164
Where’s the FAagaUE? ... 166
£ 1134 7 168

Chapter 12: Flyweightc.ccccmmmnnmmmmmmmssnmmmmmsssmmmmsssssmssssssssssssssssssssssesssssnn 169
USEE NAIMES......occeeceeeeeriecre e e e s s e e e e s esae e e e e e e e ae e re e ne e e e nns 169
TeXt FOrMALINGcoveeeereeercc s e nnn e 172
B30T 111 T o OSSOSO 175

Chapter 13: ProXY .uuuccuussssssssmmmmsssssssssssssnnsssssssssssssnssssssssssssssssnnnnnssssssssssssnnnnnnnnsess 177
Lo (0] (TR 0] (N 0 OO 177
o (0L 4 o (0 SR 179
VAIUE PIOXY ...vcviiiciriie s s d e e b bt e e ne b e np e e e nne s 182
CompoSite ProXy: SOA/AQS........cccirirsirer e bbb e e 184
Composite Proxy with Array-Backed Propertiesc.ccccvverrenrencrnsesesesessseseseses s 187
VIFTUI PrOXY ..vvceireesisesesesessese s s se s se s st nr s senss e s e nsnns 189
COMMUNICALION PrOXY ...cccivivieiiriine s sessere s s e s e s s sa s e s sae st s s saesas e s saeses e saennes 191
Dynamic ProXy fOr LOGGINGcccveerrerererserseressssensesessessssessessessssessessesssssssessessessssessessesssssssessens 194
£ 1134 7 197

TABLE OF CONTENTS

Part IV: Behavioral Patterns.........ccusseemmmmssssssssnmmsssssssssnnsssssssssnnnssssssnssnnsnsnns 199
Chapter 14: Chain of Responsibilitycccemmmsmmmmmmssssnsnmmsssssnnmsssssssssssssssssssssssnnns 201
RS T 14T R 201
1113 (0 oo 03 T ST 202
2T 0] T I T VST 205
B30T 111 T o SRS 210
Chapter 15: COMMANccoccmmmmmisnnnnmmsssssnnmsssssssnmsssssssssssssssnnesssssnnnsssssnnnsessssnnnnss 211
RS T 14T 211
Implementing the Command Pattern............ccccveeveirrnininnn s sss e sae s 212

L0 T 04T L0 N 214
Composite Commands (a.K.a. MACI0S)........ccververerernnierinnissensesesss s ssssessessessssessesaees 217
Functional Comman ... 221
Queries and Command-Query Separation..........c.cucuverernsesnsesssse s sseses 223

£ 11134 R 223
Chapter 16: Interpreter..........ccoummmmmmsmmmemmmnmmsmemmssmssassa————— 225
Numeric EXpression EValuator ... sessesnens 226
] Lo S 226

Lo 1 T 229
USING LeXEr @nd PAISENccccvieieririersee e reres e s se s s s e s ses s s sae e e saesaessessnesnesaennens 232
Interpretation in the Functional Paradigm ..o s 233
£ 7 T 237
Chapter 17: Rerator ... s 239
Array-Backed PrOPEItiES.......cccvurernesrneserrsse s s s sr s sn s sn s srs e sessssnssssessnns 240
Let’s Make an Herator ... s 243
IMProved EFAtioN.........cccveerererirrere s s r e e s s a e e e saesne e e e naenne e 246
1053 e L0 A0 P2 0 (<] SO 247
SUMIMAIY ..ttt R e e e e R e e e e e e e Re e R e e e e e Re e Re R e e e e e Re R e e e e e Renrs 249

vii

TABLE OF CONTENTS

Chapter 18: Mediator......cccccusemmrmmssnnnmmsssssnnmsssssssnessssssnsessssssnsssssssnnsesssssnnsessssnnnnss 251
CRAE ROOIM......cciiicicccriri e e p e nena e 251
Mediator With EVENTS ... e 256
Introduction t0 MediatRccoveeererrrrrere e 260
B30T 1117 o OSSR 263

Chapter 19: Mementoccucemmmmisnnmmmmssssnmmmsssssnmmsssnsnmssssssessssnseesssss e snnnnns 265
BanK ACCOUNL ..ot 265
L0100 a2 o N 2= 267
Using Memento fOr INTErop ... ene s 270
SUMIMANY ..t e e s b E e e b b e e e R e R e e e e e Re e Re R e e e e e Re R e e e e nRenrs 271

Chapter 20: Null Object..........ccccmmmsnmnmmmsssnsnmmmsssssnnmsssssssnsssssssnnssssssnnnsssssnnnnsssssnnnnss 273
£ =] - L [0 S 273
INTrUSIVE APPIOACHESc.evueiierieiirsire s s s b e s s b et e e nne 274

NUII ODJECT VIFTUAI PrOXY ..veueiviseeessesessenessssessssessssssessssessssesssssssssssessssessssssssssnsssssssssssssssnsssnses 275
NUITOBJECE.....eeeerereeeeeeee e b b np e 276
Dynamic NUIL ODJECL.......cceererrereriereresersere s s e s ssessesesessesaesessessesaessesessessesasssssesaesaessssensesaens 277
£ 1134 7 278

Chapter 21: ODSEIVer......ccucussssmssassssnsssansssansssnsssansssassssnsssansssansssnsssansssansssnsssansssans 281
L0 TT T T T T 281
Weak EVENt PAtIIN........ccoecerecrereser e s nneens 283
EVENT STrEAMS......ccviiceirccrrese s e ne e r s 285
Property ODSEIVELSccuvcerrerreserserersessssesessessssesessessessssessessessssessessesssssssessessessssessessessensnsesaens 289

Basic Change NOtificationcccvvvrininninn e s s snes 289
Bidirectional BindiNgs..........cccuumrnmmnsss s s 291
Property DEPENAEBINCIESecvverereririerieresis s sse s sae e s s sse s s e s saestese s ssesassessenaesaes 294
VWS ...t se e s s s e s e e e R e e e e e R e e e e e e AR e e e e e e Re R e e e e e nnn 300
0bServable COIIBCTIONS.........cccocerererrierese s 301

0DbServable LINQ ... s s 302
Declarative Subscriptions in AULOTACcvcevereererreriernsersere s ses s e e ssesessessessessssessesaens 303
£ 11T 1117 OO 307

viil

TABLE OF CONTENTS

Chapter 22: State.......cccccmrrminnmmnmnissnnnmmmsssnmmsssnn s sssnnns 309
State-Driven State TranSitionsc.cccceernnenesnrnee s es 310
Handmade State MaChiNe...........ooooeecreree e 313
Switch-Based State MaChiNe...........cccoveererrrre e 316
Encoding Transitions with SWitCh EXPreSSiONS........cucvvrerereserssesssesssssesssessssessssssessssessssesenns 318
State Machines with Stateless............cvvrn e —————————— 320

Types, Actions, and Ignoring TranSitioNS.........cocvvvvrrnnnnnrne e 321
REENTrANCY AQAIN.......cvieririeiiriere s s b e e s e e s ae e e e aenaes 322
HierarchiCal STatesScccuciieriisernse e s 323
MOFE FRALUIEScveveerereesiesise s s s sa e e nnas 323
£ 11134 R 324

Chapter 23: Strategy......cccusmmssmssemmssnmssnmssansssnsssansssassssnsssansssassssnssssnsssansssnsssansssans 327
DYNAMIC STrAtBOY.....cceireeriecrir e st e e e e 327
B3] (S L=) S 331
Equality and CompariSon StrategiesS.......c.ccvvrererrerernsesessesesesesessesesesese s essesessssessesesessesenns 332
FUNCLIONAI STratOYcovecerreerrrerirese e 334
BT U] 134 RS 335

Chapter 24: Template Method.........cccccmmmmimnmnmmmmnmsnnnnmmmmsss s 337

GAME SIMUIATION.......ccerirrisecc s 337
Functional Template Method.........c.ccovvrinininicnrn e 339
SUMIMANY ..ttt e e s b e e e b e e e e e R e R e e e e e Re e Re R e e e e e Re e b e e e e nRenns 341
Chapter 25: ViSItOr......cuuisuemmemmmmmmmsssssssssssnnssmmssssssssssssnsssssssssssssssssnsssssssssssnnnnnnnnnness 343
INEPUSIVE VISITON ..o 344
REflECHIVE PHINTENccveveeercc s 345
EXtension MEthodS? ... e 347
Functional Reflective VISItOr ... s s s e ssnses 350
IMPIrOVEMENES.......eeeececiee s r e s r e s e s nn e e ne e nan s 351
What IS DISPALCR?ccvcereriecirere s e e e e e 352
DYNAMIC VISITOFevuerveririereressssesse s sreses e sse s s e s e ssesas e s saesaese s e s saesassessesaesaessssesaesnesssnensesnens 354

ix

TABLE OF CONTENTS

ClaSSIC VISITOKccviererieiriee et e e ee e e 355
Implementing an Additional ViSitor ... e s 358
ACYCHC VISITONcveerercces et p e e s b e nn e nne s 360
FUNCHONAI VISITOX ..ot s s e 363
£ T o S 364
Correction to: Design Patterns in .NET Core 3ccccccmmmmsnmnnmmssssnnnssssssnsnssssssnsnsssns C1
11T - 365

About the Author

Dmitri Nesteruk is a quantitative analyst, developer, course and book author, and an
occasional conference speaker. His interests lie in software development and integration
practices in the areas of computation, quantitative finance, and algorithmic trading. His
technological interests include C# and C++ programming as well as high-performance
computing using technologies such as CUDA and FPGAs. He has been a C# MVP from
2009 to 2018.

xi

About the Technical Reviewer

Adam Gladstone has over 20 years of experience in investment banking, building
software mostly in C++ and C#. For the last couple of years, he has been developing
data science and machine learning skills, particularly in Python and R after completing
a degree in Maths and Statistics. He currently works at Virtu Financial in Madrid as an
Analyst Programmer. In his free time, he develops tools for NLP.

xiii

Introduction

The topic of Design Patterns sounds dry, academically dull, and, in all honesty, done

to death in almost every programming language imaginable - including programming
languages such as JavaScript which aren’t even properly object-oriented! So why another
book on it? I know that if you're reading this, you probably have a limited amount of time
to decide whether this book is worth the investment.

I decided to write this book to fill a gap left by the lack of in-depth patterns books in
the .NET space. Plenty of books have been written over the years, but few have attempted
to research all the ways in which modern C# and F# language features can be used
to implement design patterns, and to present corresponding examples. Having just
completed a similar body of work for C++,' I thought it fitting to replicate the process
with .NET.

Now, on to design patterns - the original Design Patterns book? was published with
examples in C++ and Smalltalk, and since then, plenty of programming languages
have incorporated certain design patterns directly into the language. For example, C#
directly incorporated the Observer pattern with its built-in support for events (and the
corresponding event keyword).

Design Patterns are also a fun investigation of how a problem can be solved in many
different ways, with varying degrees of technical sophistication and different sorts of
trade-offs. Some patterns are more or less essential and unavoidable, whereas other
patterns are more of a scientific curiosity (but nevertheless will be discussed in this book,
since I'm a completionist).

Readers should be aware that comprehensive solutions to certain problems often
result in overengineering, or the creation of structures and mechanisms that are far more
complicated than is necessary for most typical scenarios. Although overengineering is a
lot of fun (hey, you get to fully solve the problem and impress your co-workers), it’s often
not feasible due to time/cost/complexity constraints.

"Dmitri Nesteruk, Design Patterns in Modern C++ (New York, NY: Apress, 2017).

?Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software (Reading, MA: Addison Wesley, 1994).

INTRODUCTION

Who This Book Is For

This book is designed to be a modern-day update to the classic Gang of Four (GoF,
named after the four authors of the original Design Patterns book) book, targeting
specifically the C# and F# programming languages. My focus is primarily on C# and the
object-oriented paradigm, but I thought it fair to extend the book in order to cover some
aspects of functional programming and the F# programming language.
The goal of this book is to investigate how we can apply the latest versions of C# and
F# to the implementation of classic design patterns. At the same time, it’s also an attempt
to flesh out any new patterns and approaches that could be useful to .NET developers.
Finally, in some places, this book is quite simply a technology demo for C# and
F#, showcasing how some of the latest features (e.g., default interface methods) make
difficult problems a lot easier to solve.

On Code Examples

The examples in this book are all suitable for putting into production, but a few
simplifications have been made in order to aid readability:

o Tuse public fields. This is not a coding recommendation, but rather
an attempt to save you time. In the real world, more thought should
be given to proper encapsulation, and in most cases, you probably
want to use properties instead.

o T often allow too much mutability either by not using readonly or by
exposing structures in such a way that their modification can cause
threading concerns. We cover concurrency issues for a few select
patterns, but I haven’t focused on each one individually.

e Idon’tdo any sort of parameter validation or exception handling,
again to save some space. Some very clever validation can be done
using C# 8 pattern matching, but this doesn’t have much to do with
design patterns.

INTRODUCTION

You should be aware that most of the examples leverage the latest version of C#
and generally use the latest C# language features that are available to developers. For
example, [use dynamic, pattern matching, and expression-bodied members liberally.
At certain points in time, I will be referencing other programming languages such as
C++ or Kotlin. It's sometimes interesting to note how designers of other languages have
implemented a particular feature. C# is no stranger to borrowing generally available
ideas from other languages, so I will mention those when we come to them.

Preface to the Second Edition

As I write this book, the streets outside are almost empty. Shops are closed, cars are
parked, public transport is rare and empty too. Life is almost at a standstill as the country
endures its first “nonworking month,” a curious occurrence that one (hopefully) only
encounters once in a lifetime. The reason for this is, of course, the COVID-19 pandemic
that will go down in the history books. We use the phrase “stop the world” a lot when
talking about the garbage collector, but this pandemic is a real “stop the world” event.

Of course, it’s not the first. In fact, there’s a pattern there too: a virus emerges, we pay
little heed until it’s spreading around the globe. Its exact nature is different in time, but
the mechanisms for dealing with it remain the same: we try to stop it from spreading and
look for a cure. Only this time around it seems to have really caught us off guard, and
now the whole world is suffering.

What'’s the moral of the story? Pattern recognition is critical for our survival. Just
as the hunters and gatherers needed to recognize predators from prey and distinguish
between edible and poisonous plants, so we learn to recognize common engineering

problems - good and bad - and try to be ready for when the need arises.

xvii

PART |

Introduction

CHAPTER 1

The SOLID Design
Principles

SOLID is an acronym which stands for the following design principles (and their
abbreviations):

» Single Responsibility Principle (SRP)

e Open-Closed Principle (OCP)

e Liskov Substitution Principle (LSP)

o Interface Segregation Principle (ISP)

e Dependency Inversion Principle (DIP)

These principles were introduced by Robert C. Martin in the early 2000s - in fact,
they are just a selection of five principles out of dozens that are expressed in Robert’s
books and his blog. These five particular topics permeate the discussion of patterns and
software design in general, so, before we dive into design patterns (I know you're all
eager), we're going to do a brief recap of what the SOLID principles are all about.

Single Responsibility Principle

Suppose you decide to keep a journal of your most intimate thoughts. The journal has a
title and a number of entries. You could model it as follows:

public class Journal

{
private readonly List<string> entries = new List<string>();
// just a counter for total # of entries
private static int count = 0;

}

© Dmitri Nesteruk 2020
D. Nesteruk, Design Patterns in .NET Core 3, https://doi.org/10.1007/978-1-4842-6180-4_1

https://doi.org/10.1007/978-1-4842-6180-4_1#DOI

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

Now, you could add functionality for adding an entry to the journal, prefixed by the
entry’s ordinal number in the journal. You could also have functionality for removing
entries (implemented in a very crude way in the following). This is easy:

public void AddEntry(string text)

{
entries.Add($"{++count}: {text}");
}
public void RemoveEntry(int index)
{
entries.RemoveAt (index);
}

And the journal is now usable as

var j = new Journal();
j.AddEntry("I cried today.");
j.AddEntry("I ate a bug.");

It makes sense to have this method as part of the Journal class because adding
ajournal entry is something the journal actually needs to do. It is the journal’s
responsibility to keep entries, so anything related to that is fair game.

Now, suppose you decide to make the journal persist by saving it to a file. You add
this code to the Journal class:

public void Save(string filename, bool overwrite = false)

{
File.WriteAllText(filename, ToString());

}

This approach is problematic. The journal’s responsibility is to keep journal entries,
not to write them to disk. If you add the persistence functionality to Journal and similar
classes, any change in the approach to persistence (say, you decide to write to the cloud
instead of disk) would require lots of tiny changes in each of the affected classes.

I want to pause here and make a point: an architecture that leads you to having to do
lots of tiny changes in lots of classes is generally best avoided if possible. Now, it really
depends on the situation: if you're renaming a symbol that’s being used in a hundred
places, I'd argue that’s generally OK because ReSharper, Rider, or whatever IDE you use

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

will actually let you perform a refactoring and have the change propagate everywhere.
But when you need to completely rework an interface... well, that can become a very
painful process!

We therefore state that persistence is a separate concern, one that is better expressed in a
separate class. We use the term Separation of Concerns (sadly, the abbreviation SoC is already
taken') when talking about the general approach of splitting code into separate classes by
functionality. In the cases of persistence in our example, we would externalize it like so:

public class PersistenceManager

{

public void SaveToFile(Journal journal, string filename,
bool overwrite = false)

{

if (overwrite || !File.Exists(filename))
File.WriteAllText(filename, journal.ToString());

}

}

And this is precisely what we mean by Single Responsibility: each class has only one
responsibility and therefore has only one reason to change. Journal would need to
change only if there’s something more that needs to be done with respect to in-memory
storage of entries; for example, you might want each entry prefixed by a timestamp, so
you would change the Add() method to do exactly that. On the other hand, if you wanted
to change the persistence mechanic, this would be changed in PersistenceManager.

An extreme example of an anti-pattern® which violates the SRP is called a God Object.
A God Object is a huge class that tries to handle as many concerns as possible, becoming
a monolithic monstrosity that is very difficult to work with. Strictly speaking, you can
take any system of any size and try to fit it into a single class, but more often than not,
you’d end up with an incomprehensible mess. Luckily for us, God Objects are easy to
recognize either visually or automatically (just count the number of member functions),
and thanks to continuous integration and source control systems, the responsible
developer can be quickly identified and adequately punished.

1SoC is short for System on a Chip, a kind of microprocessor that incorporates all (or most)
aspects of a computer.

2An anti-pattern is a design pattern that also, unfortunately, shows up in code often enough to be
recognized globally. The difference between a pattern and an anti-pattern is that anti-patterns are
typically patterns of bad design, resulting in code that’s difficult to understand, maintain, and refactor.

5

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

Open-Closed Principle

Suppose we have an (entirely hypothetical) range of products in a database. Each
product has a color and size and is defined as follows:

public enum Color

{

Red, Green, Blue

}

public enum Size
{

Small, Medium, Large, Yuge
}

public class Product
{
public string Name;
public Color Color;
public Size Size;

public Product(string name, Color color, Size size)

{
// obvious things here
}
}

Now, we want to provide certain filtering capabilities for a given set of products.
We make a ProductFilter service class. To support filtering products by color, we

implement it as follows:

public class ProductFilter
{
public IEnumerable<Product> FilterByColor
(IEnumerable<Product> products, Color color)
{
foreach (var p in products)
if (p.Color == color)
yield return p;

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

Our current approach of filtering items by color is all well and good, though of course
it could be greatly simplified with the use of Language Integrated Query (LINQ). So, our
code goes into production but, unfortunately, some time later, the boss comes in and asks
us to implement filtering by size, too. So we jump back into ProductFilter.cs, add the
following code, and recompile:

public IEnumerable<Product> FilterBySize
(IEnumerable<Product> products, Size size)

{
foreach (var p in products)
if (p.Size == size)
yield return p;
}

This feels like outright duplication, doesn’t it? Why don’t we just write a general
method that takes a predicate (i.e., a Predicate<T>)? Well, one reason could be that
different forms of filtering can be done in different ways: for example, some record
types might be indexed and need to be searched in a specific way; some data types are
amenable to search on a Graphics Processing Unit (GPU), while others are not.

Furthermore, you might want to restrict the criteria one can filter on. For example,
if you look at Amazon or a similar online store, you are only allowed to perform filtering
on a finite set of criteria. Those criteria can be added or removed by Amazon if they find
that, say, sorting by number of reviews interferes with the bottom line.

Okay, so our code goes into production but, once again, the boss comes back and
tells us that now there’s a need to search by both size and color. So what are we to do but
add another function?

public IEnumerable<Product> FilterBySizeAndColox(
IEnumerable<Product> products,
Size size, Color color)

{
foreach (var p in products)
if (p.Size == size 8&& p.Color == color)
yield return p;
}

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

What we want, from the preceding scenario, is to enforce the Open-Closed Principle
that states that a type is open for extension but closed for modification. In other words,
we want filtering that is extensible (perhaps in a different assembly) without having to
modify it (and recompiling something that already works and may have been shipped to
clients).

How can we achieve it? Well, first of all, we conceptually separate (SRP!) our filtering
process into two parts: a filter (a construct which takes all items and only returns some)
and a specification (a predicate to apply to a data element).

We can make a very simple definition of a specification interface:

public interface ISpecification<T>

{
bool IsSatisfied(T item);

}

In this interface, type T is whatever we choose it to be: it can certainly be a Product,
but it can also be something else. This makes the entire approach reusable.

Next up, we need a way of filtering based on an ISpecification<T>; this is done by
defining, you guessed it, an IFilter<T>:

public interface IFilter<T>
{
IEnumerable<T> Filter(IEnumerable<T> items,
ISpecification<T> spec);

Again, all we are doing is specifying the signature for a method called Filter()
which takes all the items and a specification and returns only those items that conform
to the specification.

Based on the preceding data, the implementation of an improved filter is really
simple:

public class BetterFilter : IFilter<Product>
{

public IEnumerable<Product> Filter(IEnumerable<Product> items,
ISpecification<Product> spec)

{

foreach (var i in items)

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

if (spec.IsSatisfied(i))
yield return i;

Again, you can think of an ISpecification<T> that’s being passed in as a strongly
typed equivalent of a Predicate<T> that has a finite set of concrete implementations
suitable for the problem domain.

Now, here’s the easy part. To make a color filter, you make a ColorSpecification:

public class ColorSpecification : ISpecification<Product>

{

private Color color;

public ColorSpecification(Color color)

{

this.color = color;

}

public bool IsSatisfied(Product p)
{

return p.Color == color;
}
}

Armed with this specification, and given a list of products, we can now filter them as
follows:

var apple = new Product("Apple", Color.Green, Size.Small);
var tree = new Product("Tree", Color.Green, Size.large);
var house = new Product("House", Color.Blue, Size.large);

Product[] products = {apple, tree, house};

var pf = new ProductFilter();

WritelLine("Green products:");

foreach (var p in pf.FilterByColor(products, Color.Green))
WriteLine($" - {p.Name} is green");

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

The preceding code gets us “Apple” and “Tree” because they are both green. Now,
the only thing we haven’t implemented so far is searching for size and color (or, indeed,
explained how you would search for size or color, or mix different criteria). The answer is that
you simply make a combinator. For example, for the logical AND, you can make it as follows:

public class AndSpecification<T> : ISpecification<T>

{

private readonly ISpecification<T> first, second;

public AndSpecification(ISpecification<T> first, ISpecification<T> second)
{

this.first = first;

this.second = second;

}

public override bool IsSatisfied(T t)

{
return first.IsSatisfied(t) && second.IsSatisfied(t);
}
}

And now, you are free to create composite conditions on the basis of simpler
ISpecifications. Reusing the green specification we made earlier, finding something

green and big is now as simple as

foreach (var p in bf.Filter(products,
new AndSpecification<Product>(
new ColorSpecification(Color.Green),
new SizeSpecification(Size.Large))))

{

WritelLine($"{p.Name} is large and green");

}

// Tree is large and green

This was a lot of code to do something seemingly simple, but the benefits are well
worth it. The only really annoying part is having to specify the generic argument to
AndSpecification - remember, unlike the color/size specifications, the combinator isn’t
constrained to the Product type.

10

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

Keep in mind that, thanks to the power of C#, you can simply introduce an operator &
(important: single ampersand here, 88 is a byproduct) for two ISpecification<T> objects,
thereby making the process of filtering by two (or more!) criteria somewhat simpler... the
only problem is that we need to change from an interface to an abstract class (feel free to
remove the leading I from the name).

public abstract class ISpecification<T>

{
public abstract bool IsSatisfied(T p);

public static ISpecification<T> operator &(
ISpecification<T> first, ISpecification<T> second)
{
return new AndSpecification<T>(first, second);
}
}

If you now avoid making extra variables for size/color specifications, the composite
specification can be reduced to a single line*:

var largeGreenSpec = new ColorSpecification(Color.Green)
& new SizeSpecification(Size.Large);

Naturally, you can take this approach to extreme by defining extension methods on
all pairs of possible specifications:

public static class CriteriaExtensions

{

public static AndSpecification<Product> And(this Color color, Size size)
{
return new AndSpecification<Product>(
new ColorSpecification(color),
new SizeSpecification(size));

SNotice we're using a single & in the evaluation. If you want to use &&, you'll also need to override
the true and false operators in ISpecification.

11

CHAPTER 1 THE SOLID DESIGN PRINCIPLES
with the subsequent use
var largeGreenSpec = Color.Green.And(Size.large);

However, this would require a set of pairs of all possible criteria, something that’s
not particularly realistic, unless you use code generation, of course. Sadly, there is
no way in C# of establishing an implicit relationship between an enum Xxx and an
XxxSpecification.

Here is a diagram of the entire system we've just built:

T i
ISpecification IFilter —
+|sSatisfied() +Filter()
+operator&()
JA
ColorSpecification SizeSpecification AndSpecification BetterFilter
-color -size -first +Filter()
+|sSatisfied() +|sSatisfied() -second
+IsSatisfied()

So, let’s recap what OCP is and how this example enforces it. Basically, OCP states
that you shouldn’t need to go back to code you've already written and tested and
change it. And that’s exactly what’s happening here! We made ISpecification<T> and
IFilter<T» and, from then on, all we have to do is implement either of the interfaces
(without modifying the interfaces themselves) to implement new filtering mechanics.
This is what is meant by “open for extension, closed for modification.”

One thing worth noting is that conformance with OCP is only possible inside an
object-oriented paradigm. For example, F#’s discriminated unions are by definition
not compliant with OCP since it is impossible to extend them without modifying their
original definition.

12

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

Liskov Substitution Principle

The Liskov Substitution Principle, named after Barbara Liskov, states that if an interface
takes an object of type Parent, it should equally take an object of type Child without
anything breaking. Let’s take a look at a situation where LSP is broken.

Here’s a rectangle; it has width and height and a bunch of getters and setters
calculating the area:

public class Rectangle

{
public int Width { get; set; }
public int Height { get; set; }

public Rectangle() {}
public Rectangle(int width, int height)

{
Width = width;
Height = height;
}
public int Area => Width * Height;
}

Suppose we make a special kind of Rectangle called a Square. This object overrides
the setters to set both width and height:

public class Square : Rectangle

{
public Square(int side)
{
Width = Height = side;
}
public new int Width
{
set { base.Width = base.Height = value; }
}

13

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

public new int Height

{
set { base.Width = base.Height = value; }
}
}

This approach is evil. You cannot see it yet, because it looks very innocent indeed:
the setters simply set both dimensions (so that a square always remain a square), what
could possibly go wrong? Well, suppose we introduce a method that makes use of a
Rectangle:

public static void UseIt(Rectangle r)
{

r.Height = 10;

WritelLine($"Expected area of {10*r.Width}, got {r.Area}");
}

This method looks innocent enough if used with a Rectangle:

var rc = new Rectangle(2,3);
UseIt(zc);
// Expected area of 20, got 20

However, innocuous method can seriously backfire if used with a Square instead:

var sq = new Square(5);
UseIt(sq);
// Expected area of 50, got 100

The preceding code takes the formula Area = Width x Height as an invariant. It
gets the width, sets the height to 10, and rightly expects the product to be equal to the
calculated area. But calling the preceding function with a Square yields a value of 100
instead of 50. I'm sure you can guess why this is.

So the problem here is that although UseIt() is happy to take any Rectangle class,
it fails to take a Square because the behaviors inside Square break its operation. So,
how would you fix this issue? Well, one approach would be to simply deprecate the
Square class and start treating some Rectangles as special case. For example, you could
introduce an IsSquare property.

14

CHAPTER 1 THE SOLID DESIGN PRINCIPLES
You might also want a way of detecting that a Rectangle is, in fact, a square:
public bool IsSquare => Width == Height;

Similarly, instead of having constructors, you could introduce Factory Methods (see
the “Factories” chapter) that would construct rectangles and squares and would have
corresponding names (e.g., NewRectangle() and NewSquare()), so there would be no
ambiguity.

As far as setting the properties is concerned, in this case, the solution would be to
introduce a uniform SetSize(width,height) method and remove Width/Height setters
entirely. That way, you are avoiding the situation where setting the height via a setter also
stealthily changes the width.

This rectangle/square challenge is, in my opinion, an excellent interview question: it
doesn’t have a correct answer, but allows many interpretations and variations.

Interface Segregation Principle

Oh-kay, here is another contrived example that is nonetheless suitable for illustrating the
problem. Suppose you decide to define a multi-function printer: a device that can print,
scan, and also fax documents. So you define it like so:

class MyFavouritePrinter /* : IMachine */
{

void Print(Document d) {}

void Fax(Document d) {}

void Scan(Document d) {}

}s

This is fine. Now, suppose you decide to define an interface that needs to be implemented
by everyone who also plans to make a multi-function printer. So you could use the Extract
Interface function in your favorite IDE, and you'll get something like the following:

public interface IMachine

{

void Print(Document d);
void Fax(Document d);
void Scan(Document d);

}

15

