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Preface

The fundamental theory that emerged from Aleksandr Mikhailovich Lyapunov’s
doctoral thesis [50] more than 100 years ago has been and still is the main tool
to analyze stability properties of dynamical systems. Lyapunov or Lyapunov-like
functions are monotone functions when evaluated along the solution of a dynamical
system. Based on the monotonicity property, stability or instability of invariant sets
can be concludedwithout the need to derive explicit solutions of the systemdynamics.

In this monograph, existing results characterizing stability and stabilizability of
the origin of differential inclusions through Lyapunov and control Lyapunov func-
tions are reviewed and new characterizations for instability and destabilization char-
acterized through Lyapunov-like arguments are derived. To distinguish between
stability and instability, stability results are characterized through Lyapunov and
control Lyapunov functions whereas instability is characterized through Chetaev and
control Chetaev functions. In addition, similarities and differences between stability
and instability and stabilizability and destabilizability of the origin of a differen-
tial inclusion are summarized. These connections are established by considering
dynamics in forward time, in backward time, or by considering a scaled version of
the differential inclusion. In total, the diagram shown in Fig. 1.1 is obtained, unifying
new and existing results in a consistent notation.

As a last contribution of the monograph, ideas combining control Lyapunov
and control Chetaev functions into a single framework are discussed. Through this
approach, convergence (i.e., stability) and avoidance (i.e., instability) are guaranteed
simultaneously.

The genesis of this monograph emerged from the preliminary results in [11],
published as a conference paper in the proceedings of the 57th IEEE Conference
on Decision and Control. Additionally, the ideas combining properties of control
Lyapunov and control Chetaev functions rely on conference papers [13] and [14].

v
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Chapter 1
Introduction

Abstract Lyapunov methods have been and still are one of the main tools to ana-
lyze stability properties of dynamical systems. In this monograph Lyapunov results
characterizing stability and stabilizability of the origin of differential inclusions are
reviewed. To characterize instability and destabilizability, Lyapunov-like functions,
called Chetaev and control Chetaev functions in the monograph, are introduced.
Based on their definition and by mirroring existing results on stability, analogue
results for instability are derived. Moreover, by looking at the dynamics of a dif-
ferential inclusion in backward time, similarities and differences between stability
of the origin in forward time and instability in backward time, and vice versa, are
discussed. Similarly, invariance of stability and instability properties of equilibria
of differential equations with respect to a scaling are summarized. As a final result,
ideas combining control Lyapunov and control Chetaev functions to simultaneously
guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined.
The work is addressed at researchers working in control as well as graduate students
in control engineering and applied mathematics.

Keywords Lyapunov methods · Differential inclusions · Stability of nonlinear
systems · Instability of nonlinear systems · Stabilization/destabilization of
nonlinear systems · Stabilizability and destabilizability

Lyapunov functions, originating from theworkbyAleksandrMikhailovichLyapunov
at the end of the 19th century [50], have been the main tool for the stability analysis
of dynamical systems for more than a century. The strength of Lyapunov functions
is that conclusions on stability properties of invariant sets of dynamical systems
can be drawn without explicit knowledge of solutions and solely based on the time
derivative of a Lyapunov function along solutions.While it is frequently nontrivial to
find appropriate Lyapunov functions, inmany cases it is significantly less challenging
than the derivation of an explicit solution of the dynamical system.

Although Lyapunov functions were originally proposed by Lyapunov to provide
sufficient conditions for stability properties of equilibria of differential equations,
subsequent works by Barbashin and Krasovskii [8], Malkin [52], Massera [53], and
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2 1 Introduction

Chetaev [19], for example, extended the results to other types of stability, applied
them tomore general dynamical systems, and began to address the converse question
or the necessity of the various Lyapunov conditions. For an overview of contributions
and the developments of Lyapunov methods we refer to the article [37].

A reference unifying many results on stability was written by Teel and Praly [69],
showing that a closed set A ⊂ R

n is KL-stable with respect to two measures and
with respect to the differential inclusion

ẋ ∈ F(x), x0 ∈ R
n, (1.1)

with upper semicontinuous right-hand side F : Rn ⇒ R
n , if and only if there exists

a corresponding smooth Lyapunov function. In the case thatA represents the origin
and the measures are defined as the Euclidean norm, for example, then the results
reduce to a characterization of asymptotic stability. Comparison functions introduced
by Massera [53] and Hahn [35] (see also [36]) have become a modern tool in sta-
bility analysis and are used in KL-stability to replace classical asymptotic stability
definitions based on ε-δ formulations and convergence.

While the results in [69] focus on properties of all solutions of the differential
inclusion and equivalent Lyapunov characterizations, results based on the existence of
at least one solution with specific properties is analyzed through control Lyapunov
functions. To avoid confusion, stability properties are usually called strong if all
solutions are of interest and weak if the existence of a solution is of interest.

Control Lyapunov functions originate from the works of Artstein [5] and Sontag
[63]. Sontag discusses the relationship between asymptotic controllability and the
existence of a continuous but possibly nonsmooth positive definite function whose
derivative along the solution decreases if the input of the control system is selected
appropriately. Artstein expresses similar ideas for continuously differentiable func-
tions and more restrictive dynamics.

While concepts like strong KL-stability and asymptotic stability are equivalent
to the existence of smooth Lyapunov functions the same connection cannot be estab-
lished in the context of weakKL-stability, asymptotic controllability or stabilizabil-
ity and control Lyapunov functions. Famous examples include theBrockett integrator
[16] and Artstein’s circles [5], which show that asymptotic controllability does not
necessarily imply the existence of a smooth control Lyapunov function. To overcome
limitations due to assumptions on differentiability of candidate control Lyapunov
functions, nonsmooth control Lyapunov functions have been introduced using the
Dini derivative or proximal gradients (see [24], for example) instead of the directional
derivative. Sontag and Sussman [66] showed that asymptotic controllability or sta-
bilizability is equivalent to the existence of a continuous control Lyapunov function,
and a control Lyapunov function was used by Clarke, Ledyaev, Sontag, and Subbotin
[22] to derive a stabilizing controller based on this result. In [21], Clarke, Ledyaev,
Rifford and Stern proved the existence of a continuous control Lyapunov function
which is locally Lipschitz continuous on a domain excluding a neighborhood around
the origin. Finally, weakKL-stability of the origin of (1.1) was shown to be equiva-
lent to the existence of a locally Lipschitz continuous control Lyapunov function by



1 Introduction 3

Rifford in [59] and byKellett and Teel in [38, 39]. In [59] it is additionally shown that
there exists a semiconcave control Lyapunov function, a property which is stronger
than Lipschitz continuity, while in [39] the results are not restricted to stability of
the origin, but are applicable to more general invariant sets. For semiconcavity and
properties of semiconcave control Lyapunov functions we refer to the references [10,
18, 20]. Here, differences between semiconcave functions and Lipschitz continuous
functions will not be addressed and we focus on stability properties of the origin
instead of more general sets.

While the terminology suggests that stability is a desirable phenomenon while
instability is undesirable, in practical applications this is not necessarily true. For
instance, in many practical applications modeled by dynamical systems or control
systems, unsafe regions of the state space exist which should be avoided by the
solutions of the system. Hence, it is desirable that such unsafe sets are unstable,
which requires both the analysis of instability and the design of controllers that
render such sets unstable.

This motivated the writing of this monograph, whose contributions are to mirror
existing results on strong and weakKL-stability to obtain corresponding instability
results and to establish the diagram in Fig. 1.1.

In particular, instead of a Lyapunov function characterizing that all solutions of
(1.1) converge to the origin, we give a Lyapunov-like function guaranteeing that all
solutions go to infinity for t → ∞. Similarly, results on the existence of one solution
with certain properties analogous to control Lyapunov functions are derived. To
acknowledge the contributions of Chetaev in the context of instability of differential
equations and to differentiate between stability and instability properties, in this
monograph Lyapunov-like functions characterizing instability properties are called
Chetaev functions and control Chetaev functions, respectively. Precise definitions
are provided in due course. Moreover, connections between stability properties in
forward and backward time as well as invariance with respect to (positive) scaling
of differential inclusions are discussed.

While results characterizing stability are essentially complete, instability and
destabilization have not been studied to the same extent. We emphasize that while
it may appear that such characterizations are easily obtained via time reversal, the
situation is much more subtle. On the one hand, the fact that for stability the solu-
tions usually flow towards a compact set, while for instability the solutions flow
away from a compact set causes technical difficulties. On the other hand, as we will
see in Sect. 4.3 and particularly in Corollary 4.15, weak (in)stability concepts are
usually characterized by nonsmooth control Lyapunov or control Chetaev functions,
respectively, and the corresponding generalized differential inequalities for nons-
mooth functions cannot simply be reversed in time. In [26], so called anti-control
Lyapunov functions, similar to control Chetaev functions discussed here, are intro-
duced. However, necessary and sufficient conditions for the existence of anti-control
Lyapunov functions are not derived. Instead, the anti-control Lyapunov functions are
used to define destabilizing feedback laws based on Sontag’s universal formula [64].
Additionally, in [27], control Chetaev functions have been proposed to characterize
instability properties of control systems. However, the definition of these functions


