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Preface

Hybrid High-Order (HHO) methods attach discrete unknowns to the cells and to the
faces of the mesh. At the heart of their devising lie two intuitive ideas: (i) a local
operator reconstructing in every mesh cell a gradient (and possibly a potential for
the gradient) from the local cell and face unknowns and (ii) a local stabilization
operator weakly enforcing in every mesh cell the matching of the trace of the cell
unknowns with the face unknowns. These two local operators are then combined into
a local discrete bilinear form, and the global problem is assembled cellwise as in stan-
dard finite element methods. HHO methods offer many attractive features: support
of polyhedral meshes, optimal convergence rates, local conservation principles, a
dimension-independent formulation, and robustness in various regimes (e.g., no
volume-locking in linear elasticity). Moreover, their computational efficiency hinges
on the possibility of locally eliminating the cell unknowns by static condensation,
leading to a global transmission problem coupling only the face unknowns.

HHO methods were introduced in [77, 79] for linear diffusion and quasi-
incompressible linear elasticity. A high-order method in mixed form sharing the
same devising principles was introduced in [78], and shown in [6] to lead after
hybridization to a HHO method with a slightly different, yet equivalent, writing
of the stabilization. The realm of applications of HHO methods has been substan-
tially expanded over the last few years. Developments in solid mechanics include
nonlinear elasticity [26], hyperelasticity [1], plasticity [2, 3], poroelasticity [16, 27],
Kirchhoff–Love plates [19], the Signorini [44], obstacle [59] and two-membrane
contact [69] problems, Tresca friction [53], and acoustic and elastic wave propaga-
tion [33, 34]. Those related to fluidmechanics include convection-diffusion in various
regimes [74], Stokes [6, 81], Navier–Stokes [23, 45, 82], Bingham [43], creeping
non-Newtonian [24], and Brinkman [22] flows, flows in fractured porous media [47,
106], single-phasemiscible flows [7], and elliptic [35] and Stokes [32] interface prob-
lems. Other interesting applications include the Cahn–Hilliard problem [49], Leray–
Lions equations [72], elliptic multiscale problems [60], H−1 loads [95], spectral
problems [38, 41], domains with curved boundary [21, 35, 36], and magnetostatics
[48].

Bridges and unifying viewpoints emerged progressively between HHO methods
and several other discretizationmethodswhich also attach unknowns to themesh cells
and faces. Already in the seminal work [79], a connection was established between
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vi Preface

the lowest-order HHO method and the hybrid finite volume method from [97] (and,
thus, to the broader setting of hybrid mimetic mixed methods in [85]). Perhaps the
most salient connection was made in [62] where HHOmethods were embedded into
the broad setting of Hybridizable Discontinuous Galerkin (HDG) methods [64]. One
originality of equal-order HHO methods is the use of the (potential) reconstruction
operator in the stabilization. Moreover, the analyses of HHO and HDG methods
follow somewhat different paths, since the former relies on orthogonal projections,
whereas the latter often invokes a more specific approximation operator [65]. We
believe that the links between HHO and HDG methods are mutually beneficial, as,
for instance, recent HHO developments can be transposed to the HDG setting. Weak
Galerkin (WG) methods [148, 149], which were embedded into the HDG setting in
[61 Sect. 6.6], are, thus, also closely related to HHO. WG and HHO were developed
independently and share a common devising viewpoint combining reconstruction
(called weak gradient inWG) and stabilization. Yet, theWG stabilization often relies
on plain least-squares penalties, whereas the more sophisticated HHO stabilization is
key to a higher-order consistency property. Furthermore, the work [62] also bridged
HHO methods to the nonconforming virtual element method [10, 119]. Finally, the
connection to the multiscale hybrid mixedmethod from [105] was uncovered in [46].

A detailed monograph on HHOmethods appeared this year [73]. The present text
is shorter and does not cover asmany aspects of the analysis and applications of HHO
methods. Its originality lies in targetting the material to computational mechanics
without sacrificingmathematical rigor, while including on the one hand somemathe-
matical results with their own specific twist and on the other hand numerical illustra-
tions drawn from industrial examples. Moreover, several topics not covered in [73]
are treated here: domains with curved boundary, hyperelasticity, plasticity, contact,
friction, and wave propagation. The present material is organized into eight chapters:
the first three gently introduce the basic principles of HHOmethods on a linear diffu-
sion problem, the following four present various challenging applications to solid
mechanics, and the last one reviews implementation aspects.

This book is primarily intended for graduate students, researchers (in applied
mathematics, numerical analysis, and computational mechanics), and engineers
working in related fields of application. Basic knowledge of the devising and anal-
ysis of finite element methods is assumed. Special effort was made to streamline the
presentation so as to pinpoint the essential ideas, address key mathematical aspects,
present examples, and provide bibliographic pointers. This book can also be used as
a support for lectures. As a matter of fact, its idea originated from a series of lectures
given by one of the authors during the Workshop on Computational Modeling and
Numerical Analysis (Petrópolis, Brasil, 2019).

We are thankful to many colleagues for stimulating discussions at various occa-
sions. Special thanks go to G. Delay (Sorbonne University) and S. Lemaire (INRIA)
for their careful reading of parts of this manuscript.

Namur, Belgium
Paris, France
December 2020

Matteo Cicuttin
Alexandre Ern
Nicolas Pignet
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Chapter 1
Getting Started: Linear Diffusion

The objective of this chapter is to gently introduce the hybrid high-order (HHO)
method on one of the simplest model problems: the Poisson problem with homoge-
neous Dirichlet boundary conditions. Our goal is to present the key ideas underlying
the devising of the method and state its main properties (most of them without
proof). The keywords of this chapter are cell and face unknowns, local reconstruc-
tion and stabilization operators, elementwise assembly, static condensation, energy
minimization, and equilibrated fluxes.

1.1 Model Problem

Let � be an open, bounded, connected, Lipschitz subset of Rd in space dimension
d ≥ 2. The one-dimensional case d = 1 can also be covered, and we refer the reader
to Sect. 1.6 for an outline of HHO methods in this setting. Vectors in Rd and vector-
valued functions are denoted in bold font, a·b denotes the Euclidean inner product
between two vectors a, b ∈ R

d and ‖·‖�2 the Euclidean norm in R
d . Moreover, #S

denotes the cardinality of a finite set S.
We use standard notation for the Lebesgue and Sobolev spaces; see, e.g., [30,

Chaps. 4 and 8], [92, Chaps. 1–4], and [5, 96]. In particular, L2(�) is the Lebesgue
space composed of square-integrable functions over �, and H 1(�) is the Sobolev
space composed of those functions in L2(�) whose (weak) partial derivatives are
square-integrable functions over �. Moreover, H 1

0 (�) is the subspace of H 1(�)

composed of functions with zero trace on the boundary ∂�. Inner products and
norms in these spaces are denoted by (·, ·)L2(�), ‖·‖L2(�), (·, ·)H 1(�), and ‖·‖H 1(�).
Recall that for a real-valued function v:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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2 1 Getting Started: Linear Diffusion

‖v‖2L2(�)
:=

∫
�

v2dx, ‖v‖2H 1(�)
:= ‖v‖2L2(�) + �2�‖∇v‖2L2(�)

, (1.1)

where the length scale �� := diam (�) (the diameter of �) is introduced to be
dimensionally consistent. Owing to the Poincaré–Steklov inequality (a.k.a. Poincaré
inequality; see [92, Remark 3.32] for a discussion on the terminology), there is
Cps > 0 such that Cps‖v‖L2(�) ≤ ��‖∇v‖L2(�) for all v ∈ H 1

0 (�).
Themodel problemwewant to approximate in this chapter is the Poisson problem

with source term f ∈ L2(�) and homogeneous Dirichlet boundary conditions, i.e.,
−�u = f in � and u = 0 on ∂�. The weak formulation of this problem reads as
follows: Seek u ∈ V := H 1

0 (�) such that

a(u, w) = �(w), ∀w ∈ V, (1.2)

with the following bounded bilinear and linear forms:

a(v,w) := (∇v,∇w)L2(�), �(w) := ( f, w)L2(�), (1.3)

for all v,w ∈ V . Since we have a(v, v) = ‖∇v‖2
L2(�)

, the Poincaré–Steklov inequal-
ity implies that the bilinear form a is coercive on V . Hence, the model problem (1.2)
is well-posed owing to the Lax–Milgram lemma.

1.2 Discrete Setting

In this section, we present the setting to formulate the HHO discretization of the
model problem (1.2).

1.2.1 The Mesh

For simplicity, we assume inwhat follows that the domain� is a polyhedron inRd , so
that its boundary is composed of a finite union of portions of affine hyperplanes with
mutually disjoint interiors. The case of domains with a curved boundary is discussed
in Sect. 3.2.2.

Since � is a polyhedron, it can be covered exactly by a mesh T composed of a
finite collection of (open) polyhedral mesh cells T , all mutually disjoint, i.e., we have
� = ⋃

T∈T T . Notice that by definition of a polyhedron, the mesh cells have straight
edges if d = 2 and planar faces if d = 3. For a generic mesh cell T ∈ T , its boundary
is denoted by ∂T , its unit outward normal by nT , and its diameter by hT . The mesh
size is defined as the largest cell diameter in the mesh and is denoted by hT , and
more simply by h when there is no ambiguity. When establishing error estimates,
one is interested in the process h → 0 corresponding to a sequence of successively
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Fig. 1.1 Local refinement of a quadrilateral mesh; the mesh cells containing hanging nodes are
treated as polygons (here, pentagons)

refined meshes. In this case, one needs to introduce a notion of shape-regularity for
the mesh sequence. This notion is detailed in Sect. 2.1.

The possibility of handling meshes composed of polyhedral mesh cells is an
attractive feature of HHOmethods. For instance, it allows one to treat quite naturally
the presence of hanging nodes arising from local mesh refinement; see Fig. 1.1 for an
illustration. However, the reader can assume for simplicity that themesh is composed
of cells with a single shape, such as simplices (triangles in 2D, tetrahedra in 3D) or
(rectangular) cuboids, without loosing anything essential in the understanding of the
devising and analysis of HHO methods.

Besides the mesh cells, the mesh faces also play an important role in HHO meth-
ods. We say that the (d − 1)-dimensional subset F ⊂ � is a mesh face if F is a
subset of an affine hyperplane, say HF , such that the following holds: (i) either there
are two distinct mesh cells T−, T+ ∈ T such that

F = ∂T− ∩ ∂T+ ∩ HF , (1.4)

and F is called a (mesh) interface; (ii) or there is one mesh cell T− ∈ T such that

F = ∂T− ∩ ∂� ∩ HF , (1.5)

and F is called a (mesh) boundary face. The interfaces are collected in the set F ◦,
the boundary faces in the set F ∂ , so that the set

F := F ◦ ∪ F ∂ (1.6)
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collects all the mesh faces. For a mesh cell T ∈ T , FT denotes the collection of the
mesh faces composing its boundary ∂T . Notice that the above definition of the mesh
faces implies that each mesh face is straight in 2D and planar in 3D. Hence, for every
mesh cell T ∈ T , nT |F is a constant vector on every face F ∈ FT . Notice also that
the definitions (1.4) and (1.5) do not allow for the case of several coplanar faces that
could be shared by two cells or a cell and the boundary, respectively; this choice is
only made for simplicity.

1.2.2 Discrete Unknowns

The discrete unknowns in HHO methods are polynomials attached to the mesh cells
and to the mesh faces. The idea is that the cell polynomials approximate the exact
solution in the mesh cells, and that the face polynomials approximate the trace of
the exact solution on the mesh faces (although they are not the trace of the cell
polynomials). To ease the exposition, we consider here the equal-order HHOmethod
where the cell and face polynomials have the same degree. Variants are considered
in Sect. 3.2.1.

Let k ≥ 0 be the polynomial degree. Let Pk
d be the space composed of d-variate

(real-valued) polynomials of total degree at most k. For every mesh cell T ∈ T ,
P
k
d(T ) denotes the space composed of the restriction to T of the polynomials in Pk

d .
To define the (d − 1)-variate polynomial space attached to amesh face F ∈ F (which
is a subset ofRd ), we consider an affine geometricmapping T F : Rd−1 → HF (recall
that HF is the affine hyperplane in Rd supporting F). Then we set

P
k
d−1(F) := P

k
d−1 ◦ (T−1

F )|F . (1.7)

It is easy to see that the definition of Pk
d−1(F) is independent of the choice of the

affine geometric mapping T F . (Notice that defining polynomials on the mesh faces
is meaningful since we are assuming d ≥ 2.)

Let us first consider a local viewpoint. For every mesh cell T ∈ T , we set

V̂ k
T := P

k
d(T ) × P

k
d−1(FT ), P

k
d−1(FT ) :=

ą

F∈FT

P
k
d−1(F). (1.8)

A generic element in V̂ k
T is denoted by v̂T := (vT , v∂T ). We shall systematically

employ the hat notation to indicate a pair of (piecewise) functions, one attached to
the mesh cell(s) and one to the mesh face(s). Notice that the trace of vT on ∂T differs
from v∂T ; in particular, the former is a smooth function over ∂T , whereas the latter
generally exhibits jumps from one face inFT to an adjacent one. To define the global
discrete HHO unknowns, we follow a similar paradigm; see Fig. 1.2.
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Fig. 1.2 Local (left) and global (right) unknowns for the HHOmethod (d = 2, k = 1). Each bullet
on the faces and in the cells conventionally represents one basis function

Definition 1.1 (HHO space) The equal-order HHO space is defined as follows:

V̂ k
h := V k

T × V k
F , V k

T :=
ą

T∈T
P
k
d(T ), V k

F :=
ą

F∈F
P
k
d−1(F). (1.9)

We have dim(V̂ k
h ) = (k+d

d

)
#T + (k+d−1

d−1

)
#F . �

A generic element in V̂ k
h is denoted by v̂h := (vT , vF ) with vT := (vT )T∈T and

vF := (vF )F∈F . Notice that in general vT is only piecewise smooth, i.e., it can jump
across the mesh interfaces, and similarly vF can jump from one mesh face to an
adjacent one. Moreover, for all v̂h ∈ V̂ k

h and all T ∈ T , it is convenient to localize
the components of v̂h associated with T and its faces by using the notation

v̂T := (
vT , v∂T := (vF )F∈FT

) ∈ V̂ k
T . (1.10)

At this stage, a natural question that arises is how to reduce a generic function
v ∈ H 1(�) (think of the weak solution to (1.2)) to some member of the discrete
space V̂ k

h . In the context of finite elements, this task is usually realized by means
of the interpolation operator associated with the finite element. In the context of
HHO methods, this task is realized in a simple way by considering L2-orthogonal
projections. Let T ∈ T . Let�k

T : L2(T ) → P
k
d(T ) and�k

∂T : L2(∂T ) → P
k
d−1(FT )

be the L2-orthogonal projections defined such that for all v ∈ L2(T ) and all w ∈
L2(∂T ),


