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Preface

The Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization
is a workshop series initiated by Ulrich Faigle, around the time he moved from
the Twente University to the University of Cologne. After many CTW editions
in Twente and Cologne, it was decided that CTWs were mature enough to move
about: in 2004, the CTW was organized in Villa Vigoni (Menaggio, Como, Italy)
by Francesco Maffioli (Politecnico di Milano) and Leo Liberti (CNRS-LIX). Since
then, the CTW visited again Italy for three times, beyond France, Germany, the
Netherlands, and Turkey. This edition is the first time that the CTW is organized
with the contribution of CNR-IASI members (Claudio Gentile, Giuseppe Stecca,
Paolo Ventura, Giovanni Rinaldi, and Fabio Furini) in addition to the members of
University of Rome “Tor Vergata” (Andrea Pacifici), Roma Tre University (Gaia
Nicosia), and CNRS & LIX Polytechnique Palaiseau (Leo Liberti).

Having been initially set up by discrete applied mathematicians, the CTW still
follows the mathematical tradition. In this CTW edition (hereafter, CTW2020), for
the first time we adopted two submission tracks: standard papers of at most 12 pages
and traditional CTW extended abstracts of at most 4 pages.

This volume collects the standard papers that were submitted to the CTW2020.
The papers underwent a standard peer review process performed by a Program
Committee consisting of 30 members:1 17 CTW steering committee members and

1Ali Fuat Alkaya (Marmara U., Turkey), Christoph Buchheim (TU Dortmund, Germany),
Francesco Carrabs (U. Salerno, Italy), Alberto Ceselli (U. Milano, Italy), Roberto Cordone (U.
Milano, Italy), Ekrem Duman (Ozyegin U., Turkey), Yuri Faenza (Columbia U., USA), Bernard
Gendron (IRO U. Montreal & CIRRELT, Canada), Claudio Gentile (CNR-IASI, Italy), Johann
Hurink (U. Twente, The Netherlands), Ola Jabali (Politecnico di Milano, Italy), Leo Liberti (CNRS
& LIX Polytechnique Palaiseau, France), Frauke Liers (FAU Erlangen-Nuremberg, Germany),
Bodo Manthey (U. Twente, The Netherlands), Gaia Nicosia (U. Roma Tre, Italy), Tony Nixon (U.
Lancaster, UK), Andrea Pacifici (U. Roma Tor Vergata, Italy), Ulrich Pferschy (U. Graz, Austria),
Stefan Pickl (U. Bundeswehr München, Germany), Michael Poss (LIRMM U. Montpellier &
CNRS, France), Bert Randerath (U. Koeln, Germany), Giovanni Righini (U. Milano, Italy), Heiko
Roeglin (U. Bonn, Germany), Oliver Schaudt (RTWH Aachen U., Germany), Rainer Schrader
(U. Koeln, Germany), Giuseppe Stecca (CNR-IASI, Italy), Frank Vallentin (U. Koeln, Germany),
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vi Preface

13 guest members. PC members came from Italy, Germany, France, the USA,
Canada, the Netherlands, the UK, Austria, and Turkey. We received 46 submissions
of which we accepted 31 for publication in this volume with a rate of success of
67%.

The chapters of this volume present works on graph theory, discrete mathe-
matics, combinatorial optimization, and operations research methods, with partic-
ular emphasis on coloring, graph decomposition, connectivity, distance geometry,
mixed-integer programming, machine learning, heuristics, meta-heuristics, math-
heuristics, and exact methods. Applications are related to logistics, production
planning, energy, telecommunications, healthcare, and circular economy.

The scientific program of the CTW2020 includes the 31 standard papers in this
volume, 33 extended abstracts, and two plenary invited talks. As usual for the CTW,
extended abstracts were subject to a high acceptance level, allowing also papers
presenting preliminary results with a particular accent to works presented by MScs,
PhDs, or Postdocs. The traditional CTW extended abstracts will be published on
the conference’s website http://ctw2020.iasi.cnr.it, where also additional material
collected during the conference will be posted.

We thank all the PC members and the subreviewers for the complex work
performed to select the papers and to improve their quality considering also a
possible second round of revision.

Following the CTW tradition, a special issue of Discrete Applied Mathematics
(DAM) dedicated to this workshop and its main topics of interest will be edited.

Not every CTW edition features invited plenary speakers, but this one does.
Two very well-known researchers accepted our invitation: Prof. Dan Bienstock
(Columbia University) and Prof. Marco Sciandrone (University of Florence). Prof.
Dan Bienstock works in many topics of Combinatorial Optimization, Integer and
Mixed-Integer Programming, and Network Design. He is the author of many journal
and conference papers and of two textbooks: “Electrical Transmission System
Cascades and Vulnerability: An Operations Research Viewpoint,” ISBN 978-1-
611974-15-7, SIAM-MOS Series on Optimization (2015), and “Potential Function
Methods for Approximately Solving Linear Programming Problems: Theory and
Practice,” ISBN 1-4020-7173-6, Kluwer Academic Publishers, Boston (2002). Prof.
Marco Sciandrone works in Nonlinear Programming with a particular expertise in
Machine Learning, Neural Networks, Multiobjective Optimization, and Nonlinear
Approximation of Discrete Variables.

Finally, we thank AIRO for hosting this volume in its AIRO-Springer series.
We thank both AIRO and CNR-IASI for their support to the realization of the
conference.

Paolo Ventura (CNR-IASI, Italy), Maria Teresa Vespucci (U. Bergamo, Italy), and Angelika
Wiegele (Alpen-Adria U. Klagenfurt, Austria).

http://ctw2020.iasi.cnr.it


Preface vii

This conference was originally supposed to take place in the wonderful Ischia
island on 15–17 June, 2020. Due to the Covid-19 pandemic, we were first obliged
to reschedule the conference in September 14–16, 2020, and then to move it online
as the majority of conferences in 2020. Nevertheless, we very much hope you will
all enjoy the CTW2020.

Rome, Italy Claudio Gentile
Rome, Italy Giuseppe Stecca
Rome, Italy Paolo Ventura
September 2020
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Josep Díaz, Öznur Yaşar Diner, Maria Serna, and Oriol Serra

Total Chromatic Sum for Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Ewa Kubicka, Grzegorz Kubicki, Michał Małafiejski,
and Krzysztof M. Ocetkiewicz

An Incremental Search Heuristic for Coloring Vertices of a Graph . . . . . . . 39
Subhankar Ghosal and Sasthi C. Ghosh

Improved Bounds on the Span of L(1, 2)-edge Labeling of Some
Infinite Regular Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Susobhan Bandopadhyay, Sasthi C. Ghosh, and Subhasis Koley

Optimal Tree Decompositions Revisited: A Simpler Linear-Time
FPT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Ernst Althaus and Sarah Ziegler

On Superperfection of Edge Intersection Graphs of Paths . . . . . . . . . . . . . . . . . . 79
Hervé Kerivin and Annegret Wagler

A Cycle-Based Formulation for the Distance Geometry Problem . . . . . . . . . . 93
Leo Liberti, Gabriele Iommazzo, Carlile Lavor, and Nelson Maculan

The Unsuitable Neighbourhood Inequalities for the Fixed
Cardinality Stable Set Polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Phillippe Samer and Dag Haugland

Relating Hypergraph Parameters of Generalized Power Graphs . . . . . . . . . . 117
Lucas L. S. Portugal, Renata Del Vecchio, and Simone Dantas

Assur Decompositions of Direction-Length Frameworks . . . . . . . . . . . . . . . . . . . 131
Anthony Nixon

ix



x Contents

On the Burning Number of p-Caterpillars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Michaela Hiller, Arie M. C. A. Koster, and Eberhard Triesch

An Approximation Algorithm for Network Flow Interdiction with
Unit Costs and Two Capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Jan Boeckmann and Clemens Thielen

On the Benchmark Instances for the Bin Packing Problem
with Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Tiziano Bacci and Sara Nicoloso

Directed Zagreb Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Barbara M. Anthony and Alison M. Marr

Edge Tree Spanners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Fernanda Couto, Luís Cunha, and Daniel Posner

Sequence Graphs: Characterization and Counting of Admissible
Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Sammy Khalife

On Solving the Time Window Assignment Vehicle Routing Problem
via Iterated Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Lucas Burahem Martins, Manuel Iori, Mayron César O. Moreira,
and Giorgio Zucchi

Synchronized Pickup and Delivery Problems with Connecting
FIFO Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Michele Barbato, Alberto Ceselli, and Nicolas Facchinetti

A Comparison Between Simultaneous and Hierarchical Approaches
to Solve a Multi-Objective Location-Routing Problem . . . . . . . . . . . . . . . . . . . . . . 251
Aydin Teymourifar, Ana Maria Rodrigues, and José Soeiro Ferreira

Piecewise Linear Valued Constraint Satisfaction Problems with
Fixed Number of Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Manuel Bodirsky, Marcello Mamino, and Caterina Viola

A Lagrangian Approach to Chance Constrained Routing with
Local Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Matteo Cacciola, Antonio Frangioni, Laura Galli, and Giovanni Stea

A Metaheuristic Approach for Biological Sample Transportation in
Healthcare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Paolo Detti, Garazi Zabalo Manrique de Lara, and Mario Benini

Optimal Planning of Waste Sorting Operations Through
Mixed Integer Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Diego Maria Pinto and Giuseppe Stecca



Contents xi

Selecting and Initializing Representative Days for Generation and
Transmission Expansion Planning with High Shares of Renewables . . . . . . 321
Giovanni Micheli, Maria Teresa Vespucci, Marco Stabile,
and Alessia Cortazzi

Start-up/Shut-Down MINLP Formulations for the Unit
Commitment with Ramp Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Tiziano Bacci, Antonio Frangioni, and Claudio Gentile

Gaining or Losing Perspective for Piecewise-Linear
Under-Estimators of Convex Univariate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Jon Lee, Daphne Skipper, Emily Speakman, and Luze Xu

Recognizing Cartesian Products of Matrices and Polytopes . . . . . . . . . . . . . . . . 361
Manuel Aprile, Michele Conforti, Yuri Faenza, Samuel Fiorini,
Tony Huynh, and Marco Macchia

Special Subclass of Generalized Semi-Markov Decision Processes
with Discrete Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Alexander Frank

Coupling Machine Learning and Integer Programming for Optimal
TV Promo Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Ruggiero Seccia, Gianmaria Leo, Mehrnoosh Vahdat, Qiannan Gao,
and Hanadi Wali

A Distributed Algorithm for Spectral Sparsification of Graphs with
Applications to Data Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Fabricio Mendoza-Granada and Marcos Villagra



About the Editors

Claudio Gentile is a Research Director at the Institute of Systems Analysis and
Computer Science “Antonio Ruberti” of the Italian National Research Council
(CNR-IASI). From 2006 to 2015, he directed the CNR-IASI research unit “Control
and Optimization of Complex Systems,” and since 2016, he directs the CNR-
IASI research unit “OPTIMA: Optimization and Discrete Mathematics.” His main
research interests are in Combinatorial Optimization, Polyhedral Theory for Linear
and Nonlinear Mixed-Integer Programming Problems, Interior Point Methods with
applications in Power Energy Production and Distribution, Logistics, Network
Design, Staff Management, and Ship Scheduling. He is the author of many scientific
publications among journal papers, book chapters, and articles in conference
proceedings.

Giuseppe Stecca is a Research Scientist at the Institute of Systems Analysis and
Computer Science “Antonio Ruberti” of the Italian National Research Council
(CNR-IASI). He holds the Chair of Supply Chain Management at the University of
Rome “Tor Vergata,” where he also teaches Operations Research. He is a member
of the board of the Italian Association for Operations Research (AIRO). His main
research interests are related to the optimization of sustainable production and
logistic systems. He works actively in research projects and also as an evaluator
for the Italian Ministry of Economic Development in the area of logistics and
industry 4.0.

Paolo Ventura is a Research Scientist at the Institute of Systems Analysis and
Computer Science “Antonio Ruberti” of the Italian National Research Council
(CNR-IASI). His main research interests are Integer Programming and Combi-
natorial Optimization with applications in logistics and transportation. He is the
author of many articles in the most relevant international journals of the area. Since
2004, he teaches Operations Research at the University of Rome “Tor Vergata.”
He is a member of the organizing committee of the yearly “Cargese Workshop on
Combinatorial Optimization” and, in the odd years, of the “Aussois Combinatorial
Optimization Workshop.”

xiii



The Chromatic Polynomial of a Digraph

Winfried Hochstättler and Johanna Wiehe

Abstract An acyclic coloring of a digraph as defined by V. Neumann-Lara is a
vertex-coloring such that no monochromatic directed cycles occur. Counting the
number of such colorings with k colors can be done by counting so-called Neumann-
Lara-coflows (NL-coflows), which build a polynomial in k. We will present a
representation of this polynomial using totally cyclic subdigraphs, which form a
graded poset Q. Furthermore we will decompose our NL-coflow polynomial, which
becomes the chromatic polynomial of a digraph by multiplication with the number
of colors to the number of components, using the geometric structure of the face
lattices of a class of polyhedra that corresponds to Q. This decomposition leads to
a representation using certain subsets of edges of the underlying undirected graph
and will confirm the equality of our chromatic polynomial of a digraph and the
chromatic polynomial of the underlying undirected graph in the case of symmetric
digraphs.

Keywords Dichromatic number · Chromatic polynomial · Flow polynomial ·
Totally cyclic subdigraphs · Face lattice

1 Introduction

The notion of classic graph coloring deals with finding the smallest integer k such
that the vertices of an undirected graph can be colored with k colors, where no
two adjacent vertices share the same color. The chromatic polynomial counts those
proper colorings a graph admits, subject to the number of colors. William T. Tutte
developed a dual concept [17], namely his nowhere-zero flows (NZ-flows), which
build a polynomial, the flow polynomial, too.

W. Hochstättler · J. Wiehe (�)
FernUniversität in Hagen, Hagen, Germany
e-mail: winfried.hochstaettler@fernuni-hagen.de; johanna.wiehe@fernuni-hagen.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
C. Gentile et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 5,
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2 W. Hochstättler and J. Wiehe

We turn our attention to directed graphs, or digraphs for short. In 1982 Víctor
Neumann-Lara [12] introduced the dichromatic number of a digraph D as the
smallest integer k such that the vertices of D can be colored with k colors and each
color class induces an acyclic digraph. This seems to be a reasonable generalization
of the chromatic number since both numbers coincide in the symmetric case, where
we have all arcs in both directions.

Moreover Neumann-Lara conjectured in 1985, that every orientation of a simple
planar graph can be acyclically colored with two colors [13]. Regarding the
dichromatic number this is not the only conjecture remaining widely open. Up to
some relaxations, for instance Mohar and Li [10] affirmed the two-color-conjecture
for planar digraphs of digirth four, it is known [4], that deciding whether an arbitrary
digraph has dichromatic number at most two is NP-complete.

Although some progress has been made according thresholds (see e.g. [8]), even
the complete case seems to be quite hard. To our knowledge it is not known how
many vertices suffice to build a tournament which has dichromatic number five [14].

Nevertheless, Ellis and Soukup determined [6] thresholds for the minimum num-
ber of cycles, where reversing their orientation yields a digraph resp. tournament
that has dichromatic number at most two.

Comparing the chromatic and the dichromatic number Erdős and Neumann-
Lara conjectured [7] in 1979 that if the dichromatic number of a class of graphs
is bounded, so is their chromatic number. While Mohar and Wu [11] considered the
fractional chromatic number of linear programming proving a fractional version,
this is another conjecture remaining unsolved.

With our work we hope to contribute to a better understanding of the dichromatic
number. W. Hochstättler [9] developed a flow theory for the dichromatic number
transferring Tutte’s theory of NZ-flows from classic graph colorings. Together with
B. Altenbokum [2] we pursued this analogy by introducing algebraic Neumann-
Lara-flows (NL-flows) as well as a polynomial counting these flows. The formula
we derived contains the Möbius function of a certain poset. Here, we will derive the
values of the Möbius function by showing that the poset correlates to the face lattice
of a polyhedral cone.

Probably, the chromatic polynomial of a graph is better known than the flow
polynomial. Therefore, in this paper we consider the dual case of our NL-flow
polynomial, the NL-coflow polynomial which equals the chromatic polynomial for
the dichromatic number divided by the number of colors if the digraph is connected.
We will present a representation using totally cyclic subdigraphs and decompose
them to obtain an even simpler representation. In particular, it will suffice to consider
certain subsets of edges of the underlying undirected graph.

Our notation is fairly standard and, if not explicitly defined, should follow the
books of Bondy and Murty [5] for digraphs and Beck and Sanyal [3] for polyhedral
geometry. Note that all our digraphs may have parallel and antiparallel arcs as well
as loops if not explicitly excluded.



The Chromatic Polynomial of a Digraph 3

2 Definitions and Tools

Let G be a finite Abelian group and D = (V ,A) a digraph. Recall that a map
f : A −→ G is a flow in D, if it satisfies Kirchhoff’s law of flow conservation

∑

a∈∂+(v)

f (a) =
∑

a∈∂−(v)

f (a) (1)

in every vertex v ∈ V , where ∂+(v) and ∂−(v) denote the set of outgoing resp.
incoming arcs at v.

Analogously, a map g : A −→ G is a coflow in D, if it satisfies Kirchhoff’s law
for (weak) cycles C ⊆ A

∑

a∈C+
g(a) =

∑

a∈C−
g(a), (2)

where C+ and C− denote the set of arcs in C that are traversed in forward resp. in
backward direction.

Now let n be the number of vertices,m be the number of arcs and let M denote the
totally unimodular (n×m)-incidence matrix of D. While condition (1) is equivalent
to the condition that the vector f = (f (a1), . . . , f (am))

� is an element of the null
space of M , that is Mf = 0, condition (2) is equivalent to the condition that the
vector g = (g(a1), . . . , g(am)) is an element of the row space of M , that is g = pM ,
for some (1 × n)-vector p ∈ G|V |.

Definition 1 A digraph D = (V ,A) is called totally cyclic, if every component is
strongly connected. A feedback arc set of a digraph is a set S ⊆ A such that D − S

is acyclic.

Definition 2 Let D = (V ,A) be a digraph and G a finite Abelian group. An NL-
G-coflow in D is a coflow g : A −→ G in D whose support contains a feedback
arc set. For k ∈ Z and G = Z, a coflow g is an NL-k-coflow, if

g(a) ∈ {0,±1, . . . ,±(k − 1)} , for all a ∈ A,

such that its support contains a feedback arc set.

In order to develop a closed formula for the number of NL-G-coflows we
use a generalization of the well-known inclusion-exclusion formula, the Möbius
inversion.

Definition 3 (See e.g. [1]) Let (P,≤) be a finite poset, then the Möbius function is
defined as follows

μ : P × P → Z, μ(x, y) :=

⎧
⎪⎪⎨

⎪⎪⎩

0 , if x � y

1 , if x = y

−∑x≤z<y μ(x, z) , otherwise .
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Proposition 1 (See [1, 15]) Let (P,≤) be a finite poset, f, g : P −→ K functions
and μ the Möbius function. Then the following equivalence holds

f (x) =
∑

y≥x

g(y), for all x ∈ P ⇐⇒ g(x) =
∑

y≥x

μ(x, y)f (y), for all x ∈ P.

With this so called Möbius inversion from above it will suffice to compute the
number of G-coflows in some given minors B, which is |G|rk(B), where rk(B) is the
rank of the incidence matrix of G[B] which equals |V (B)| − c(B), i.e. the number
of vertices minus the number of connected components of G[B].

3 The NL-Coflow Polynomial

In this chapter we will define the NL-coflow polynomial, which counts the number
of NL-G-coflows, using Möbius inversion. Therefor we need a specific partially
ordered set. The following poset (C ,≥) with

C := {
A/C | ∃ C1, . . . , Cr directed cycles, such that C =

r⋃

i=1

Ci

}

and

A/
⋃

j∈J
Cj ≥ A/

⋃

i∈I
Ci :⇔

⋃

j∈J
Cj ⊆

⋃

i∈I
Ci,

will serve our purpose. Note that in case D is strongly connected, A is the unique
minimum of this poset.

Definition 4 Let D = (V ,A) be a digraph and μ the Möbius function of C . Then
the NL-Coflow Polynomial of D is defined as

ψD
NL(x) :=

∑

Y∈C
μ(A, Y )xrk(Y ).

The dual version of Theorem 3.5 in [2] reveals the following.

Theorem 1 The number of NL-G-coflows of a digraphD depends only on the order
k of G and is given by ψD

NL(k).

Proof Using Proposition 1 with fk, gk : C → Z, such that fk(Y ) indicates all
G-coflows and gk(Y ) all NL-G-coflows in D[Y ], it suffices to show that

fk(Z) =
∑

Y≤Z
Y∈C

gk(Y ) (3)
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holds for all Z ∈ C . Then we obtain

ψD
NL(k) = gk(A) =

∑

Y≤A
Y∈C

μ(A, Y )fk(Y ) =
∑

Y∈C
μ(A, Y )krk(Y ),

since the number of G-coflows on D[Y ] is given by krk(Y ).
Concerning (3) let Z ∈ C and ϕ be a G-coflow on D[Z]. With d we denote the

number of directed cycles in D[Z] and set

Y := Z/

d⋃

i=1

{Ci | Ci is a directed cycle in D[Z] and ∀c ∈ Ci : ϕ(c) = 0} .

Then clearly Y ∈ C and ϕ|Y is an NL-G-coflow on D[Y ].
The other direction is obvious since every NL-G-coflow g on D[Y ] with Y ∈ C

can be extended to a G-coflow g̃ on D[Z], setting g̃(a) := 0G for all a ∈ Z−Y . �

3.1 Totally Cyclic Subdigraphs

Since many unions of directed cycles determine the same strongly connected
subdigraph it suffices to consider all totally cyclic subdigraphs which turn out to
form a graded poset.

Lemma 1 The poset

Q := {B ⊆ A | D[B] is totally cyclic subdigraph ofD},

ordered by inclusion, is a graded poset with rank function rkQ and its Möbius
function alternates in the following fashion:

μQ(∅, B) = (−1)rkQ(B).

Proof Let M be the totally unimodular (n × m)-incidence matrix of D. We will
show that the face lattice of the polyhedral cone PC described by

⎛

⎝
M

−M

−I

⎞

⎠ x ≤ 0,

corresponds to Q.
Since M is totally unimodular all extreme rays of PC are spanned by integral

points. It follows that every totally cyclic subdigraph can be represented by a face
of PC, where an arc 1 ≤ i ≤ m exists iff for the corresponding entry xi > 0 holds.
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Thus the elements of the face lattice of PC coincide with the elements of our
poset and so do the Möbius functions. Well-known facts from topological geometry
which can be found for instance in Corollary 3.3.3 and Theorem 3.5.1 in [3] yield
that Q is a graded poset and

μQ(∅, B) = (−1)dim(B)+1χ(B) = (−1)rkQ(B)χ(B),

where χ denotes the reduced Euler characteristic, which equals one in this case,
since the faces of PC build non-empty closed polytopes (see e.g. Thm. 3.4.1 in
[3]). �
Theorem 2 Let D be a digraph and (Q,⊆) the poset defined above. Then the NL-
coflow polynomial ofD is given by

ψD
NL(x) =

∑

B∈Q
(−1)rkQ(B)xrk(A/B).

Proof With Lemma 1 we immediately obtain:

ψD
NL(x) =

∑

Y∈C
μ(A, Y)xrk(Y ) =

∑

B∈Q
μQ(∅, B)xrk(A/B) =

∑

B∈Q
(−1)rkQ(B)xrk(A/B).

�
It is well known that coflows and colorings are in bijection, once the color of

some vertex in each connected component has been chosen. As a consequence
we have the following corollary, where c(D) denotes the number of connected
components in D.

Corollary 1 The chromatic polynomial of a digraphD is given as

χ(D, x) = xc(D) · ψD
NL(x) =

∑

B∈Q
(−1)rkQ(B)xrk(A/B)+c(D).

4 Decomposing the NL-Coflow Polynomial

In the following we will put our previous results into the setting of polyhedral
geometry. There we will find a way to compound some of the objects considered,
which will, going back to graph theory, decompose the NL-coflow polynomial such
that only certain subsets of edges of the underlying undirected graph need to be
considered.

More precisely, fixing the support, implying a fixed exponent in our polynomial,
we will show that all existing totally cyclic orientations correlate to the face lattice
of some usually unbounded polyhedron. This will yield a relation between the above
mentioned poset Q and the maximal faces of a class of polyhedra to be defined in
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the following. Using the geometric structure of those polyhedra we can contract
the corresponding order complex and, by correlating the corresponding Möbius
functions, obtain an even simpler representation of the NL-coflow polynomial and
therefore of the chromatic polynomial of arbitrary digraphs.

Let D = (V ,A) be a digraph, G = (V ,E) its underlying undirected graph with
|V | = n and |E| = m. For ∅ �= B ⊆ E a partial orientation O(B) is an orientation
of a subset B ′ ⊆ B of the edges, where the remaining edges in B \B ′ are considered
as pair of antiparallel arcs, called digons. We say a partial orientation is totally cyclic
if the corresponding induced digraph is. Once the support is fixed, there is a unique
inclusionwise maximal partial orientation, denoted with Ō(B), where we have as
many digons as possible.

A flow x = (
⇀
x ,

↼
x )� ∈ R

2m on D is related to a partial orientation O(B) by
orienting only the edges with xi �= 0.

Let M be the totally unimodular incidence (n × m)-matrix of the subgraph
induced by ∅ �= B ⊆ E. Then x ∈ R

2m is a flow iff (M,−M)x = 0 holds.
Now, consider the following system

(M,−M)(
⇀
x ,

↼
x )� = 0

⇀
xi + ↼

xi ≥ 1 ∀1 ≤ i ≤ m
⇀
xi = 0 if

⇀

i /∈ A but
↼

i ∈ A
↼
xi = 0 if

↼

i /∈ A but
⇀

i ∈ A
⇀
x ,

↼
x ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(P )

We denote the polyhedron described above with P and take a look at its vertices,
which are the solutions of the program (P ), in the first place.

Lemma 2 Let x = (
⇀
x ,

↼
x )� be a solution of (P ). Then a solution y = (

⇀
y ,

↼
y )�

of (P ) exists with supp(y) ⊆ supp(x) and
⇀
ya = ↼

ya = 1
2 , if a is a bridge and

min{⇀ya, ↼
ya} = 0, otherwise.

Proof Let y be a solution with minimal support such that the corresponding partial
orientation contains a minimum number of directed cycles.

Let 1 ≤ ⇀
a ≤ m. If a is a bridge, then y⇀

a
= y↼

a
has to hold since otherwise the

flow condition would be violated. In the other case assume that y⇀
a

≥ y↼
a
> 0. Let

⇀
a = (v,w) and C := {⇀a , b0, b1, . . . , bk} be a directed cycle. After reassigning

ỹ⇀
a

:= 1 + y⇀
a

− y↼
a

≥ 1,

ỹ↼
a

:= y↼
a

− y↼
a

= 0,

ỹb := yb + 1,∀b ∈ C \ {a}
ỹc := yc, otherwise,
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the flow condition still holds in v:

∑

i∈∂+(v)

ỹi =
∑

i∈∂+(v)

i �=⇀
a

yi + 1 + y⇀
a

− y↼
a

=
∑

i∈∂+(v)

yi + 1 + y⇀
a

− y↼
a

− y⇀
a

=
∑

i∈∂−(v)

yi + 1 − y↼
a

=
∑

i∈∂−(v)

i �=↼
a ,i �=bk

ỹi + 1 + yb =
∑

i∈∂−(v)

ỹi ,

as well as in w:

∑

i∈∂+(w)

ỹi =
∑

i∈∂+(w)

i �=↼
a ,i �=b0

yi + yb + 1 =
∑

i∈∂+(w)

yi − y↼
a

+ 1

=
∑

i∈∂−(w)

i �=⇀
a

ỹi + y⇀
a

+ 1 − y↼
a

=
∑

i∈∂−(w)

ỹi .

Thus the solution ỹ yields a contradiction to y having minimal support. �
As a result of the preceding lemma, the vertices V of P are totally cyclic

subdigraphs, where the only remaining digons are bridges.
To describe the polyhedron completely we take a look at the recession cone

rec(P ) = {y ∈ R
2m | ∀c ∈ P, ∀λ ≥ 0 : c + λy ∈ P }

= P(A, 0)

= Cone
(
{y ∈ R

2m | y is directed cycle}
)
.

Thus we have P = Conv(V ) + Cone
({y ∈ R

2m | y is directed cycle}) .
In the following we would like to correlate the elements of our poset Q to the

face lattice of P , where maximal and minimal elements, 1̂ and 0̂, are adjoined and
the corresponding Möbius function is denoted with μP .

Since there may be several faces corresponding to the same element of Q we
define a closure operator on the set of faces cl : F → F as follows, where eq(F )

is the set of constraints in (P ) where equality holds:

cl(F ) = Fmax :=
∨

{F̃ | supp(F̃ ) = supp(F )}
= {x ∈ P | supp(Fmax) = supp(F ), eq(Fmax) is minimal},

where ∨ is the join of all faces with equal support in the face lattice.
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This function is well-defined since the dimension of every face is bounded by 2m
and Fmax is uniquely determined since the join is. It is also easy to check that cl is
indeed a closure operator.

Now we can identify the maximal faces with the elements of Q by either
forgetting the values of a flow or by first taking an arbitrary flow x ∈ R

2m+ satisfying
⇀
x + ↼

x ≥ 1, that lives on some face Fx and then taking its closure operator cl(Fx).
As a result the Möbius function of F behaves for x, y ∈ P as follows (see

Prop. 2 on p. 349 in [15]):

∑

z∈P
cl(Fz)=cl(Fy)

μP (Fx, Fz) =
{
μF̄ (cl(Fx), cl(Fy)) , if Fx = cl(Fx)

0 , if Fx ⊂ cl(Fx)
.

This is why we will simply write μP (B,B ′) instead of μF̄ (cl(Fx), cl(Fy)) for

flows x, y on B,B ′ ∈ Q. Also we identify 0̂ with ∅ and 1̂ with Ō(B), respectively.
Examining the polyhedron P we find three cases which determine the structure

and therefore the Möbius function of the face lattice:

1. There is exactly one vertex v in P .

1.1 There are no further faces in P including v, i.e. dim(P ) = 0.
1.2 There are further faces in P including v, so P is a pointed cone and

dim(P ) ≥ 1.

2. There are at least two vertices in P .

Note that all cases are mutually exclusive and complete since every P has at least
one vertex.

Lemma 3 Let ∅ �= X ∈ F be a face of P . Then

μP (∅,X) =

⎧
⎪⎪⎨

⎪⎪⎩

−1 if dim(X) = 0,

(−1)rkP (X) in cases 1.1 and 2,

0 in case 1.2.

Proof If X is a vertex, then dim(X) = 0 and

μP (∅,X) = −μP (∅,∅) = −1 = (−1)rkP (X).

For the other cases we will use Theorem 3.5.1 and Corollary 3.3.3 in [3]:

μP (∅,X) = (−1)dim(X)+1χ(X) = (−1)rkP (X)χ(X),

where χ denotes the reduced Euler characteristic.
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1.2 Since there is only one vertex, every face of dimension greater 0 builds a pointed
cone. Proposition 3.4.9 in [3] yields that χ(X) = 0.

2. Since there are at least two vertices, there are also some faces including them.
Those form non-empty closed polytopes with χ(X) = 1 (see Thm. 3.4.1 in
[3]). �

Comparing the Möbius functions of P and Q we find the following relation,
where cr(B) = |B| − |V (B)| + c(B) denotes the corank and β(B) the number of
bridges in the graph induced by B ⊆ E.

Lemma 4 Let ∅ �= B ⊆ E and O(B) be a totally cyclic partial orientation of B,
then

μQ(∅,O(B)) = (−1)cr(B)+β(B)+1μP (∅,O(B))

holds, if μP (∅,X) alternates, i.e. in cases 1.1, 2 and if dim(X) = 0, where X ∈ F
is the maximal face corresponding to O(B). Otherwise (in case 1.2) we find

∑

O(B)⊆A
tot.cyclic

μQ(∅,O(B)) = 0.

Proof If both Möbius functions alternate it suffices to consider elements O(B) ⊆ A

where rkP (O(B)) is minimal. In this case μP (∅,O(B)) = −1 and we are left to
verify

μQ(∅,O(B)) = (−1)cr(B)+β(B).

We prove the statement by induction over the number of edges in B. The base cases
can be easily checked. Deleting one edge d ∈ B yields the following two cases:

1. d is a bridge.
Then rkQ(B−d) = rkQ(B)−1, cr(B−d) = cr(B) and β(B−d) = β(B)−1.

2. d is not a bridge.
Then rkQ(B−d) = rkQ(B)−1, cr(B−d) = cr(B)−1 and β(B−d) = β(B).

Using the induction hypothesis we find in both cases

(−1)rkQ(B) = (−1)rkQ(B−d)+1 IH= (−1)cr(B−d)+β(B−d)+1 = (−1)cr(B)+β(B).

Otherwise, i.e. case 1.2 due to Lemma 3, we have exactly one vertex and some faces
containing it. The number of these faces is determined by the number of digons in
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Ō(B), which we denote with d . Then we have

∑

O(B)⊆A
tot.cyclic

μQ(∅,O(B)) = −
(
d

0

)
+
(
d

1

)
−
(
d

2

)
+ . . . ±

(
d

d

)
= −

d∑

k=0

(−1)k
(
d

k

)
= 0.

�

The key point is the following lemma, where the contraction finally takes place.

Lemma 5 Let ∅ �= B ⊆ E. Then

∑

∅�=X⊆Ō(B)

μP (∅,X) = −1.

Proof Since P is obviously unbounded and has at least one vertex, Corollary
3.4.10 in [3] yields that P has reduced Euler characteristic zero. Consequently
the corresponding Möbius function μP (∅, Ō(B)), which is the reduced Euler
characteristic (see Prop. 3.8.6 in [16]), equals zero, too. As a result,

0 = μP (∅, Ō(B)) = −
∑

∅⊆X �=Ō(B)

μP (∅,X) = −1 −
∑

∅�=X⊆Ō(B)

μP (∅,X)

holds. �
Combining the last two lemmas we find two different kinds of compression:

In cases 1.1 and 2 it suffices to count the element having minimal support due
to Lemma 5 and in case 1.2 all totally cyclic partial orientations sum up to zero
due to Lemma 4. The following observation translates these cases from polyhedral
language into graph theoretical properties.

Definition 5 Let D = (V ,A) be a totally cyclic digraph. A digon d ⊆ A is called
redundant for cyclicity if D − d is still totally cyclic.

Note that every bridge is redundant for cyclicity. Fig. 1 shows a digon that is
redundant but not a bridge.

Lemma 6 Case 1.2 does not hold true if and only if there exists a digon in Ō(B)

that is redundant for cyclicity but not a bridge, or every digon in Ō(B) is a bridge.

Fig. 1 A digon that is redundant for cyclicity
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Proof First we proof the following equivalence:

There are at least two vertices in P if and only if there is a digon in Ō(B) that is redundant
for cyclicity but not a bridge.

Let e be a digon in Ō(B) that is redundant but not a bridge, then Ō(B) − ↼
e

and Ō(B) − ⇀
e contain vertices including

↼
e , resp.

⇀
e which hence are two different

vertices in P . For the other direction take vertices v �= w in P . Then v ∪ w is a
face in P including a digon e that is no bridge. Assume e is not redundant, then

Ō(B)−↼
e or Ō(B)−⇀

e could not have been totally cyclic and so one of the vertices
v or w.

Consequently case 1.2 does not hold true iff there is a digon that is redundant but
not a bridge (case 2) or, if there is only one vertex in P , then there are no further
faces including it, which means that every digon in Ō(B) is a bridge (case 1.1). �

This leads to the following main result of this paper, a representation of the NL-
coflow polynomial for arbitrary digraphs, where we sum only over certain subsets
of the edges of the underlying undirected graph.

Theorem 3 Let D = (V ,A) be a digraph and G = (V ,E) its underlying
undirected graph. Then

ψD
NL(x) =

∑

B∈T C

(−1)|B|xc̃(B)−c(D)

holds, where c̃(B) counts the components in the spanning subgraph of G with edge
set B and T C includes all B ⊆ E which admit a totally cyclic partial orientation
O(B) in A such that Ō(B) has no digons but bridges or Ō(B) has a digon that is
redundant but not a bridge.

Proof Instead of counting totally cyclic subdigraphs one can count totally cyclic
partial orientations of a fixed underlying subgraph. Thus the preceding lemmas yield

ψD
NL(x) =

∑

X⊆A
tot.cyclic

μQ(∅,X)xrk(A/X)

=
∑

B⊆E

∑

O(B)
tot.cyclic

μQ(∅,O(B))xrk(A/B)

=
∑

∅�=B⊆E

∑

O(B)
tot.cyclic

μQ(∅,O(B))xrk(A/B) + x−c(D)

Lemma 4=
∑

∅�=B⊆E
(∗)

∑

O(B)
tot.cyclic

(−1)cr(B)+β(B)+1μP (∅,O(B))xrk(A/B) + x−c(D)
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Fig. 2 A totally cyclic orientation that is not considered in T C

Lemma 5=
∑

∅�=B⊆E
(∗)

(−1)cr(B)+β(B)xrk(A/B) + x−c(D)

=
∑

B⊆E
(∗)

(−1)cr(B)+β(B)xn−|V (B)|+c(B)−c(D).

Condition (∗) means, that we sum over all B ⊆ E having a totally cyclic partial
orientation O(B) ⊆ A, where case 1.2 is not true. Due to Lemma 6 this situation
occurs if and only if Ō(B) has no digons but bridges, or there exists a digon that is
redundant but not a bridge. Clearly, n − |V (B)| + c(B) = c̃(B) holds, and we are
left to verify

(−1)cr(B)+β(B) = (−1)|B|.

This can be done by induction. Deleting a bridge d ∈ B yields cr(B − d) = cr(B)

and β(B−d) = β(B)−1 while deleting a non-bridge yields cr(B−d) = cr(B)−1
and β(B − d) = β(B). In both cases we find

(−1)cr(B)+β(B) = (−1)cr(B−d)+β(B−d)+1 IH= (−1)|B−d |+1 = (−1)|B|. �

Note that TC includes all B ⊆ E which admit a totally cyclic partial orientation
O(B) in A, but not those, where Ō(B) includes a digon that is no bridge and no
digon is redundant unless it is a bridge in Ō(B) (Fig. 2).

5 Symmetric Digraphs

Considering symmetric digraphs D = (V ,A), it is obvious that the NL-coflow
polynomial equals the chromatic polynomial χ(G, x) of the underlying undirected
graph G = (V ,E) divided by the number of colors since both polynomials count
the same objects. Using Theorem 3 we find an alternative proof of this fact, where
the chromatic polynomial is represented by (see [5])

χ(G, x) =
∑

B⊆E

(−1)|B|xc̃(B).
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Corollary 2 Let D = (V ,A) be a symmetric digraph and G = (V ,E) its
underlying undirected graph. Then the following holds

ψD
NL(x) = χ(G, x) · x−c(G).

Proof In a symmetric digraph every edge is a digon, so for every subset B ⊆ E

there exists a totally cyclic partial orientation O(B). Furthermore, if cr(D) = 0,
every digon is a bridge and if cr(D) ≥ 1 there exists a cycle of length ≥ 3 in D

where every digon is redundant but no bridge. �
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On List k-Coloring Convex Bipartite
Graphs

Josep Díaz, Öznur Yaşar Diner, Maria Serna, and Oriol Serra

Abstract List k-Coloring (LI k-COL) is the decision problem asking if a given
graph admits a proper coloring compatible with a given list assignment to its vertices
with colors in {1, 2, . . . , k}. The problem is known to be NP-hard even for k = 3
within the class of 3-regular planar bipartite graphs and for k = 4 within the class
of chordal bipartite graphs. In 2015 Huang, Johnson and Paulusma asked for the
complexity of LI 3-COL in the class of chordal bipartite graphs. In this paper, we
give a partial answer to this question by showing that LI k-COL is polynomial in the
class of convex bipartite graphs. We show first that biconvex bipartite graphs admit a
multichain ordering, extending the classes of graphs where a polynomial algorithm
of Enright et al. (SIAM J Discrete Math 28(4):1675–1685, 2014) can be applied to
the problem. We provide a dynamic programming algorithm to solve the LI k-COL

in the class of convex bipartite graphs. Finally, we show how our algorithm can be
modified to solve the more general LI H -COL problem on convex bipartite graphs.
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1 Introduction

A coloring of a graph G = (V ,E) is a map c : V → N. A coloring is proper if no
two adjacent vertices are assigned the same color. If there is a proper coloring of a
graph that uses at most k colors, then we say that G is k-colorable, and that c is a
k-coloring for G. The coloring problem COL asks for a given graph G = (V ,E),
and a positive integer k, whether there is a k-coloring for G or not. When k is fixed,
we have the k-COLORING problem.

A list assignmentL : V → 2N is a map assigning a set of positive integers to each
vertex of G. Given G and L, the List Coloring problem LICOL asks for the existence
of a proper coloring c that obeys L, i.e., each vertex receives a color from its own
list. If the answer is positive, G is said to be L-colorable. Variants of the problem
are defined by bounding the total number of available colors or by bounding the list
size. In LIST k-COLORING (LI k-COL), L(v) ⊆ {1, 2, . . . , k} for each v ∈ V . Thus,
there are k colors in total. On the other hand, in k-LIST COLORING (k-LICOL) each
list L has size at most k. In this case, the total number of colors can be larger than k.

Precoloring Extension, PREXT, is a special case of LICOL and a generalization
of COL. In PREXT all of the vertices in a subset W of V are previously colored;
and the task is to extend this coloring to all of the vertices. If, in addition, the total
number of colors is bounded, say by k, then it is called the k-Precoloring Extension,
k-PREXT. k-COL is clearly a special case of k-PREXT, which in turn is a special
case of LI k-COL. Refer to [16] for a chart summarizing these relationships.

For general graphs COL and its variants LICOL and PREXT are NP-complete; see
[14, 24]. Most of their variants are NP-complete even when the parameter k is fixed
for small values of k: k-COL, k-LICOL, LI k-COL and k-PREXT are NP-complete
when k ≥ 3 [29]; and they are polynomially solvable when k ≤ 2 [13, 38].

Concerning the complexity of these problems in graph classes, COL is solvable
in polynomial time for perfect graphs [18] whereas LICOL is NP-complete when
restricted to perfect graphs and many of its subclasses, such as split graphs, bipartite
graphs [28] and interval graphs [2]. On the other hand, LICOL is polynomially
solvable for trees, complete graphs and graphs of bounded treewidth [23]. Refer
to Tuza [37], and more recently to Paulusma [33] for related surveys.

For small values of k, Jansen and Scheffler [23] have shown that 3-LICOL is NP-
complete when restricted to complete bipartite graphs and cographs, as observed in
[15]. Kratochvíl and Tuza [27] showed that 3-LICOL is NP-complete even if each
color appears in at most three lists, each vertex in the graph has degree at most three
and the graph is planar. 3-PREXT is NP-complete even for 3-regular planar bipartite
graphs and for planar bipartite graphs with maximum degree 4 [7].

For fixed k ≥ 3, LI k-COL is polynomially solvable for P5-free graphs [20].
Note that chordal bipartite graphs contain P5-free graphs, but P6 free graphs are
incomparable with chordal bipartite graphs [35]. LI 3-COL is polynomial for P6-
free graphs [6] and for P7-free graphs [3]. Computational complexity of LI 3-COL

for P8-free bipartite graphs is open [3]. Even the restricted case of LI 3-COL for
P8-free chordal bipartite graphs is open. Golovach et al. [16] give a survey that
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summarizes the results for LI k-COL on H -free graphs in terms of the structure of
H .

PREXT problem is solvable in linear time on P5-free graphs; and it is NP-
complete when restricted to P6-free chordal bipartite graphs [22]. 3-PREXT is
NP-complete even for planar bipartite graphs [26], even for those having maximum
degree 4 [7]. Recall that PREXT generalizes k-PrExt and LI k-COL generalizes k-
PREXT. But there is no direct relation between PREXT and LI k-COL [16].

Coloring problems can be placed in the more general class of H -coloring
problems. Given two graphs G and H , a function f : V (G) → V (H) such that
f (u) and f (v) are adjacent in H whenever u and v are adjacent in G is called a
graph homomorphism from G to H . For a fixed graph H and for an input G, the
H -coloring problem, H -COL asks whether there is a G to H homomorphism. In the
list H -coloring problem, LI H -COL, each vertex of the input graph G is associated
with a list of vertices of H , and the question is whether a G to H homomorphism
exists that maps each vertex to a member of its list. Observe that LI H -COL is a
generalization of LI k-COL. The complexities of the H -coloring and list H -coloring
problems for arbitrary input graphs are completely characterized in terms of the
structure of H , see Nešetřil and Hell [19].

Although intensive research on this subject has been undertaken in the last
two decades, there are still numerous open questions regarding computational
complexities on LICOL and its variants when they are restricted to certain graph
classes. Huang et al. [21] proved that LI 4-COL is NP-complete for P8-free chordal
bipartite graphs and 4-PREXT is NP-complete for P10-free chordal bipartite graphs.
They further pose the problem on the computational complexity of the LI 3-COL

and 3-PREXT on chordal bipartite graphs. Here LI k-COL and k-PREXT on convex
bipartite graphs, a proper subclass of chordal bipartite graphs, are studied for fixed
k, and a partial answer to this question is given. Figure 1 summarizes the related
results. Note that, here by LI k-COL it is assumed that k is fixed.

A bipartite graph G = (X ∪ Y,E) is convex if it admits an ordering on one
of the parts of the bipartition, say X, such that the neighbours of each vertex in Y

are consecutive in this order. If both color classes admit such an ordering the graph
is called biconvex bipartite (see Sect. 2 for formal definitions). Chordal bipartite
graphs contain convex bipartite graphs properly. Convex bipartite graphs contain
as a proper subclass biconvex bipartite graphs, which contain bipartite permutation
graphs properly. More information on these classes can be found in Spinrad [35]
and in Brandstädt et al. [4].

Enright et al. [12] have shown that LI k-COL is solvable in polynomial time
when restricted to graphs with all connected induced subgraphs having a multichain
ordering. They apply this result to permutation graphs and interval graphs. Here, we
show that connected biconvex graphs also admit a multichain ordering, implying a
polynomial time algorithm for LI k-COL on this graph class.

From the point of view of parameterized complexity, treewidth can be computed
in polynomial time on chordal bipartite graphs [25]. LI k-COL can be solved in
polynomial time on chordal bipartite graphs with bounded treewidth [9, 23], which
includes chordal bipartite graphs of bounded degree [30]. LI k-COL is polynomial
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Complete Bipartite: LI k-COL P, 3-LI COL NPC [23]

Bipartite Permutation: LI k-COL P [12]

Biconvex Bipartite: LI k-COL P [*]

Convex Bipartite: LI k-COL P [*]

Chordal Bipartite: LI 3-COL [?], LI k-COL, k ≥ 4, NPC [21]

Bipartite LI 3-COL NPC[28]

Fig. 1 Chart for known complexities for LICOL and its variants for chordal bipartite graphs and
its subclasses, for k ≥ 3. The complexity results marked with [*] is the topic of this paper, while
[?] stands for open cases. Results without reference are trivial. P stands for Polynomial and NPC
for NP-complete

for graphs of bounded cliquewidth [8]. Note that convex bipartite graph contains
graphs with unbounded treewidth as well as graphs with unbounded cliquewidth.

The paper is organized as follows. In Sect. 2, we give the necessary definitions.
In Sect. 3, we show that connected biconvex bipartite graphs admit multichain
ordering. In Sect. 4, we show that, for fixed k, LI k-COL is polynomially solvable
when it is restricted to convex bipartite graphs. Then, we show how to extend this
result to LI H -COL. For an extended version of this paper the reader may refer to
[10].

2 Preliminaries

We consider finite simple graphs G = (V ,E). For terminology refer to Diestel [11].
An edge joining non adjacent vertices in the cycle, Cn, is called a chord. A graph
G is chordal if every induced cycle of length n ≥ 4 has a chord. Chordal bipartite
graphs are bipartite graphs in which every induced Cn, n ≥ 6 has a chord. This
graph class is introduced by Golumbic and Gross [17]. Chordal bipartite graphs
may contain induced C4, so they do not constitute a subclass of chordal graphs but
it is a proper subclass of bipartite graphs. Chordal bipartite graphs can be recognized
in polynomial time [32].

A bipartite graph is represented by G = (X ∪ Y,E), where X and Y form a
bipartition of the vertex set into stable sets. An ordering of the vertices X in a
bipartite graph G = (X ∪ Y,E) has the adjacency property (or the ordering is


