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CHAPTER 1

LINEAR EQUATIONS AND
MATHEMATICAL CONCEPTS

EXERCISES 1.1

1. .3x + 1 = 4x − 5

1 = x − 5

x = 6 conditional equation

3. .5(x + 1) + 2(x − 1) = 7x + 6

5x + 5 + 2x − 2 = 7x + 6

7x + 3 = 7x + 6 contradiction

5. .4(x + 3) = 2(2x + 5)

4x + 12 = 4x + 10 contradiction
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2 LINEAR EQUATIONS AND MATHEMATICAL CONCEPTS

7. .5x − 3 = 17

5x = 20

x = 4

9. . 2x = 4x − 10

2x − 4x = −10

−2x = −10

x = 5

11. .4x − 5 = 6x − 7

−5 + 7 = 6x − 4x

2 = 2x

1 = x

13. .0.6x = 30

x = 30∕0.60 = 50

15. . 2∕3 = (4∕5) x − (1∕3) multiply by 15 to eliminate fractions

1 (2∕3) = 15 {(4∕5) x − (1∕3)}

10 = 12x − 5

15 = 12x

5∕4 = x

17. .5(x − 4) = 2x + 3(x − 7)

5x − 20 = 2x + 3x − 21

5x − 20 = 5x − 21

No solution

19. .3s − 4 = 2s + 6

s − 4 = 6

s = 10
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21. .7t + 2 = 4t + 11

7t − 4t = 11 − 2

3t = 9

t = 3

23. .4(x + 1) + 2(x − 3) = 7(x − 1)

4x + 4 + 2x − 6 = 7x − 7

6x − 2 = 7x − 7

6x − 7x = −7 + 2

x = −5

x = 5

25.
x + 8
2x − 5

= 2 multiply by 2x − 5 to eliminate the fraction

(x + 8) = 2(2x − 5)

x + 8 = 4x − 10

8 + 10 = 4x − x

18 = 3x

6 = x

(Check the result. Multiplication by a factor such as 2x − 5
can introduce an extraneous solution.)

27. .8 − {4[x − (3x − 4) − x] + 4} = 38 − {4[x − (3x − 4) − x] + 4}

= 3(x + 2)

8 − {4[x − 3x + 4 − x] + 4} = 3x + 6

8 − {4[−3x + 4] + 4} = 3x + 6

8 − {−12x + 16 + 4} = 3x + 6

8 − {−12x + 20) = 3x + 6

8 + 12x − 20 = 3x + 6

12x − 12 = 3x + 6

9x = 18

x = 2
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29. .6x − 3y = 9 for x

6x = 3y + 9

x =
3y + 9

6
= 1

2
y + 3

2

31. .3x + 5y = 15

5y = 15 − 3x

y = (15 − 3x)
5

y = 3 −
(3

5

)
x

33. . V = LWH

V
LH

= W

35. . Z = (x − 𝜇)
𝜎

Z𝜎 = x − 𝜇

x = Z𝜎 + 𝜇

37. Let x = monthly installment ($).
Since Sally paid $300 down, she owes $1300 − $300 = $1000.
Therefore, 5x = 1000 or x = $200 is the monthly installment.

39. The consumption function is C(x) = mx + b. The slope is the
“marginal propensity to consume.” Therefore, C(x) = 0.75x + b.
The disposable income, x = 2, when consumption is y = 11 yields
11 = (0.75)(2) + b and b = 9.5. The consumption function is
C(x) = 0.75x + 9.5.

41. .a) d = 4.5(2) = 9miles
b) 18 = 4.5t and t = 18∕4.5 = 4 seconds

43. The tax is 6.2% or 0.062 in decimal form, so T = 0.062x, where x is
0 ≤ x ≤ 87,000.

45. .a) BSA = 1321 + (0.3433)(20,000) = 8187 cm2

b) 10,325 = 1321 + (0.3433)(Wt)
9004 = (0.3433)(Wt)
9004∕0.3433 = 26,228g = 26.2kg
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EXERCISES 1.2

1. Setting y = 0 determines the x-intercept and setting x = 0 determines
the y-intercept.

a) 5x − 3y = 15 x-intercept 3, y-intercept −5

b) y = 4x − 5 x-intercept 5/4, y-intercept −5

c) 2x + 3y = 24 x-intercept 12, y-intercept 8

d) 9x − y = 18 x-intercept 2, y-intercept −18

e) x = 4 x-intercept 4, no y-intercept(vertical line)

f) y = −2 no x-intercept (horizontal line), y-intercept −2

3. The slope is m =
y2 − y1

x2 − x1

a) (3, 6) and (−1, 4) m = 4 − 6
−1 − 3

= −2
−4

= 1
2

b) (1, 6) and (2, 11) m = 11 − 6
2 − 1

= 5
1
= 5

c) (6, 3) and (12, 7) m = 7 − 3
12 − 6

= 4
6
= 2

3

d) (2, 3) and (2, 7) m = 7 − 3
2 − 2

= 4
0

undefined

e) (2, 6) and (5, 6) m = 6 − 6
5 − 2

= 0
3
= 0

f) (5/3, 2/3) and (10/3, 1) m =
1 − 2∕3

10∕3 − 5∕3
=

1∕3

5∕3
= 1

5

5. . .a) x-intercept 5/2 and y-intercept
−5

y = 2x –5

–4

–2

0

2

4

6

–2 –1 1 3 4 5
x

y

–6

0 2

b) x-intercept 4 and no y-intercept

x = 4

–3

–2

–1

1

2

3

4

–1 1 2 3 5
x

y

40
0
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c) x-intercept 5 and y-intercept 3

3x + 5y = 15

–3

3

6

–5 5 10
x

y

0
0

d) x-intercept 7 and y-intercept 2

2x + 7y = 14

–6

–4

–2

0

2

4

6

8

–14 –7 0 7 14 21
x

y

7. .a) y = (5∕3)x + 2 and 5x − 3y = 10; the slope of the first line is 5/3.
Solving for y in the second equation yields y = (5∕3)x − (10∕3).
This slope is also 5/3. The slopes are both (5/3) so the lines are
parallel (with different intercepts).

b) 6x + 2y = 4 and y = (1∕3)x + 1. The slope of the second line is
easily determined (line in slope intercept form) as 1/3. Again, solve
for y in the first equation to determine y = −3x + 2. The slope is−3.
The slopes are negative reciprocals; the lines are perpendicular.

c) 2x − 3y = 6 and 4x − 6y = 15. Solving for y in each equation,
one determines that y = (2∕3)x − 2 and y = (2∕3)x − (5∕2).
These lines have the same slope (and different intercepts) making
them parallel.

d) y = 5x − 4 and 3x − y = 4. The slope of the first line is 5 and
solving for y in the second equation, (y = 3x − 4), the slope is 3.
These slopes are neither the same nor negative reciprocals. They
are neither parallel nor perpendicular.

e) y = 5 is a horizontal line while x = 3 is a vertical line. The two lines
are perpendicular.

9. A linear equation has a single x-intercept except for y = 0 (the x-axis)
with an infinite number of x-intercepts. Any horizontal line except
y = 0 has no x-intercepts. Generally, lines do not have more than one
y-intercept. The exception is x = 0 (the y-axis) with an infinite num-
ber of y-intercepts. Any vertical line with the exception of x = 0 has
no y-intercepts.
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11. The ordered pairs of “time” and “machine value” are (0, 75,000) and
(9, 21,000), respectively. The slope is

m = 21,000 − 75,000
9 − 0

= −54, 000
9

= −6000. The y-intercept is the

purchase price, $75,000. The equation to model the straight-line
depreciation is V(t) = −6000t + 75,000, where V(t) is the machine
value ($) at time t.

13. The ordered pairs (gallons, miles) are (7, 245) and (12, 420).

The slope is
420 − 245

12 − 7
= 175

5
= 35 with x gallons and y miles.

Use either pair with the point slope-formula.
Therefore, y − 245 = 35(x − 7) or y = 35x.

15. Total cost reflects both fixed and variable costs. The fixed
cost is monthly rent ($1100). The variable cost is 5x, where
x is monthly production. Therefore, total cost is C(x) = 1100 + 5x.

17. .a) Here, the fixed cost is $50/day and variable cost $0.30/mile.
To rent the car for a single day costs $50 to which the
mileage cost must be added. The cost is C(x) = 50 + 0.30x.

b) If a person has $110 for rental, the equation to solve for the travel
distance is 110 = 50 + 0.30x.
Solving yields,

60 = 0.30x

60
0.30

= x

200 = x

The person can rent the car and travel 200 miles with $110.

19. Since R is to be a function of C, the ordered pairs are (C, R).
The two ordered pairs are (70, 84) and (40, 48). The slope is
48 − 84
40 − 70

= 36
30

= 6
5

. Using either pair with the slope to yield

R − 84 = (6∕5)(C − 70) or R = (6∕5)C.
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EXERCISES 1.3

1. The ordered pair must satisfy each equation to be a solution to the
system.

a) 2(3) + 1 = 7 is true but 3 + 1 = 5 is not. Therefore, (3, 1) is not a
solution to the system.

b) 2(2) + 3 = 7 is true and so is 2 + 3 = 5. Therefore, (2, 3) is a
solution to the system.

c) 2(4) + 1 = 7 is true but 4 + (−1) = 5 is not. Therefore, (4, −1) is
not a solution to the system.

3. .a) y = (−1∕3)x + (8∕3) and y = −x + 6, m1 = −1∕3 and m2 = −1.
Since the slopes differ, this is a consistent system.

b) y = (−1∕2)x + (7∕2) and y = (−1∕2)x + (7∕2). Since both the
slopes and intercepts are the same, the two equations are the same
line. It is a dependent system.

c) y = (−3∕2)x + (7∕2) and y = (−3∕2)x + 5. Here, the slopes are the
same and the intercepts differ. The lines are parallel and the system
is inconsistent.

5. The graphs and solution to each system are:

a)

–10

–6

–2

2

10

–2 –1 1 3 4 5 6
x

y

(1, 2)

6

0 2

b)

–6

–4

–2

2

4

6

–3 –1 1 3 5
x

y

(3, 2)

0
0

7

c)

–4

–2

2

4

6

–4 –2 2 4 6 8
x

y

(4, 2)

0
0
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7. .a) Given x = 3 and substituting in the second equation yields
3 + 3y = 9, 3y = 6, and y = 2. The ordered pair solution is (3, 2).

b) Using, y − 2 = 0, y = 2. Substituting into the second equation
yields x + 3(2) = 9, x + 6 = 9, and x = 3. The ordered pair
solution is (3, 2).

c) The second equation, already solved for y, substituted in the first
equation yields x + (−x + 3) = 5 or 3 = 5. This is false, so the
system is inconsistent and has no solution.

9. .a) Here, x can be eliminated by simply adding the two equations as
written.

−x + 2y = 5
x  +  y = 4

3y = 9  or y = 3

Next, use y = 3 to determine x = 1. The ordered pair solution is
(1, 3).

b) Here, y can be eliminated by multiplying the second equation by
3. The system is rewritten as

4x + 3y = 35
6x − 3y = 15

Adding the two equations yields 10x = 50 or x = 5. Using this
value for x yields that y is also 5. (Check the solution in the original
equation to see that (5, 5) is correct.)

c) The second equation must first be rewritten in standard form
ax + by = c, so the system to solve is

x + 4y = 13
4x + 2y = 10

Multiplying the first equation by −4 will allow x to be eliminated
from the system.

−4x – 16y = −52 
4x +   2y = 10 

−14y = −42 or y = 3

Using y = 3, it is determined that x = 1. (Check the solution in the
original system to verify the solution (1, 3)).
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d) Rewriting the first equation in standard form and multiplying by 2
to eliminate x yields

−2x + 2y =  8 
2x + 3y = 12 

5y = 20 or y = 4 

If y = 4, then x = 0 and checking in the original system indicates
that (0, 4) is the correct solution.

11. Let x represent the number of boxes of cookies and y the boxes of
candy. The system to be solved is

x + y = 2400

4x + 5y = 10,500

Solving yields sales of 1500 boxes of cookies and 900 boxes of
candy.

13. Let x = gallons of regular and y = gallons premium. The system of
equations to be solved (by either substitution or elimination) is

x + y = 100

0.87x + 0.93 y = 0.92 (100)

Using elimination,

−0.87x – 0.87y = −87

0.87x + 0.93y = 92

0.06y = 5
y = 83 1/3 gallons and x = 16 2/3 gallons 

15. . . p

q

320

160

The Market equilibrium occurs
when q is about 30 and y about
260. Using substitution
−2q + 320 = 8q + 20

300 = 10q
30 = q

so, p = 260


