Audel[™]

Automated Machines and Toolmaking All New 5th Edition

Rex Miller Mark Richard Miller

Audel[™]

Automated Machines and Toolmaking All New 5th Edition

Audel[™]

Automated Machines and Toolmaking All New 5th Edition

Rex Miller Mark Richard Miller

Vice President and Executive Group Publisher: Richard Swadley Vice President and Executive Publisher: Robert Ipsen Vice President and Publisher: Joseph B. Wikert Executive Editorial Director: Mary Bednarek Editorial Manager: Kathryn A. Malm Executive Editor: Carol A. Long Senior Production Manager: Fred Bernardi Development Editor: Kevin Shafer Production Editor: Vincent Kunkemueller Text Design & Composition: TechBooks

Copyright © 2004 by Wiley Publishing, Inc. All rights reserved. Copyright © 1965, 1970, and 1978 by Howard W. Sams & Co., Inc. Copyright © 1983 by The Bobbs-Merrill Co., Inc. Copyright © 1986 by Macmillan Publishing Company, a division of Macmillan Inc.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993, or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo, Audel, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc., and/or its affiliates in the United States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-764-55528-6

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents

Acknowledg	gments	XV
About the A	uthors	xvii
Introduction		xix
Chapter 1:	Jigs and Fixtures	1
	Jigs	1
	Clamp Jig	1
	Box Jig	6
	Fixtures	11
	Summary	13
	Review Questions	14
Chapter 2:	Helix and Spiral Calculations	15
	Milling a Helix	15
	Angle of Table Swivel	17
	Lead of the Machine	19
	Change Gears	20
	Change-Gear Train	20
	Change-Gear Ratio	22
	Change-Gear Calculations	22
	Milling a Spiral	25
	Summary	28
	Review Questions	28
Chapter 3:	Spur Gear Computations	31
-	Evolution of Gears	31
	Gear Teeth	33
	Gear Tooth Terms	34
	Spur Gear Computations	36
	Involute Gears	48

	Summary	50
	Review Questions	51
Chapter 4:	Gears and Gear Cutting	53
	Development of Gear Teeth	53
	Diametral and Circular Pitch Systems	54
	American Standard Spur Gear Tooth Forms	55
	Gear-Cutting Operations	59
	Cutting Spur Gears	59
	Cutting Bevel Gears	66
	Cutting Helical Gears	82
	Cutting Rack Teeth	86
	Cutting Worm and Worm Wheel Teeth	89
	Summary	93
	Review Questions	94
Chapter 5:	Cams and Cam Design	97
	Cam Principles	97
	Uniform Motion Cams	98
	Uniformly Accelerated Motion Cams	99
	How a Cam Operates	100
	Cam Design	101
	Displacement Diagrams	101
	Design for Gas Engines	105
	Design for Automatic Screw	
	Machines	107
	Drawing the Cams	124
	How to Machine Cams	137
	Transferring the Cam Outline	137
	Machining the Cam Outline	137
	Summary	141
	Review Questions	141
Chapter 6:	Dies and Diemaking	143
	Cutting or Punching Dies	143
	Plain Die	143
	Self-Centering Die	144

	Shaping Dies	147
	Plain Bending Die	147
	Curling Die	148
	Wiring Die	149
	Bulging Die	150
	Combination Punching and	150
	Shaping Dies	151
	Double-Action Dies	151
	Plain Drawing Die	152
	Redrawing Die	153
	Gang and Follow Dies	155
	Compound Die	155
	Miscellaneous Dies	150
	Diemaking Operations	160
	Lubricants	160
	Materials for Making Dies	160
	Laying Out Dies	161
	Laying Out the Design on the Die	165
	Making the Die	165
	Hardening and Tempering	168
	Summary	169
	Review Questions	170
	Review Questions	170
Chapter 7:	Grinding	173
	Cylindrical Grinders	173
	Centerless Grinders	179
	Basic Principles	180
	Abrasive-Belt Centerless Grinding	190
	Advantages of Centerless Grinding	190
	Internal Grinding	191
	Rotating-Work Machine	191
	Internal Centerless Grinding Machine	192
	Cylinder Grinding Machine—Stationary	
	Work	193
	Surface Grinders	194
	Planer-Type Surface Grinders	196
	Rotary-Type Surface Grinders	196

	Cutter and Tool Grinding Grinding Cemented Carbide Tools Cutter Sharpening Machines Barrel Finishing (Abrasive Tumbling) Summary Review Questions	197 198 198 199 204 205
Chapter 8:	Laps and Lapping Laps Classification Materials Lapping Powders Lapping Operations Hand Lapping Machine Lapping Lapping a Cylinder Lapping a Tapered Hole Rotary Disc Lap Honing Summary Review Questions	207 207 207 210 210 211 212 213 214 214 214 215 218 218
Chapter 9:	Toolmaking Operations Introduction Allowances and Tolerances Precision Measurements Tolerance Limits Fits and Fitting Limits of Fits Layout Laying Out the Workpiece Drilling Center Holes Locating Center Points with Precision Checking the Square Sine Bar for Measuring Angles Summary Review Questions	221 221 223 224 224 224 226 227 229 253 256 256 275 275 284 285

Chapter 10:	Heat-Treating Furnaces	287
	Classification	287
	Types of Furnaces	287
	Gas-Fired Oven Furnaces	288
	Electrically Heated Furnaces	289
	Pit Furnaces	290
	Pot-Hardening Furnaces	291
	Recuperative Furnaces	297
	Controlled Atmosphere	300
	Scale	300
	Decarburization	300
	Carburization	301
	Controlled-Atmosphere Furnaces	301
	Temperature Control of Heat-Treating	
	Furnaces	303
	Results Are Important	305
	Response	305
	Measuring Temperature	305
	Thermocouples	309
	Automatic Controls	313
	Recording Pyrometers	314
	Summary	314
	Review Questions	316
Chapter 11:	Annealing, Hardening, and Tempering	317
	Annealing	317
	Methods of Annealing	318
	Temperature for Annealing	318
	Effects of Forging	320
	Hardening	321
	Heating Process	321
	Heating Baths	323
	Quenching or Cooling Baths	324
	Tempering	324
	Color Indications	325
	Case-Hardening	326
	Variations on Case-Hardening Methods	328

x Contents

	Summary Review Questions	328 329
Chapter 12:	Principles of Induction Heating	331
•	Adjustable Induction Heating Coil	336
	Summary	338
	Review Questions	339
Chapter 13:	High-Frequency Induction Heating	341
	Producing Heat by Resistance	341
	Heating Units	342
	High-Frequency Applications	343
	Summary	347
	Review Questions	348
Chapter 14:	Furnace Brazing	349
	Basic Process	349
	Holding Assemblies Together	351
	Laying and Pressing Parts Together	352
	Summary	360
	Review Questions	360
Chapter 15:	Cold-Treating Process Fundamental Principle of	363
	Cold Treating	363
	Decalescence	363
	Cold-Treating Temperatures	364
	Convection Fluid	365
	Calculating Rate of Production	365
	Cold-Treating Procedures	366
	High-Speed Tool Steel	366
	High-Carbon Steel	368
	Stabilizing Dimensions	369
	Subzero Chilling	369
	Summary	370
	Review Questions	370

Chapter 16:	Automatic Lathes	373
-	Automatic Turret Lathes	373
	Automatic Threading Lathes	374
	Summary	378
	Review Questions	378
Chapter 17:	The Automatic Screw Machine	381
	Classification	381
	Operating Principles	382
	Selection and Use of Tools	383
	Types of Tools	384
	General Suggestions for Tool Selection	386
	Setting Up an Automatic Screw	
	Machine	388
	Arrangement of Belts for Correct	
	Spindle Speed	391
	Indexing the Turret	392
	Changing from Double to Single Index	393
	Setting Cross-Slide Tools	393
	Adjusting the Cutting Tool to	
	Proper Distance	
	from Chuck	393
	Adjust the Form Tool to Line	
	Up with the Cutoff Tool	395
	Placing the Cams	396
	Adjusting the Cutoff Tool to the	
	Cam Lobe	396
	Adjusting the Turret to the	
	Correct Distance	
	from the Chuck	396
	Setting the Stock for Length	396
	Setting the Chuck and Feed Trip Dog	396
	Setting Turret Indexing Trip Dogs	397
	Setting the Spindle Reverse Trip Dog	398
	Setting the Indexing Trip Dogs	398
	Adjusting the Feed Slide for	
	Length of Stock	398

	Placing and Adjusting the First	399
	Turret Tool	399 399
	Adjusting the Form Tool	400
	Adjusting the Threading Tool	
	Setting the Deflector	400
	Setting the Automatic Stock	400
	Measuring the Work	400
	Renewing Stock	400
	Dial-Controlled Machines	401
	Summary	402
	Review Questions	402
Chapter 18:	Automated Machine Tools	405
	Basic Principles of Numerical Control	407
	Preparation for Numerical Control	409
	Electronic Control of Machine Tools	413
	Tape Preparation	419
	Control	420
	Transducers	421
	Summary	426
	Review Questions	427
Chapter 19:	Computerized Machining	429
	Numerical Controls	431
	Computer-Operated Machine Tools	432
	CNC Components and Control	
	System	433
	Positioning Formats	434
	Advantages of CNC over NC	437
	CNC Programming	437
	Machining Centers	441
	CAD/CAM	441
	Computer-Integrated Manufacturing	
	(CIM)	443
	Summary	445
	Review Questions	447

Appendix:	Reference Materials	449
	Colors and Approximate Temperatures	
	for Carbon Steel	449
	Nominal Dimensions of Hex Bolts and	
	Hex Cap Screws	450
	Nominal Dimensions of Heavy Hex	
	Bolts and Heavy Hex Cap Screws	450
	Nominal Dimensions of Heavy Hex	
	Structural Bolts	451
	Nominal Dimensions of Hex Nuts,	
	Hex Thick Nuts, and Hex Jam Nuts	452
	Nominal Dimensions of Square-Head	
	Bolts	452
	Nominal Dimensions of Heavy Hex	
	Nuts and Heavy Hex Jam Nuts	453
	Nominal Dimensions of Square Nuts	
	and Heavy Square Nuts	454
	Nominal Dimensions of Lag Screws	455
Index:		457

Acknowledgments

A number of companies have been responsible for furnishing illustrative materials and procedures used in this book. At this time, the authors and publisher would like to thank them for their contributions. Some of the drawings and photographs have been furnished by the authors. Any illustration furnished by a company is duly noted in the caption.

The authors would like to thank everyone involved for his or her contributions. Some of the firms that supplied technical information and illustrations are listed below:

A. F. Holden Co. Brown and Sharp Manufacturing Co. Cincinnati Milacron Co. Cleveland Automatic Machine Co. DoAll Co. Ex-Cell-O Corporation Federal Products Corp. Friden, Inc. Gisholt Machine Co. Heald Machine Co. Illinois Gear Johnson Gas Appliance Co. L.S. Starrett Co. Lepel Corporation Machinery's Handbook, The Industrial Press Moog Hydro-Point NASA Norton Co. Paul and Beekman Inc. Sheldon Machine Co. Thermolyne Corp.

About the Authors

Rex Miller was a Professor of Industrial Technology at The State University of New York—College at Buffalo for over 35 years. He has taught on the technical school, high school, and college level for well over 40 years. He is the author or coauthor of over 100 textbooks ranging from electronics through carpentry and sheet metal work. He has contributed more than 50 magazine articles over the years to technical publications. He is also the author of seven Civil War regimental histories.

Mark Richard Miller finished his B.S. degree in New York and moved on to Ball State University where he obtained the master's and went to work in San Antonio. He taught in high school and went to graduate school in College Station, Texas, finishing the doctorate. He took a position at Texas A&M University in Kingsville, Texas, where he now teaches in the Industrial Technology Department as a Professor and Department Chairman. He has coauthored seven books and contributed many articles to technical magazines. His hobbies include refinishing a 1970 Plymouth Super Bird and a 1971 Roadrunner. He is also interested in playing guitar, which he did while in college as lead in The Rude Boys band.

Introduction

The purpose of this book is to provide a better understanding of the fundamental principles of working with metals in many forms, but with emphasis upon the machining—utilizing both manually operated and automated machines. It is the beginner and the advanced machinist alike who may be able to profit from studying the procedures and materials shown in these pages.

One of the chief objectives has been to make the book clear and understandable to both students and workers. The illustrations and photographs have been selected to present the how-to-do-it phase of many of the machine shop operations. The material presented here should be helpful to the machine shop instructor, as well as to the individual student or worker who desires to improve himself or herself in this trade.

The proper use of machines and the safety rules for using them have been stressed throughout the book. Basic principles of setting the cutting tools and cutters are dealt with thoroughly, and recommended methods of mounting the work in the machines are profusely illustrated. The role of numerically controlled machines is covered in detail with emphasis upon the various types of machine shop operations that can be performed by them.

Some of the latest tools and processes are included. New chapters have been added with updated information and illustrations whenever appropriate. This book, in it's all new fifth edition, has been reorganized into more logical units that can be digested much more easily.

This book has been developed to aid you in taking advantage of the trend toward vocational training of young adults. An individual who is ambitious enough to want to perfect himself or herself in the machinist trade will find the material presented in an easy-tounderstand manner, whether studying alone, or as an apprentice working under close supervision on the job.

Chapter I

Jigs and Fixtures

Jigs and fixtures are devices used to facilitate production work, making interchangeable pieces of work possible at a savings in cost of production. Both terms are frequently used incorrectly in shops. A *jig* is a guiding device and a *fixture* a holding device.

Jigs and fixtures are used to locate and hold the work that is to be machined. These devices are provided with attachments for guiding, setting, and supporting the tools in such a manner that all the workpieces produced in a given jig or fixture will be exactly alike in every way.

The employment of unskilled labor is possible when jigs and fixtures can be used in production work. The repetitive layout and setup (which are time-consuming activities and require considerable skill) are eliminated. Also, the use of these devices can result in such a degree of accuracy that workpieces can be assembled with a minimum amount of fitting.

A jig or fixture can be designed for a particular job. The form to be used depends on the shape and requirement of the workpiece to be machined.

Jigs

The two types of jigs that are in general use are (1) clamp jig and (2) box jig. A few fundamental forms of jigs will be shown to illustrate the design and application of jigs. Various names are applied to jigs (such as drilling, reaming, and tapping) according to the operation to be performed.

Clamp Jig

This device derives its name from the fact that it usually resembles some form of clamp. It is adapted for use on workpieces on which the axes of all the holes that are to be drilled are parallel.

Clamp jigs are sometimes called *open jigs*. A simple example of a clamp jig is a design for drilling holes that are all the same size—for example, the stud holes in a cylinder head (Figure 1-1).

As shown in Figure 1-1, the jig consists of a ring with four lugs for clamping and is frequently called a *ring jig*. It is attached to the cylinder head and held by U-bolt clamps. When used as a

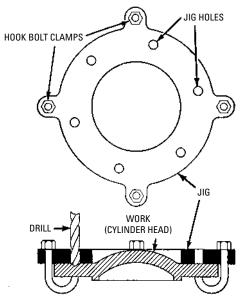
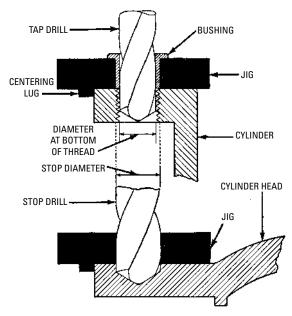



Figure I-I A plain ring-type clamp jig without bushings.

guide for the drill in the drilling operation, the jig makes certain that the holes are in the correct locations because the holes in the jig were located originally with precision. Therefore, laying out is not necessary.

A disadvantage of the simple clamp jig is that only holes of a single size can be drilled. Either *fixed* or *removable* bushings can be used to overcome this disadvantage. Fixed bushings are sometimes used because they are made of hardened steel, which reduces wear. Removable bushings are used when drills of different sizes are to be used, or when the drilled holes are to be finished by reaming or tapping.

A *bushed clamp jig* is illustrated in Figure 1-2. In drilling a hole for a stud, it is evident that the drill (tap drill) must be smaller in size than the diameter of the stud. Accordingly, two sizes of twist drills are required in drilling holes for studs. The smaller drill (or *tap drill*) and a drill slightly larger than the diameter of the stud are required for drilling the holes in the cylinder head. A bushing can be used to guide the tap drill.

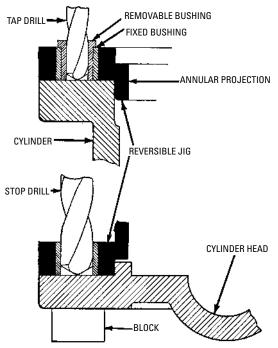


Figure I-2 A clamp jig, with the tap drill guided by a bushing, designed for drilling holes in the cylinder (top); the operation for a hole for the cylinder head (bottom).

The jig is clamped to the work after it has been centered on the cylinder and head so that the axes of the holes register correctly. Various provisions (such as stops) are used to aid in centering the jig correctly. The jig shown in Figure 1-2 is constructed with four lugs as a part of the jig. As the jig is machined, the inner sides of the lugs are turned to a diameter that will permit the lugs to barely slip over the flange when the jig is applied to the work.

A *reversible clamp jig* is shown in Figure 1-3. The distinguishing feature of this type of jig is the method of centering the jig on the cylinder and head. The position of the jig for drilling the cylinder is shown at the top of Figure 1-3. An annular projection on the jig fits closely into the counterbore of the cylinder to locate the jig concentrically with the cylinder bore.

The jig is reversed for drilling the cylinder head. That is, the opposite side is placed so that the counterbore or circular recessed part of the jig fits over the annular projection of the cylinder head at the bottom of Figure 1-3.

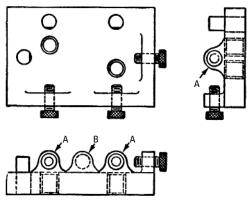


Figure I-3 Note the use of a reversible clamp jig for the tap drill operation (top), and reversing the jig to drill the hole for the stud in the cylinder head (bottom).

This type of jig is often held in position by inserting an accurately fitted pin through the jig and into the first hole drilled. The pin prevents the jig from turning with respect to the cylinder as other holes are drilled.

A simple jig that has locating screws for positioning the work is shown in Figure 1-4. The locating screws are placed in such a way that the clamping points are opposite the bearing points on the work. Two setscrews are used on the long side of the work, but in this instance, because the work is relatively short and stiff, a single lug and setscrew (*B* in Figure 1-4) is sufficient.

This is frequently called a *plate jig* since it usually consists of only a plate that contains the drill bushings and a simple means of clamping the work in the jig, or the jig to the work. Where the jig is clamped to the work, it sometimes is called a *clamp-on jig*.

Figure I-4 A simple jig that uses locating screws to position the work.

Diameter jigs provide a simple means of locating a drilled hole exactly on a diameter of a cylindrical or spherical piece (Figure 1-5).

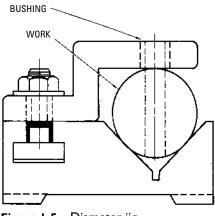


Figure 1-5 Diameter jig.

Another simple clamp jig is called a *channel jig* and derives its name from the cross-sectional shape of the main member, as shown in Figure 1-6. They can be used only with parts having fairly simple shapes.

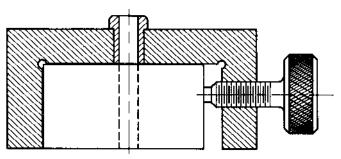


Figure 1-6 Channel jig.

Box Jig

Box jigs (sometimes called *closed jigs*) usually resemble a boxlike structure. They can be used where holes are to be drilled in the work at various angles. Figure 1-7 shows a design of box jig that is suitable for drilling the required holes in an engine link. The jig is built in the form of a partly open slot in which the link is moved up against a stop and then clamped with the clamp bolts A, B, and C.

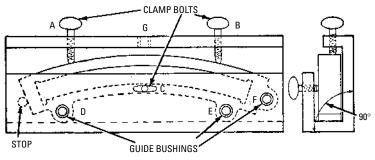


Figure 1-7 Using the box jig for drilling holes in an engine link.

The bushings D and E guide the drill for drilling the eccentric rod connections, and the bushing F guides the drill for the reach rod connections. The final hole, the hole for lubrication at the top of the link, is drilled by turning the jig 90°, placing the drill in the bushing G.

This type of jig is relatively expensive to make by machining, but the cost can be reduced by welding construction, using plate metal. In production work, the pieces can be set and released quickly.

A box jig with a hinged cover or leaf that may be opened to permit the work to be inserted and then closed to clamp the work into position is usually called a *leaf jig* (Figure 1-8). Drill bushings are usually located in the leaf. However, bushings may be located in other surfaces to permit the jig to be used for drilling holes on more than one side of the work. Such a jig, which requires turning to permit work on more than one side, is known as a *rollover jig*.

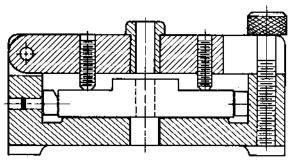


Figure I-8 Leaf jig.

A box jig for angular drilling (Figure 1-9) is easily designed by providing the jig with legs of unequal length, thus tilting the jig to the desired angle. This type of jig is used where one or more holes are required to be drilled at an angle with the axis of the work.

As can be seen in Figure 1-9, the holes can be drilled in the work with the twist drill in a vertical position. Sometimes the jig is mounted on an angular stand rather than providing legs of unequal length for the jig. Figure 1-10 shows a box jig for drilling a hole in a ball.

In some instances, the work can be used as a jig (Figure 1-11). In the illustration, a bearing and cap are used to show how the work can be arranged and used as a jig. After the cap has been planed and fitted, the bolt holes in the cap are laid out and drilled. The cap is clamped in position, and the same twist drill used for the bolt holes is used to cut a conical spot in the base. This spotting operation provides a starting point for the smaller tap drill (A and B in Figure 1-11).

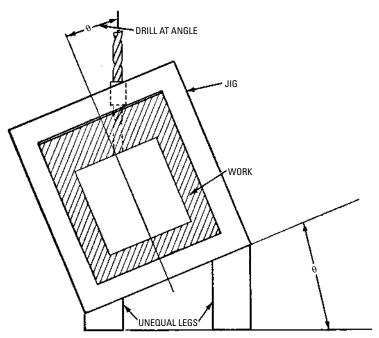


Figure 1-9 A box jig with legs of unequal length, used for drilling holes at an angle.

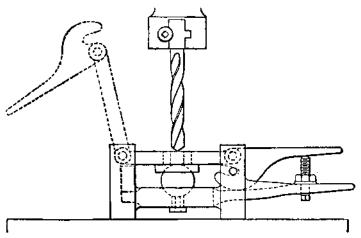


Figure 1-10 A box jig used for drilling a hole in a ball.