




Practical Statistics for 
Environmental and 
Biological Scientists 





Practical Statistics for 
Environmental and 
Biological Scientists 

John Townend 
University of Aberdeen, UK 

JOHN WILEY & SONS, LTD 



Copyright © 2002 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, 
West Sussex POl9 8SQ, England 

Telephone (+44) 1243779777 

Email (for orders and customer service enquiries): cs-books@wiley.co.uk 
Visit our Home Page on www.wileyeurope.com or www.wiley.co.uk 

Reprinted with corrections March 2003. 
Reprinted July 2004, April 2005, April 2006, April 2007, October 2008, April 2009 

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval 
system or transmitted in any form or by any means, electronic, mechanical, photocopying, 
recording, scanning or otherwise, except under the terms of the Copyright, Designs and 
Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency 
Ltd, 90 Tottenham Court Road, London WIT 4LP, UK, without the permission in writing of 
the Publisher. Requests to the Publisher should be addressed to the Permissions Department, 
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex POl9 8SQ, 
England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243770571. 

This publication is designed to provide accurate and authoritative information in regard to 
the subject matter covered. It is sold on the understanding that the Publisher is not engaged in 
rendering professional services. If professional advice or other expert assistance is required, 
the services of a competent professional should be sought. 

Other Wiley Editorial Offices 

John Wiley & Sons Inc., III River Street, Hoboken, NJ 07030, USA 

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA 

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany 

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia 

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 
129809 

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W I L I 

British Library Cataloguing in Publication Data 

A catalogue record for this book is available from the British Library 

ISBN 13: 978-0-471-49664-9 (HB) 
ISBN 13: 978-0-471-49665-6 (PB) 

Typeset in 10.5 I 13pt Times by Vision Typesetting Manchester 



Contents 

Preface ix 

PART I STATISTICS BASICS 1 

1 Introduction 3 
1.1 Do you need statistics? 3 
1.2 What is statistics? 4 
1.3 Some important lessons I have learnt 5 
1.4 Statistics is getting easier 6 
1.5 I ntegrity in statistics 7 
1.6 About this book 8 

2 A Brief Tutorial on Statistics 9 
2.1 Introduction 9 
2.2 Variability 9 
2.3 Samples and populations \0 
2.4 Summary statistics 11 
2.5 The basis of statistical tests 19 
2.6 Limitations of statistical tests 24 

3 Before You Start 27 
3.1 Introduction 27 
3.2 What statistical methods are available? 28 
3.3 Surveys and experiments 33 
3.4 Designing experiments and surveys - preliminaries 35 
3.5 Summary 43 

4 Designing an Experiment or Survey 45 
4.1 Introduction 45 
4.2 Sample size 45 
4.3 Sampling 50 
4.4 Experimental design 56 
4.5 Further reading 60 

5 Exploratory Data Analysis and Data Presentation 63 
5.1 Introduction 63 
5.2 Column graphs 65 
5.3 Line graphs 67 
5.4 Scatter graphs 69 



VI Contents 

5.5 General points about graphs 71 
5.6 Tables 73 
5.7 Standard errors and error bars 74 

6 Common Assumptions or Requirements of Data for Statistical 
Tests 77 

6.1 Introduction 77 
6.2 Common assumptions 81 
6.3 Transforming data 84 

PART II STA TISTICAL METHODS 91 

7 I-tests and F-tests 93 
7.1 Introduction 93 
7.2 Limitations and assumptions 94 
7.3 t-tests 95 
7.4 F -test 103 
7.5 Further reading 105 

8 Analysis of Variance 107 
8.1 Introduction 107 
8.2 Limitations and assumptions 109 
8.3 One-way ANaYA III 
8.4 Multiway ANaYA 119 
8.5 Further reading 127 

9 Correlation and Regression 129 
9.1 Introduction 129 
9.2 Limitations and assumptions 130 
9.3 Pearson's product moment correlation 131 
9.4 Simple linear regression 135 
9.5 Correlation or regression? 142 
9.6 Multiple linear regression 143 
9.7 Comparing two lines 146 
9.8 Fitting curves 148 
9.9 Further reading 151 

10 Multivariate ANOVA 153 
10.1 Introduction 153 
10.2 Limitations and assumptions 154 
10.3 Null hypothesis 156 
10.4 Description of the test 156 
10.5 Interpreting the results 158 
10.6 Further reading 161 

11 Repeated Measures 163 
11.1 Introduction 163 
11.2 Methods for analysing repeated measures data 166 



Contents vii 

11.3 Designing repeated measures experiments 170 
11.4 Further reading 170 

12 Chi-square Tests 173 
12.1 Introduction 173 
12.2 Limitations and assumptions 174 
12.3 Goodness of fit test 175 
12.4 Test for association between two factors 178 
12.5 Comparing proportions 181 
12.6 Further reading 184 

13 Non-parametric Tests 185 
13.1 Introduction 185 
13.2 Limitations and assumptions 188 
13.3 Mann-Whitney U-test 189 
13.4 Two-sample Kolmogorov-Smirnov test 191 
13.5 Two-sample sign test 193 
13.6 Kruskal-Wallis test 195 
13.7 Friedman's test 198 
13.8 Spearman's rank correlation 200 
13.9 Further reading 203 

14 Principal Component Analysis 205 
14.1 Introduction 205 
14.2 Limitations and assumptions 207 
14.3 Description of the method 207 
14.4 Interpreting the results 209 
14.5 Further reading 218 

15 Cluster Analysis 221 
15.1 Introduction 221 
15.2 Limitations and assumptions 222 
15.3 Clustering observations 223 
15.4 Clustering variables 226 
15.5 Further reading 228 

APPENDICES 229 
A Calculations for statistical tests 231 
B Concentration data for Chapters 14 and 15 247 
C Using computer packages 249 
D Choosing a test: decision table 261 
E List of worked examples 265 

Bibliography 271 
Index 273 





Preface 

Statistics wasn't forced upon the environmental and biological sciences; it has 
been absorbed into their practice because it was realized that it had something 
to offer. Statistical methods provide us with ways of summarizing our data, 
objective methods to decide how much confidence we can place in experimental 
results, and ways of uncovering patterns that are initially masked by the 
complexity of a dataset. Also, if we carry out scientific investigations according 
to our instincts, there is a risk that we will bias the results by overlooking some 
important factor or through our desire to get a particular result. By carefully 
following accepted statistical procedures we can avoid these problems and, just 
as importantly, we will be seen to have avoided them, so our results will be more 
readily accepted by others. 

Statistics is also a useful means of communication. For example, a researcher 
might state that 'the molluscs had a mean shell length of 12.2 mm ± 1.6 mm 
(standard error)" or report that 'ANOVA showed significant differences be
tween nitrogen contents in different groups of plants (P = 0.02)'. These are 
succinct ways of explaining a great deal of detail about how studies have been 
carried out and what can be concluded from them. Of course, they are only 
really a useful means of communication if you understand what the terms mean. 
Like it or not, though, they are widely used, so whether you intend to use 
statistics yourself or just read about others' research, it will still be a great help 
to know something about it. 

While teaching statistics in a university I found that, for the most part, the 
statistical methods required by both environmental and biological scientists 
were the same. Indeed this might be expected, because much of the science is 
common to both as well. I also found that requirements were very similar at all 
levels from undergraduate to experienced professional. Really there is seldom 
any necessity to use complex statistical methods to do world-class research in 
environmental and biological sciences. Those who are able to identify the key, 
simple questions to ask are likely to enjoy the greatest success. So it is that I 
ha ve tried to put together a book that addresses as many of the most common 
needs as possible. 

The choice of content is based on the questions I have most frequently been 
asked and the explanations that seemed to work best. Memorizing formulae 
will be of very little practical use to you, except perhaps to pass an exam; most 
calculations can be carried out by computer these days. However, computers do 
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not generally tell you whether you are carrying out the right calculations or 
exactly what you can conclude from the results. Here textbooks still have a part 
to play. In this book I try to unlock many of the codes commonly used to 
present scientific information and to provide you with the tools you need to be 
an effective user of statistics yourself. I wholeheartedly hope that it will provide 
you with the information you need. 



PART I 

STATISTICS BASICS 

Chapters 1 to 6 introduce the ideas behind statistical methods and how 
practical studies should be set up to use them. They aim to give the 
required background for using the methods in Part II. Readers who are 
new to statistics or in need of a short refresher might find it useful to read 
this part in its entirety. 





1 
Introduction 

UW liN Em _Mit 

If your first love was statistics, you probably wouldn't be studying or working in 
environmental or biological sciences. I am starting from this premise. 

1.1 Do you need statistics? 

Somebody who is trying to sell you a statistics textbook is probably not the best 
person to ask whether you need statistics. Maybe you have opened this book 
because you have an immediate need for these techniques or because you have 
to study the subject as part of a course. In this case the answer for you is clearly 
yes, you need statistics. Otherwise, if you want to know whether statistics is 
really relevant to you, ask people who have been successful in your chosen area 
- academics, researchers or people doing the kind of job you want to do in the 
future. 

Some use it more than others, and certainly you will find some very successful 
people who are not confident with statistics and possibly dislike any involve
ment with it. I don't believe being a brilliant statistician is a necessary condition 
for being a brilliant biologist or environmental scientist. However, you will 
probably find that most of the people you ask would have found it useful to 
understand statistics at some stage in their career, perhaps very regularly. Even 
if you do not need it to present results yourself, you will need to understand 
some statistics in order to understand the real meaning of almost any scientific 
information given to you. 

The fact that most university degrees in environmental and biological 
sciences include a compulsory statistics course is simply a recognition of this. 
However, do not think that understanding statistics is all or nothing. Even a 
basic understanding of why and when it is used will be very valuable. If you can 
grasp the detail too, so much the better. 
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1.2 What is statistics? 

Football scores, unemployment rates and lengths of hospital waiting lists are 
statistics, but not what we commonly think of as being included in the subject of 
statistics. An interesting definition I heard recently was that statistics is 'that 
part of a degree which causes a sinking feeling in your stomach'. I don't have an 
all-encompassing definition myself, but it will be helpful if you can keep in mind 
that more or less everything in this book is concerned with trying to draw 
conclusions about very large groups of individuals (animate or inanimate) 
when we can only study small samples of them. The fact that we have 
to draw conclusions about' large groups by studying only small samples 
is the main reason that we use statistics in environmental and biological 
SCIence. 

Supposing we select a small sample of individuals on which to carry out a 
study. The questions we are trying to answer usually boil down to these two: 

• If I assume that the sample of individuals I have studied is representative of 
the group they come from, what can I tell about the group as a whole? 

• How confident can I be that the sample of individuals I have studied was like 
the group as a whole? 

These questions are central to the kind of statistical methods described in this 
book and to most of those commonly used in practical environmental or 
biological science. We are usually interested in a very large group of individuals 
(e.g. bacteria in soil, ozone concentrations in the air at some location which 
change moment by moment, or the yield of wheat plants given a particular 
fertilizer treatment) but limited to studying a small number of them because of 
time or resources. 

Fortunately, if we select a sample of individuals in an appropriate way and 
study them, we can usually get a very good idea about the rest of the group. In 
fact, using small, representative samples is an excellent way to study large 
groups and is the basis of most scientific research. Once we have collected our 
data, our best estimate always has to be that the group as a whole was just like 
the sample we studied; what other option do we have? But in any scientific 
study, we cannot just assume this has to be correct, we also need to use our data 
to say how confident we can be that this is true. This is where statistics usually 
comes Ill. 

Almost all experimental results are as described above. They state what is the 
case in a small sample that was studied, and how likely it is to be true of the 
group it was taken from. Elementary textbooks often quote results leaving out 
any indication of how much confidence we can place in them for the sake of 
clarity. However, most of the results they quote originally come from papers 
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published in scientific journals. If you look at the results presented in a scientific 
journal, you will see statements like: 

Big gnomes catch more fish than little gnomes (P = 0.04) 

The study would have been carried out using samples of big gnomes and small 
gnomes and the statement is really shorthand for: 

• In our samples, on average, big gnomes caught more fish than little gnomes, 
so we expect that big gnomes in general catch more fish than little gnomes. 

• Based on the evidence of our samples, we can really only be 96% confident 
that big gnomes in general do catch more fish than little gnomes. 

You can see that the second, qualifying, statement (which comes from the 
P = 0.04) is really quite important to understanding what the researchers have 
actually shown. It is not as clear-cut proof as you might otherwise think. 

We will look in more detail at how to interpret the various forms of short
hand as we go through the different statistical techniques, but notice that when 
the result is stated in full we have (i) a result for the whole group of interest 
assuming that the samples studied were representative, and (ii) a measure of 
confidence that the samples studied actually were representative of the rest of 
the groups. This point is easy to lose sight of when we start to look at different 
techniques. 

Textbooks tend to emphasize differences between statistical techniques so 
that you can see when to use each. However, these same ideas lie behind nearly 
all of them. Statistical methods, in a wide variety of disguises, aim to quantify 
both the effects we are studying (i.e. what the samples showed), and the confi
dence we can have that what we observed in our samples would also hold for the 
rest of the groups they were taken from. If you can keep this fact in mind, you 
already understand the most important point you need to know about statis
tics. 

1.3 Some important lessons I have learnt 

Statistics as a science in its own right can be very complicated. The statistics you 
need to be a good environmental scientist or biologist is only a small and fairly 
straightforward subset of this. Even a general understanding of the basic ideas 
will be a great asset when you come to interpret other people's experimental 
results. When you know some of the shorthand, like the example of the gnomes, 
you will see that very many scientific 'facts' are not as clear-cut and certain as 
we often imagine. Understanding just this already gives you statistical and 
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scientific skills beyond those of the general pUblic. You will quickly learn to be 
more discerning about what scientific 'facts' you really believe. 

There is no denying that a skilled statistician would have methods in his or 
her armoury beyond those I have included in this book. There are not statistical 
techniques available for every eventuality, but there are techniques for a good 
many of them. However, it takes rather a long time to learn about them all and 
probably you want to get on with some environmental or biological science too. 
I have therefore selected in this book a range of techniques that I consider most 
relevant and useful, and I believe these are sufficient to allow you to conduct 
most types of environmental or biological study with a little careful planning. 
Now here's the bit that a lot of people find difficult to grasp. The thing that 
separates competent environmental scientists and biologists from incompetent 
ones, in terms of statistical skills, is not numeracy, but careful planning. The 
chances are that a computer will do all of your calculations for you. 

By the time you sit down at the keyboard with your data you will have 
already made most of the mistakes you are likely to make. Just when you think 
you are about to start the statistical part of your project, your part in the 
statistics is really coming to an end. If you have planned carefully, formed a 
clear idea of what you are investigating, followed the layout of appropriate 
examples from this or other books, and carried out your surveyor experiment 
accordingly, the analysis and interpretation will be plain sailing. Please don't 
leave all thought of statistical analysis to the point where you sit down with 
your data already in hand. You would be unlikely to find the analysis plain 
sailing then. This is an important lesson I have learnt. 

1.4 Statistics is getting easier 

Until the 1980s most statistical calculations were done using a pocket calculator 
or by hand. Nowadays almost all calculations are carried out by computer. We 
need only know which test to use and how to enter the data in order to carry it 
out. I have heard concerns that many students nowadays just quote the output 
without understanding it. This is probably true, but it was always thus. As far as 
I can see, the only difference with precomputer days is that then you would 
spend two hours struggling with the calculations so there was a feeling you had 
earned the right to give the result. I don't believe the average user of statistics 
either knew or cared what the calculations were actually doing any more then 
than they do now. 

Although I do not think that as users of statistics we need to do the calcula
tions ourselves, we do lose a lot if we take the results without understanding 
anything about the methods. Until recently it was necessary to teach the 
calculations behind statistics because without them you could not use statistics, 
whether you understood them or not. To someone who is comfortable with 
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mathematical concepts, the formulae are also a satisfactory explanation of what 
is going on, so teachers often believed they had covered method and under
standing at the same time. 

An aunt of mine used to say, There are liars, damn liars and sadistics. Most of 
the liars and damn liars go into law or advertising so don't bother us much, but 
most of the sadistics teach numeracy skills. That's why maths and statistics are 
hard.' It is my belief that because statistics has traditionally been taught as a 
mathematical skill, although most students got by with the methods, very few 
picked up the understanding along the way. There is a great challenge here for 
teachers of statistics. Rather than seeing the removal of the calculations as a sad 
loss to understanding, we should take advantage of this to try to make the 
meaning and value of statistics more accessible to all. 

1.5 Integrity in statistics 

Scientific research relies on the integrity of the people conducting the research. 
Most of the time, we just have to believe that researchers have been honest in 
their work as there is no way to tell if results have been made up. In fact, in my 
experience very few people do lie about the actual values they have collected, 
even if they are disappointing. Most scientists, I think, have a fairly strong sense 
of conscience. We also need to have this attitude to carrying out an appropriate 
statistical analysis. Some kinds of analysis are easier to do than others and some 
may appear to give us the result we want whilst others do not. However, just 
because it is possible to use one statistical technique does not necessarily mean it 
is valid. Usually it is necessary to make certain checks on the data to discover 
whether a particular method can be applied validly (Chapter 6). Unfortunately, 
this can sometimes lead us to have to do more work, so there is a temptation to 
skip this stage. 

The reader of our work, of course, has to assume that we have done the 
appropriate checks and, if necessary, carried out the extra work. Otherwise we 
should add the qualifying statement 'assuming the test was valid in this case', 
but then who would take our results seriously? If we just present results without 
checking the validity of using our chosen statistical method, we are deliberately 
deceiving the reader. If you value the integrity of your work, therefore, checking 
the validity of applying particular statistical methods must be seen as part of the 
normal process of statistical analysis. The checks required are described in 
the 'Limitations and assumptions' sections preceding each of the methods 
described in this book. 
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1.6 About this book 

I have tried as far as possible to avoid mathematical descriptions of the 
techniques. There are a few simple formulae which readers might find occasion 
to use because they are not covered by some of the common statistical pro
grams. I have included these in boxes; you can skip them if you want. I have also 
included some formulae in Appendix A, principally because they might be 
needed by some people for examinations in statistics. Mainly I have tried here 
to describe some of the range of techniques available, when you can use them, 
how to use them, and what the results are telling you; I have assumed that you 
will use a computer to do most of the calculations. 

Competence and confidence in statistics will be an asset to you as an 
environmental or biological scientist, but at the same time it is only one of many 
things that will make you a good environmental or biological scientist. You 
only have so much time available, and to suggest you study the detail of 
statistics may not be the best use of it. With this in mind I have tried to include 
only techniques and a level of detail that I think will be genuinely useful to those 
studying or working in environmental or biological sciences. 

There are different schools of thought about whether or not one should 
illustrate statistics with real experimental data. My own thoughts on this are 
that it is best to use simple datasets to demonstrate the techniques. It is not 
possible to cover all the eventualities that will arise in real-life results. However, 
provided you understand clearly what is required, you will be in a strong 
position to decide how to collect and handle your own data. All of the datasets 
in this book are therefore invented to demonstrate particular points. 

The book is divided into two parts. Chapters 1 to 6 cover some basic 
statistical ideas and are intended to give you the necessary background for any 
of the statistical techniques in later chapters. Chapters 7 to 15 are more of a 
reference section with different statistical tests or methods described in each 
chapter. Guidance on which test to use in a particular situation is given in 
Section 3.2 and in the decision chart in Appendix D. 

I have also included some pointers to more advanced techniques that readers 
might find useful in the further reading sections at the end of some of the 
chapters. If you have a computer package available to carry these out, under
standing the details of the calculations need not necessarily be a problem to you. 
Nevertheless, before going ahead and using any of them it is important to 
familiarize yourself with what the tests are actually testing, and the assumptions 
and limitations they have about the types of data they are suitable for. In 
general, I have not specified particular texts to consult because these techniques 
are widely covered in many of the more in-depth statistical textbooks, and 
probably most of these would give you similar information. 



2 
A Brief Tutorial on 
Statistics 

2.1 Introduction 

From Chapter 3 onwards I describe a range of statistical tests and methods, and 
how to design experiments or surveys that make use of them. If you are studying 
this subject for the first time, you will probably find it difficult to retain all this 
information in your head. For the most part, this is not a problem. You can refer 
back to the book when you need to. However, there are some basic ideas behind 
all statistical methods and if you can keep these in mind, they will help you to 
make sense of statistical methods in general. These basic ideas are the subject of 
this chapter. 

2.2 Variability 

Think of a group you might want to study, e.g. the lengths offish in a large lake. 
If all of these fish were the same length, you would only need to measure one. 
You can probably accept that they are not all the same length,just as people are 
not all the same height, not all volcanic lava flows are the same temperature, 
and not all carrots have the same sugar content. In fact, most characteristics we 
might want to study vary between individuals. If we measured the lengths of 100 
fish, we could plot them on a graph as in Figure 2.1(a). 

To understand this graph, think how we would add the extra point if we 
measured another fish to be 42 cm. It would appear as an additional fish in the 
column labelled> 40-45 cm. The graph tells us that most of the fish were about 
the same length, and gives us a picture of how widely spread the individuals' 
lengths were around this. We can see that only a few fish were greater than 
50cm or less than 15 cm. Figure 2.1(b) shows the more usual ways of presenting 
this kind of data. 
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Figure 2.1 (a) Numbers of fish out of a sample of 100 falling into different size ranges. Note 
> 1{}-15 means fish more than 10cm long, up to and including 15cm. (b) When larger 
numbers of measurements are involved, it becomes inconvenient to represent each individ
ual, so a column graph or a line can be used to show the shape of the distribution 

The graphs in Figure 2.1 are called Jrequency distributions. For some things 
we might measure, we would find different distributions such as a lot of low 
values, some high values, and a few extremely high values. These result in 
different shapes of graph (Sections 6.1 and 6.2). However, it turns out that if we 
measure a set of naturally occurring lengths, concentrations, times, tempera
tures, or whatever, and plot their distribution, very often we do get a diagram 
with a shape similar to those in Figure 2.1. This shape is called a Normal 
distribution. Statisticians have derived a mathematical formula which, when 
plotted on a graph, has the same shape. Being able to describe the distribution 
of individual measurements using a mathematical formula turns out to be very 
useful because, from only a few actual measurements, we can estimate what 
other members of the population are likely to be like. This idea is the basis of 
many statistical methods. 

2.3 Samples and populations 

As discussed in Chapter 1, practical considerations almost always dictate that 
we study any group we are interested in by making measurements or observa
tions on a relatively small sample of individuals. We call the group we are 
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actually interested in the population. A population in the statistical sense is fairly 
close to the common meaning of the word, but can refer to things other than 
people, and usually to some particular characteristic of them. Here are some 
examples of statistical populations: 

• The lengths of blue whales in' the Arctic Ocean 

• All momentary light intensities at some point in a forest 

• Root lengths of rice plants of a particular variety grown under a specific set of 
conditions 

In the first example, the population is real but we are unlikely to be able to study 
all of the whales in practice. Populations in the statistical sense, however, need 
not be finite, or even exist in real life. In the second example, the light intensity 
could be measured at any moment, but the number of moments is infinite, so we 
could never obtain measurements at every moment. In the third example, the 
population is just conceptual. We really want to know about how rice plants of 
this variety in general would grow under these conditions but we would have to 
infer this by growing a limited number of rice plants under the specified 
conditions. Although the few plants in our sample may be the only rice plants 
ever to be grown in these conditions, we still consider them to be a sample 
representing rice plants of this variety in general growing in these conditions. 

2.4 Summary statistics 

It is often useful to be able to characterize a population in terms of a few 
well-chosen statistics. These allow us to summarize possibly large numbers of 
measurements in order to present results and also to compare populations with 
one another. 

Mean, variance, standard deviation and coefficient of variation 

If we want to describe a population it may sometimes be useful to present a 
frequency distribution like those in Figure 2.1, but this is usually more informa
tion than is needed. Two items are often sufficient: 

• A measure which tells us what a 'typical' member of the population is like 

• A measure which tells us about how spread out the other members of the 
population are around this 'typical' member 

To represent a 'typical' member of the population, we usually use the mean (all 
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Box 2.1 Standard deviation and variance 

One way to characterize how spread out the values in a sample are would be 
to calculate the difference between each measurement and the sample mean, 
and then to calculate the mean of these differences. 

Here's an example: 

Sample value 

Difference from mean 

8 12 10 7 7 11 8 mean = 9.0 

3 2 2 2 mean of differences 
= 12/7 = 1.7 

Had statistics been developed after computers became readily available, this 
might be the measure of spread we commonly use; indeed some recently 
developed statistical methods do use this. However, when calculations were 
done by hand, it was found to be more convenient to use the mean of the 
squares of the differences as a measure of spread; there are mathematical 
shortcuts to getting the result in this case which are useful when you have a 
large sample. Since a great deal of statistical theory and tests built up around 
this, we still use it today. 

For the above sample: 

Sample value 8 12 \0 7 7 11 8 mean = 9.0 

Difference from mean 3 2 2 2 mean of differences 
= 12/7 = 1.7 

Square of difference 9 4 4 4 mean of squared differences 
from mean = 24/7 = 3.4 

When we take a random sample it mayor may not include the largest and 
smallest values in the population, yet these would both contribute the largest 
squares of differences from the mean. Since they are not present in all 
samples, on average the mean of the squares of differences is less when it is 
calculated from a sample than if it was calculated for the population as a 
whole. 

However, what we really want is to estimate the spread of values in the 
population, not in the sample itself, so we need to correct for this. This is 
done by modifying the above calculation so that we divide not by the 
number of values in our sample, but by one less than the number a/values in 
our sample. You can see from the example below that this corrects things in 
the right direction. Some complex statistical theory shows that this simple 
modification corrects the value by the right amount. 
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For the above sample again: 

Sample value 8 12 10 7 7 II 8 mean = 9.0 

Difference from mean 3 2 2 2 mean of differences 
= 12/7 = 1.7 

Square of difference 9 4 4 4 corrected mean 
from mean = 24/6= 4.0 

This figure - the corrected mean of the squared differences - is called the 
variance and is an unbiased estimate of the spread of values in the popula
tion, calculated from a sample. 

Variance has units, e.g. if the measurements had been in grams (g), the 
variance would be in units of square grams (g2). The square root of the 
variance is called the standard deviation. The standard deviation in the 

above example is J4.O = 2.0, i.e. standard deviation is an alternative 
measure of the spread of values. Standard deviation has the same units as 
the actual measurements, e.g. if the measurements had been in grams, the 
standard deviation would also be in grams. The mathematical formulae for 
variance and standard deviation are given in Appendix A. 

of our values added together then divided by the number of values). In common 
usage people often refer to this as the 'average' but the term 'mean' is preferred 
in technical writing. 

To express how spread out the individual values in a popUlation are, we 
usually use the standard deviation or variance; variance is simply the standard 
deviation squared (Box 2.1). In describing a popUlation, we might therefore say, 
'The mean length of fish in the lake was 32 cm with a standard deviation of 
10 cm.' This tells us that most (approximately 68%) of the fish had lengths in the 
range 22-42 cm. Popular texts and the media often just give the mean with no 
measure of spread, but as scientists we should recognize that both measures are 
important. In a different lake the fish might have the same mean length but a 
very different spread of values. This might have important scientific implica
tions. For example, if big fish eat little fish, the ecology of a lake with a wide 
range of sizes may be very different to that in a lake where the fish are all about 
the same size. 

A further measure sometimes used to characterize the variability of a group is 
the coefficient of variation (CV). If we are told that the standard deviation of the 
lengths of ants is 3 mm, and the standard deviation of the lengths of dogs is 
20 cm, we could correctly interpret this to mean that dogs are much more 
variable in their lengths. But we might also want to know which is more 
variable in relation to its size. If we divide the standard deviation by the mean, 
we get the coefficient of variation, i.e. the CV is the standard deviation relative 
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to the mean size of the individuals. For convenience, let's suppose the mean 
length of ants is 10mm and the mean length of dogs is 100cm. The CVs are 
therefore as follows: 

• For the ants 3/10 = 0.3 = 30% . 
• For the dogs 20/100 = 0.2 = 20% 

Relative to their size, ants are more variable. The mean and standard deviation 
or CV are useful statistics to use to present the results of a survey. 

Standard error and 95% confidence interval 

In experimental and survey work we are rarely interested in the samples we 
have actually studied. Our real interest is in the populations they come from. 
This is important to keep in mind, otherwise statistical tests make no sense. 

Figure 2.2 shows the soil temperatures at 20 mm depth at different points in a 
field (the population). Suppose we want to know the overall mean temperature 
at 20 mm depth in this field - the population mean. The only way to find this out 
for sure would be to measure at every point, which would be impractical in a 
real field. What should we do? In most cases the best we can do it to use a sample 
of points and study them. We might make a start by measuring at 10 randomly 

15.7 14.5 14.5 15.3 14.8 14.1 14.5 16.8 15.3 16.6 

All points 
mean =15.2 
standard deviation = 1.00 

Sample 
mean =15.6 
standard deviation = 0.94 

Figure 2.2 Temperatures (0(,) at 20mm depth at 200 points in a field, and the mean and 
standard deviation of all the points and of a random sample of 10 points 
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selected points and calculating their mean temperature, the sample mean - we 
just add up the measurements and divide by 10 (Figure 2.2). 

Of course, this still doesn't actually tell us the mean temperature for the whole 
field , it just tells us the mean temperature for those particular 10 points. Why is 
that any use? Figure 2.3(a) shows the distribution of temperatures in our 
sample, together with the distribution of temperatures for all the points given in 
Figure 2.2. As in this case, the distribution of values in a randomly selected 
sample is usually similar to that in the population as a whole, just with a lot 
fewer values. We can therefore say that a sample mean is probably a reasonable 
estimate of the population mean. What we need to do now is to try to give some 
measure of the 'margin of error' in this, i.e. to say, in any particular case, how 
reliable this estimate is likely to be. 

So how can we tell what the margin of error is? Suppose I measured the 
temperature at another 10 points in the field at random and calculated their 
mean. I would probably get a slightly different value from the first sample. I 
could repeat this any number of times. Figure 2.3(b) shows the distribution of a 
series of 50 sample means obtained in this way. To understand this graph, 
imagine you took another random sample of 10 points and found their mean 
value was 15.6°C. This new point would be added to the top of the column 
labelled> 15.5-16. 

Notice in Figure 2.3(b) that although the different samples did not all give the 
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Figure 2.3 (a) Distributions of the temperatures in the field and of the measurements in the 
sample. (b) Distribution of mean values from 50 random samples, each of 10 measurements 
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same mean, they are all quite close to one another, and are clustered around the 
population mean of IS.2°e. Sample means always cluster round the population 
mean like this. In this particular case, we can see that most of the sample means 
were within the range 14.S to 16.0 (i.e. within 0.8 of the population mean). In 
other words, if we measured and calculated the mean of a randomly selected 
sample of 10 measurements from this field, we could be reasonably confident 
that the mean for the whole field would be within the range ±0.8 of it. We have 
a measure of the 'margin of error' in this estimate, right here. 

Although successive sample means are always clustered round the popula
tion mean like this, in other situations they may be clustered more or less 
tightly. To give a 'margin of error' round any particular sample mean, we need 
to know how tightly clustered a series of similar sample means would be in that 
situation. We could find this out by repeating every experiment SO or so times 
but this would be impractical. However, it turns out that we can also estimate 
how tightly clustered a series of similar sample means would be from a single 
sample, by applying a simple formula (Box 2.2). 

Looking at a graph like Figure 2.3(b) and saying that most means seem to be 
in a particular range is a bit SUbjective. Using the formulae in Box 2.2 to 
calculate the range of values in which most sample means would lie instead, 
achieves the same thing but also has the advantage that we get a more clearly 
defined and objective measure of the 'margin of error'. The most commonly 
used measure is called the standard error (Box 2.2). This is the range of values in 
which we can be approximately 68% confident that the true population mean 
lies. None of these 'margins of errors' absolutely defines the margin of error; the 
population mean might be a lot further out than this; we will never know for 
sure. 

Therefore if we want to quote a 'margin of error' in which we can be more 
confident that the population mean really lies (in fact 9S% confident), we can 
use the 9S% confidence interval (9S% CI). The 9S% CI gives approximately 
twice as wide a range of values as the standard error (Box 2.2). 

The result of a study may be stated as 12.S mg ± 1.2 mg. This tells us that the 
mean value for the sample studied was 12.S mg so this is our best estimate for the 
population mean. It also tells us that there is a considerable 'margin of error' in 
this estimate but we could at least be reasonably confident that the population 
mean was really somewhere in the range 11.3 to 13.7 mg. Either the standard 
error or the 9S% CI can be shown in this way, so the text should make it clear 
which is given in any particular case. 

A lot of people confuse the terms 'standard deviation' and 'standard error', 
presumably because they are both introduced about the same time in a course, 
both are new concepts, and both contain the word 'standard'. Concentrate on 
the words 'deviation' and 'error': 



2.4 Summary statistics 17 

Box 2.2 Standard error and 95% confidence interval 

If we repeatedly measure randomly selected samples of, say, 5 individuals 
from a population, each time the sample mean will probably be slightly 
different. However, we would find that usually the sample mean was 
somewhere close to the mean of the population it came from. In fact, if we 
repeatedly measured samples of, say, 10 individuals, we would find that the 
means of these samples were even more closely clustered around the 
population mean (Figure 1). Remember how to interpret frequency distribu
tions: the values are shown on the horizontal axis and the higher the line, the 
more often that value occurs. 

We can calculate the standard deviation, i.e. the spread, of the individuals 
in the population as described in Box 2.1. It is also possible to calculate the 
standard deviation of the sample means. Figure 1 shows that the standard 
deviation of sample means is less for samples of size 10 than for samples of 
size 5. The standard deviation of the sample means is called the standard 
error (s.e.). 
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Figure 1 Frequency distributions. (a) For a population. (b) For the means of a series 
of randomly selected samples of 5 individuals taken from the population in (a). (c) For 
the means of a series of randomly selected samples of 10 individuals taken from the 
population in (a). The standard deviation (s.d.) for each of the distributions is also 
shown 


