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Quantitative reasoning is an essential part of the natural and 
social sciences and it is therefore vital that any aspiring geogra-
pher be equipped to perform quantitative analysis using statis-
tics, either in their own work or to understand and critique that 
of others. This book is aimed specifically at first year under-
graduates who need to develop a basic grounding in the quan-
titative techniques that will provide the foundation for their 
future geographical research. The reader is assumed to have 
nothing more than rusty GCSE mathematics. The clear practi-
cal importance of quantitative methods is emphasized through 
relevant geographical examples. As such, the book progresses 
through the basics of statistical analysis using clear and logical 
descriptions with ample use of intuitive diagrams and exam-
ples. Only when the student is fully comfortable with the basic 
concepts are more advanced techniques covered. In each sec-
tion, the following format is employed: (i) an introductory pres-
entation of the topic; (ii) a worked example; and (iii) a set of 
topical, geographically relevant exercises that the student may 
follow to probe their understanding and to help build confi-
dence that they can tackle a wide range of problems. Use of the 
popular R statistical software is integrated within the text so 
that the reader can follow the calculations by hand whilst also 
learning how to perform them using industry‐standard open 
source software. Files containing the data required to solve the 
worked examples are available at https://simondadson.org/
statistical-analysis-of-geographical-data.

I am grateful for the guidance and wisdom of my own aca-
demic advisers: Barbara Kennedy, who sadly died before the 
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1

1.1  The role of statistics in geography

1.1.1 Why do geographers need to use statistics?

Statistical analysis involves the collection, analysis and presen-
tation of numerical information. It involves establishing the 
degree to which numerical summaries about observations can 
be justified, and provides the basis for forming judgements 
from empirical data.

Dealing with data

STUDY OBJECTIVES

● Understand the nature and purpose of statistical analysis in 
geography.

● View statistical analysis as a means of thinking critically with 
quantitative information.

● Distinguish between the different types of geographical data and 
their uses and limitations.

● Understand the nature of measurement error and the need to 
account for error when making quantitative statements.

● Distinguish between accuracy and precision and to understand how 
to report the precision of geographical measurements.

● Appreciate the methodological limitations of statistical data analysis.
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Take the following media headlines, for example:

We know in the next 20 years the world population will increase 
to something like 8.3 billion people.

Sir John Beddington, UK Government Chief Scientist1

2010 hits global temperature high.
BBC News, 20th January 20112

Each of these statements invites critical scrutiny. The reliabil-
ity of their sources encourages us to take them seriously, but 
how do we know that they are correct? It is hard enough to try 
to predict what one human being will do in any particular year, 
let alone what several billion are going to do in the next 20 years. 
How were these predictions made? How was the rate of change 
of world population calculated? What were the assumptions? 
What does the author mean by ‘something like’? The number 8.3 
billion is quite a precise number: why didn’t the author just say 8 
billion or almost 10 billion?

Similarly, how do we know that 2010 is the global temperature 
high, when temperature is only measured at a small number of 
measuring stations? How would we go on to investigate whether 
anthropogenic warming caused the record‐breaking tempera-
ture in 2010 or whether it was just a fluke?

Statistical analysis provides some of the tools that can answer 
some of these questions. This book introduces a set of tech-
niques that allow you to make sure that the statistical statements 
that you make in your own work are based on a sound interpre-
tation of the data that you collect.

There are four main reasons to use statistical techniques:

 ● to describe and measure the things that you observe;
 ● to characterize measurement error in your observations;
 ● to test hypotheses and theories;
 ● to predict and explain the relationships between variables.

1 http://www.bbc.co.uk/news/science‐environment‐12249909.
2 http://www.bbc.co.uk/news/science‐environment‐12241692.

http://www.bbc.co.uk/news/science-environment-12249909
http://www.bbc.co.uk/news/science-environment-12241692
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1.2  About this book

One of the best ways to learn any mathematical skill is through 
repeated practice, so the approach taken in this book uses many 
examples. The presentation of each topic begins with an intro-
duction to the theoretical principles: this is then followed by a 
worked example. Additional exercises are given to allow the 
reader to develop their understanding of the topics involved.

The use of computer packages is now common in statistical 
analysis in geography: it removes many of the tedious aspects of 
statistical calculation leaving the analyst to focus on experimen-
tal design, data collection, and interpretation. Nevertheless, it is 
essential to understand how the properties of the underlying 
data affect the value of the resulting statistics or the outcome of 
the test under evaluation.

Two kinds of computer software are referred to in this book. 
The more basic calculations can be performed using a spread-
sheet such as Microsoft Excel. The advantages of Excel are that 
its user interface is well‐known and it is almost universally avail-
able in university departments and on student computers. For 
more advanced analysis, and in situations where the user wishes 
to process large quantities of data automatically, more special-
ized statistical software is better. This book also refers to the 
open‐source statistical package called ‘R’ which is freely available 
from http://www.r‐project.org/. In addition to offering a com-
prehensive collection of well‐documented statistical routines, 
the R software provides a scripting facility for automation of 
complex data analysis tasks and can produce publication‐quality 
graphics.

1.3  Data and measurement error

1.3.1 Types of geographical data: nominal, ordinal, 
interval, and ratio

Four main types of data are of interest to geographers: nominal, 
ordinal, interval, and ratio. Nominal data are recorded using cat-
egories. For example, if you were to interview a group of people 
and record their gender, the resulting data would be on a nominal, 

http://www.r-project.org
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or categorical, scale. Similarly, if an ecologist were to categorize the 
plant species found in an area by counting the number of individual 
plants observed in different categories, the resulting dataset would 
be categorical, or nominal. The distinguishing property of nominal 
data is that the categories are simply names  –  they cannot be 
ranked relative to each other.

Observations recorded on an ordinal scale can be put into an 
order relative to one another. For example, a study in which 
countries are ranked by their popularity as tourist destinations 
would result in an ordinal dataset. A requirement here is that it 
is possible to identify whether one observation is larger or 
smaller than another, based on some measure defined by the 
analyst.

In contrast with nominal and ordinal scale data, interval scale 
data are measured on a continuous scale where the differences 
between different measurements are meaningful. A good exam-
ple is air temperature, which can be measured to a degree of 
precision dictated by the quality of the thermometer being used, 
among other factors. Whilst it is possible to add and subtract 
interval scale data, they cannot be multiplied or divided. For 
example, it is correct to say that 30 degrees is 10 degrees hotter 
than 20 degrees, but it is not correct to say that 200 degrees is 
twice as hot as 100 degrees. This is because the Celsius tempera-
ture scale, like the Fahrenheit scale, has an arbitrarily defined 
origin.

Ratio scale data are similar to interval scale data but a true 
zero point is required, and multiplication and division are valid 
operations when dealing with ratio scale data. Mass is a good 
example: an adult with a mass of 70 kg is twice as heavy as a child 
with a mass of 35 kg. Temperature measured on the Kelvin scale, 
which has an absolute zero point, is also defined as a ratio scale 
measurement.

It is important from the outset of any investigation to be 
aware of the different types of geographical data that can be 
recorded, because some statistical techniques can only be 
applied to certain types of data. Whilst it is usually possible to 
convert interval data into ordinal or nominal data (e.g. rainfall 
values can be ranked or put into categories), it is not possible to 
make the conversion the other way around.
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1.3.2 Spatial data types

Geographers collect data about many different subjects. Some 
geographical datasets have distinctly spatial components to 
them. In other words, they contain information about the loca-
tion of a particular entity, or information about how a particular 
quantity varies across a region of interest. In many contexts, it is 
advantageous to collect information on the locations of objects 
in space, or to record details of the spatial relationships between 
entities. The two main types of spatial data that can be used are 
vector data and raster (or gridded) data. Vector data consist of 
information that is stored as a set of points that are connected to 
known locations in space (e.g. to represent towns, sampling 
locations, or places of interest). The points may be connected to 
form lines (e.g. to represent linear features such as roads, rivers 
and railways), and the lines may be connected to form polygons 
(e.g. to represent areas of different land cover, geological units, 
or administrative units).

The locations of points must be given with reference to a 
coordinate system which may be rectangular (i.e. given using 
eastings and northings in linear units such as metres), or spheri-
cal (i.e. given using latitudes and longitudes in angular units such 
as degrees), but which always requires the definition of unit vec-
tors and a fixed point of origin. The most common spherical 
coordinate system is that of latitude and longitude, which meas-
ures points by their angular distance from an origin which is 
located at the equator (zero latitude) and the Greenwich merid-
ian (zero longitude). Thus the latitude of Buckingham Palace in 
London, UK, is 0.14°W, 51.50°N indicating that it is 0.14 degrees 
west of Greenwich and 51.5 degrees north of the equator.

Whilst spherical coordinate systems are commonly used in 
aviation and marine navigation, and with the arrival of GPS, ter-
restrial navigation usually uses rectangular coordinate systems. 
In order to use rectangular coordinates, the spherical form of 
the Earth must be represented on a flat surface. This is achieved 
using a map projection. An example of a map projection that is 
used to obtain a rectangular coordinate system is the Great 
Britain National Grid, in which locations are defined in metres 
east and north of a fixed origin that is located to the south west 
of the Scilly Isles. Thus to give a grid reference for Buckingham 
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Palace as (529125, 179725) is to say that it lies at a point which is 
529.150 km east of the origin and 179.750 km north of the origin.

To reduce the amount of information that must be transmit-
ted in practical situations, grid references are typically given 
relative to a set of predefined 100 km squares. In situations 
where quoting distances to the nearest metre is not justified 
they are usually rounded to a more suitable level of precision. 
The grid reference above, for Buckingham Palace, might be 
rounded to the nearest 100 m and associated with the box TQ 
[which has its origin at (500000, 100000)] to give TQ 291 797, 
where two letters indicate the grid square, the first three digits 
indicate the easting and the last three digits indicate the 
northing.

Raster data are provided on a grid, where each grid square 
contains a number that represents the value of the data within 
that grid square. Almost any kind of data can be represented 
using a raster. Examples of data that are collected in raster for-
mat include many types of satellite image, and other datasets 
that are sampled at regular intervals (see Section  2.1.3). The 
technical process of specifying the location of the raster in space 
is identical to the process used to locate a point, described 
above. It is also necessary to specify the resolution of the raster 
(i.e. the spacing between grid points and the extent or size of the 
domain).

1.3.3 Measurement error, accuracy and precision

All measurements are subject to uncertainties. As an example, 
consider a geographer wishing to measure the velocity of a river. 
One way to do this is to use a stopwatch to measure the time it 
takes a float to travel a known distance. What are the uncertain-
ties involved in this procedure? One source of error is the reac-
tion time of the person using the stopwatch: they might be slow 
starting the watch, or fast stopping the watch, or vice versa. 
Since each possibility is equally likely, this kind of error is termed 
random error. One way to measure the amount of random error 
in a measurement is to repeat the procedure many times: some-
times the time will be underestimated, other times we will over-
estimate the time. By analysing the variability or spread in our 
results, we can get a good estimate of the amount of random 
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error in our observation. If the spread is small, we say that our 
measurement is precise; if the spread is large, our measurement 
is less precise. The term precision is used to describe the degree 
to which repeated observations of the same quantity are in 
agreement with each other.

What if the stopwatch was consistently slow? In this case, all 
of the times measured would be shorter than they ought to be 
and no amount of repetition would be able to detect this source 
of error. Such errors are referred to as systematic errors, because 
we consistently underestimate the time taken if the stopwatch is 
slow, and consistently overestimate the time taken if the stop-
watch is fast. If the amount of systematic error is low, we refer to 
our measurements as accurate; if the amount of systematic error 
is high, our measurement is less accurate. The term accuracy is 
used to describe the degree to which a measured value of a 
quantity matches its true value. Statistical analysis offers few 
opportunities to detect systematic errors, because we do not 
usually know the true value of the measurement that is being 
made: it is up to the person measuring the data to reduce the 
amount of systematic error through careful design of field, lab, 
or survey procedures.

A typical graphical analogy used to illustrate the difference 
between accuracy and precision involves a set of archery tar-
gets (Figure 1.1). Here, the archer is subject to random errors 
due to the wind or the steadiness of their hand; and potential 
systematic errors due to the design of the bow and arrow and 
its sight. Note the important point that it is impossible to 
assess the precision of a single measurement using statistical 
techniques.

1.3.4 Reporting data and uncertainties

The most straightforward way to communicate error is to give 
the best estimate of the final answer and the range within which 
you are confident that the measurement falls. Taking the earlier 
example of measuring the velocity of a river, suppose that we 
measure the velocity several times, giving the following estimates 
(in metres per second, or m/s):

 0.5, 0.4, 0.5, 0.6 
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The best estimate of the river’s velocity is the average of these 
measurements, which is 0.5 m/s (calculated by adding up all of 
the values and dividing by the number of values). What about 
the range? At the most basic level, it makes sense to assume that 
the correct answer lies between the lowest (0.4 m/s) and the 
highest (0.6 m/s) values. We will want to refine this approach 
later on but for now we can say that the best estimate is 
0.5 m/s ± 0.1 m/s, or to put it more generally:

 Meas ue be mate er rured val st esti ro  
(1.1)

Note that the ‘±’ symbol is pronounced ‘plus‐or‐minus’. In 
many situations, for data measured on a ratio scale, it is useful to 

(a) (b)

(c) (d)

Figure 1.1 Accuracy and precision in archery. (a) High accuracy with high 
precision; (b) high accuracy with low precision; (c) low accuracy but high 
precision; (d) low accuracy and low precision. Note that without knowing 
the location of the archery target (i.e. the true value of the measured 
quantity), cases (c) and (d) are indistinguishable from (a) and (b), 
respectively.
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express the error as a percentage of the measured value. So 
0.5 ± 0.1 m/s would become 0.5 ± 20% m/s.

It is worth noting that the example above, in which we used 
the range of observed values to estimate the error, is the simplest 
approach available. One of the aims of the statistical analyses 
described in this book is to provide more advanced ways to 
quantify this error, including the use of confidence intervals 
based on probabilities.

1.3.5 Significant figures

It is unwise to claim that your measurements are more precise 
than they really are. For example, it would be misleading to state 
that the average age of a group of interviewees was 23.357 if each 
person’s age were known only to the nearest whole number. 
Rounding to an appropriate precision can be achieved by look-
ing at the number of significant figures in the data.

The first significant figure (sig. fig. or s.f.) is the first figure 
which is not zero (reading from the left). For example, the first 
significant figure in the following numbers is indicated with 
a box:
125, 0.0125, 0.0000125

The number of significant figures can then be counted from 
left to right, ignoring embedded zeros. The following examples 
all have four significant figures (boxed):
1205, 12.05, 0.1205, 0.001205

To round a number to:

1 s.f. look at the 2nd s.f.
2 s.f. look at the 3rd s.f.
3 s.f. look at the 4th s.f.

If the digit that you look at is less than 5, ignore it and round 
down. If it is 5 or more, round up by adding one to the digit in 
front.

You should round the final answer to reflect the precision of 
the original data. In general, the last significant figure quoted in 
your final result should be of the same order of magnitude as the 
error. It is important to remember that you should only round 
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the results of calculations as the last step in the chain of calcula-
tions. This is essential because otherwise you may incur round‐
off errors in the intermediate steps of the calculation.

1.3.6 Scientific notation (standard form)

Sometimes, it is necessary to use numbers that are very large or 
very small. For example, the amount of carbon stored in the ter-
restrial biosphere is enormous (approximately 600 000 000 000 
000 000 g), whilst the size of a typical cell is tiny (about 
0.00001 m). It is inconvenient to have to write down all these 
zeros. Scientific notation (or standard form) provides a concise 
way to report such numbers. The general definition of a number 
in scientific notation is: a × 10n, where a is a real number between 
1 and 10, and n is an integer. So the numbers above convert to:

 

17

5

600 000 000 000 000 000 grams 6.0 10 g 600 Pg

0.000 01m 1.0 10 m 10 m  

The shorthand prefixes for various powers of 10 are given in 
Table 1.1.

Remember that the negative exponent refers to the reciprocal 
of the quantity concerned: 10−3 = 1/103. This fact is sometimes 
used when writing down common units: so metres per second, 
or m/s, becomes m s−1.

To convert a number into standard form, it is necessary first to 
write down the part of the number between 1 and 10 and then 
work out the power. For example, the number of people living in 
the UK is approximately 62 million people. To convert this to 
scientific notation, we have:

 

62 62 000 000

6 2 10 000 000

6 2 107

million

.

.  

So, 62 million is 6.2 × 107. Note that computer programs and 
calculators often use a different way to display numbers in scien-
tific notation, so in Microsoft Excel, for example, you might see 
6.2 × 107 written as 6.2E + 07. Here the ‘E’ stands for ‘…times ten 
to the power of…’.
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1.3.7 Calculations in scientific notation

Calculations using scientific notation are sometimes easier 
than with ordinary numbers, especially if the quantities are par-
ticularly large or small. The basic procedure is to group the 
numbers and the powers of 10, then work out the multiplica-
tions or divisions using the laws of indices (i.e. multiplication 
requires the addition of indices; division requires their 
subtraction).

Table 1.1 Prefixes used to indicate powers of 10.

Number
Scientific 
notation Prefix Symbol

1 000 000 000 000 000 000 1018 Exa‐ E
1 000 000 000 000 000 1015 Peta‐ P

1 000 000 000 000 1012 Tera‐ T
1 000 000 000 109 Giga‐ G

1 000 000 106 Mega‐ M
1 000 103 Kilo‐ k

1 1 — —
1

1000
10−3 Milli‐ m

1
1000000

10−6 Micro‐ μ

1
1000000000

10−9 Nano‐ n

1
1000000000000

10−12 Pico‐ p

1
1000000000000000

10−15 Femto‐ f

1
1000000000000000000

10−18 Atto‐ a
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Worked Example 1.1 The population of England and Wales 
in the 2011 census was estimated to be 56 075 900 people. The 
total land area of England and Wales is 245 000 km2. Express 
each of these figures in standard form retaining all their preci-
sion and then find the population density in England and Wales 
to 3 significant figures.

Solution First, to convert the figures into standard form 
( scientific notation) and round them to 3 s.f., the population 
becomes 56.0759 × 106 (or 56.0759 million) and the total land 
area is 2.45 × 105 km2. To divide the population by the land area 
we write that:

Population density 56 0759 10 2 45 10

56 0759 2 45

6 5. .

. . 110 10

22 8881 10
229 3

6 5

1.
, .people per square kilometre to s f.

Exercises

1 The population of Northern Ireland in the 2011 census was 
1 810 900 and the land area of Northern Ireland is 13 840 km2. 
Express these numbers in scientific notation to 3 significant 
figures and calculate the population density in Northern 
Ireland.

2 Define the terms accuracy and precision and explain how 
you would quantify them in a geographical study of your 
choice.

3 The average annual rainfall in the catchment of the Thames 
to Kingston is 720 mm per year. The area of the Thames 
catchment draining to this point is 9948 km2. The average dis-
charge of the Thames at Kingston is 78 m3/s. What fraction of 
the rain falling in the Thames catchment travels to the gaug-
ing station at Kingston?
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2

2.1  Sampling methods

2.1.1 Research design

In statistics the entire group of entities that is of interest is called 
the population, and it is desirable to be able to make statements 
about the population from a smaller fraction of the population, 
which is called a sample. Examples of geographical research in 
which sampling techniques are typically used include popula-
tion census surveys, assessments of biodiversity from field sam-
ples, monitoring of atmospheric and oceanic processes using 
sparsely deployed instruments, and surveys and questionnaires 
designed to support interviews.

It is clear that in any study the results will be applicable only to 
the measurements made in that study, although it might be 

Collecting and summarizing data

STUDY OBJECTIVES

 ● Appreciate the range of possible sampling procedures and 
the importance of randomization and replication in research 
design.

 ● Recognize a range of different graphical methods for presenting 
data (e.g. histograms, time series, scatter plots) and understand 
the circumstances in which each can be used.

 ● Understand the range of measures of central tendency: mean, 
median and mode.

 ● Appreciate some measures of dispersion: variance, standard 
deviation and inter‐quartile range.


