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Preface

The construction industry worldwide has been a late bloomer to adopting digital
technology, where construction projects are predominantly managed with a heavy
reliance on the knowledge and experience of construction professionals. Artifi-
cial intelligence (AI) works by combining large amounts of data with fast, itera-
tive processing and intelligent algorithms (e.g., neural networks, process mining,
and deep learning), allowing the computer to learn automatically from patterns or
features in the data. It provides a wide range of solutions to address many chal-
lenging construction problems, such as tunnel-induced damages, risk estimates, and
defect detection. A tremendous transformation has taken place in the past years with
the emerging applications of AI in the construction industry. This enables industrial
participants to operate projects more efficiently and safely, not only increasing the
automation and productivity in construction but also enhancing the competitiveness
globally.

This book highlights the latest technologies and applications of AI in the domain
of construction engineering and management (CEM). Various AI techniques have
been developed to make machines mimic human cognitive processes in terms of
learning, reasoning, and self-correcting. Relying on the important AI approaches,
we put emphasis on nine hot research topics of AI in CEM, including “Knowledge
Representation and Discovery” (second chapter), “Fuzzy Modeling and Reasoning”
(third chapter), “Time Series Prediction” (fourth chapter), “Information Fusion”
(fifth chapter), “Dynamic Bayesian Networks” (sixth chapter), “Process Mining”
(seventh chapter), “Agent-Based Simulation” (eighth chapter), “Expert Systems”
(ninth chapter), and “Computer Vision” (tenth chapter). Different AI approaches
have been proposed to achieve various kinds of functions which are beneficial to
CEM in terms of automation, safety, reliability, and digitalization. These applica-
tions serve as evidence to verify that AI techniques have created tremendous value
in revolutionizing the construction industry, leading to a more reliable, automated,
self-modifying, time-saving, and cost-effective process of CEM.

This book expects to (1) reveal complexities in conducting CEM activities and
unlock the potential of incorporating AI in supporting and improving CEM; (2)
display procedures and algorithms in a detailed manner on how to use AI to discover
knowledge and address CEM challenges; (3) present evidence-based practices to
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highlight the benefits of AI techniques in providing intelligent solutions by learning
from multiple data resources in an automatic, efficient, and reliable manner; and (4)
improve the understanding of the current development and prominent future works
in AI-enabled CEM and promote the more widespread leverage of AI in CEM.

This book is an interesting reference for scientists, engineers, and graduate
students in various disciplines, including but not limited to civil engineering, artificial
intelligence, system science, mathematics, etc.

Singapore
Singapore
College Park, USA
Wuhan, China
February 2021

Limao Zhang
Yue Pan

Mirosław J. Skibniewski
Xianguo Wu
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Introduction to Artificial Intelligence

1 What Is AI

The term Artificial Intelligence (AI) is a branch of computer science to make
computers perform human-like tasks, and thus, computers can appropriately sense
and learn inputs for perception, knowledge representation, reasoning, problem-
solving, and planning. Various types of innovative AI technologies are designed
to imitate the cognitive abilities of human beings, which can, therefore, deal with
more complicated and ill-defined problems in an intentional, intelligent, and adap-
tive manner. Typically, AI can be regarded as a conjunction of machine learning
and data analytics. That is to say, machine learning algorithms, a subset of AI, learn
sufficiently robust data from multiple sources and then act on the insights of data to
make smart decisions adaptively [16]. The investment in AI is experiencing rapid
growth, in which machine learning particularly accounts for a major proportion.
According to a report from Accenture company, AI is already altering every walk of
life, which heralds dramatic potential to boost labor efficiency by 40% and double
annual economic growth rates in 2035 [11]. For the purpose of making AI live up
to expectations, more and more companies are actively investing in various AI tech-
nologies, which put AI into a sharper focus and extend its application scope [2]. As
AI talent continues to mature and be applied, it is believed that the topic of AI can
become the next digital frontier to drive the increase of automation and intelligence.

1.1 AI Development

AI is not a completely new concept. Its development has gone through three major
stages [3]. The early golden age of AI research is during 1956–1974. The name
“artificial intelligence” made its advent at the 1956 Dartmouth Conference. Since
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2 Introduction to Artificial Intelligence

then, researchers have emphasized adopting algorithms to solve mathematical prob-
lems and geometrical theorems. However, the very limited data volume and computer
memory at that time caused difficulties to create intelligence inmachines. The second
wave occurred from 1980 to 1990 along with the emergence of expert systems. It
is known that expert systems can logically mimic human behavior and knowledge
to realize decision making at a high degree of expertise, which is the predecessor of
current machine learning and deep learning. However, building an expert system is
not a straightforward task, which requires a lot of time and cost to prepare a reli-
able knowledge base by extracting sufficient rules from human experts. Besides,
this system is only suitable for narrow problems and its results are even mistakable.
Since the late 1990s, AI is booming again with the help of exponential growth of
data, computing power and storage, and more advanced algorithms.

The currentAI hasmoved to a remarkable level, leading to dramatic breakthroughs
in categories likemachine learning, deep learning, computer vision, natural language
processing, virtual assistants, robotic process automation, and others. As a result, AI
can power many aspects of society by offering new opportunities for intelligent
agents, automated data analytics, and improved decision making in diverse domains,
including business, robotics, transportation, healthcare, education, manufacturing,
and others. This book mainly presents and discusses how AI is transforming the
construction industry for delivering smarter construction management.

1.2 AI Techniques

Many AI techniques have been developed to make machines mimic human cogni-
tive processes in terms of learning, reasoning, and self-correcting. In other words,
with the help of AI techniques, machines can perform tasks under a certain degree
of intelligence. There are many ways to classify various developed AI techniques.
Herein, we category them into five major groups, as illustrated in Fig. 1.

Fig. 1 An overview of common AI techniques
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Expert systems: An expert system is a straightforward and understandable method
towards intelligent decision making, which contains possible expert knowledge and
reasoning to address complicated problems. The earliest expert system was devel-
oped in 1965, which achieved the first success of AI. Three essential components are
included in an expert system, namely the knowledge base, user interface, and infer-
ence engine. More specifically, the knowledge base is a database of information,
notions, and rules prepared by different experts in a specific domain. The IF-THEN-
ELSE rule is widely used to organize the collected knowledge. More high-quality
knowledge will improve the system’s performance. The user interface offers the
interaction between non-expert users and the expert system to present questions and
input data to start the decision-making process in the inference engine. Finally, the
inference engine acts as a brain of the system to efficiently deduct reliable solutions
based on factual and heuristic knowledge stored in the base.

Fuzzy logic: As a proposal of fuzzy set theory, fuzzy logic was put forward in
the early 1960s to handle uncertainty and ambiguity in human language. It offers
flexible decision making as similar to human reasoning. In other words, it can deal
with input data in vagueness, uncertainty, impreciseness, and incompleteness through
converting them into computer understandable forms, and thenmake responses based
on a set of fuzzy rules. The fuzzy logic architecture contains the following parts. The
fuzzifier transforms the crisp number into fuzzy sets using membership functions.
Then, the fuzzy inference is responsible for the decision process, which conducts the
computational procedure to identify the match between the fuzzy inputs and rules.
In particular, rules stem from the rule-based expert knowledge, which can be flexibly
added and removed from the system. They help to determine the relationship between
fuzzy inputs and outputs. Lastly, the defuzzifier converts the fuzzy output back to
a crisp number. Since the mathematical concept of fuzzy logic is relatively simple,
this method is easy to implement and understand. Moreover, fuzzy logic has been
commonly incorporated into the expert system to design the fuzzy expert system [5].

Statisticalmodel: Statisticalmodels employmathematical equations to inference the
relationship between variables, which often implement statistical approaches under
certain assumptions to make an inference, like hypothesis testing, confidence inter-
vals, and others. For instance, the Bayesian network, the hidden Markov model, and
the autoregressive integratedmoving average (ARIMA)model are three typical statis-
tical models. To be specific, the Bayesian network, also known as belief networks,
is a kind of probabilistic graphical model to capture casual relations in variables.
Its focal points lie in the probability representation to measure the uncertainty. In
addition, a method of statistical inference named Bayesian inference can be realized
in the forward and backward directions based on the Bayes’ theorem, in order to
update the network when more evidence is fed in. The hidden Markov model is a
statistical Markov model based on the Markov chain, which can consider both the
observed and hidden events to calculate the probability distribution over a sequence.
The ARIMA model is specialized in time series forecasting. It explains the lagged
observation of time series to predict the future value, which is expressed by the form
of regression.
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Machine learning: Machine learning is a great step of AI to enable machines to
have powerful learning abilities from data. Various algorithms are programmed to
access data and learn by themselves from these large volumes of available data with
no human involvement. That is to say, machine learning aims to teach machines how
to discover patterns hidden in large data and realize data-driven predictions on future
tasks. Supervise and unsupervised learning are the two main categories belonging
to machine learning. The significant difference between these two methods is that
supervised learning requires labeled data to create future predictions, while unsu-
pervised learning tries to reveal hidden structures from unlabeled data. As machine
learning evolves, deep learning and reinforcement learning have been developed at
a higher level to be a new trend. Deep learning is inspired by the neural networks of
human brains, which ismade up ofmultiple processing layers to process information,
represent features, and gain knowledge. It is skilled in detecting intricate structures
in high-dimensional data, which has dramatically improved the state-of-art models
in natural language processing, computer vision, and others. As for reinforcement
learning, it interacts with the environment to generate trial and error, resulting in suit-
able actions and decisions sequentially to maximize reward. In other words, it faces
a game-like situation, where the next input depends on the output of the previous
input.

Process mining: Process mining is still a young discipline to bridge the gap between
process management and data science, which incorporates the process aspects into
machine learning and data mining. It mainly explores event log data with the intent
of monitoring, diagnosing, analyzing, and improving the actual process. In general,
three basic tasks are carried out by process mining. It begins with the automated
discovery of process models from event logs with the help of proper algorithms.
Afterward, conformance checking pairs the processmodelwith the event log to check
compliance, detect deviations, and predict bottlenecks, in order to provide guidance
to optimize the complicated process. Besides, model enhancement can implement
more data analysis methods to provide insights into other aspects of the operation
rather than the process perspective. In short, process mining takes full advantage
of event logs to create full transparency on processes, which can inform strategic
decisions to raise the process efficiency and reliability.

2 What Is CEM

To ensure the resiliency and success of the construction industry, construction engi-
neering andmanagement (CEM) highlights the significant contribution of theoretical
and technical knowledge in addressing key aspects of the infrastructure construction
project. CEM can be conceived as an executive process of the physical work on
the construction site [10]. Architectures, engineers, constructors, contractors, and
others work together to provide professional services in constructing buildings for
residential, commercial, or industrial applications and solving on-site problems.
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2.1 Significance of CEM

Since the assembly process is made up of several order events, there are complicated
patterns of individual time requirements along with restrictive sequential and coop-
erative relationships among the project’s many segments embedding in such process
[13]. The common interest of CEM chiefly arises from the following two sides.

For one thing, construction, as a large sector of the economy, plays a prominent
role in driving economic growth and long-term national development [4]. According
to a survey fromMcKinsey Global Institute in 2017, the global construction industry
makes up around 13%of theworld’s GrossDomestic Product (GDP) and this number
is projected to rise to 15% in 2020. Meanwhile, construction projects create a broad
range of job opportunities for 7% of the world’s working population. Despite its
economic importance, an obvious issue is poor labor productivity during the construc-
tion procedure, negatively leading to the waste of manpower, material resources,
and financial resources. Since construction activities contribute a lot to our society
economically, it makes the most sense to take proper construction management to
improve product performance. If the construction productivity is enhanced by as
much as 50% to 60% or higher, it is estimated to bring an additional $1.6 trillion into
the industry’s value each year and further boost the global GDP.

For another, construction with inherent complexity is one of the most dangerous
industries worldwide, which is greatly susceptible to a variety of unpredictable
factors, such as participants in different roles, the changeable environment in large
uncertainty, and others [12, 15]. It is likely for workers to be exposed to a great threat
to health, and thus, they may suffer from mechanical injuries, degenerative disor-
ders, chemical hazards, psychosocial stress, and others [7]. Therefore, the construc-
tion industry tends to cause a small scale of fatal accidents with higher frequency
than other domains, which is even responsible for 30–40% of fatalities worldwide
[21]. In the Chinese construction market, the number of construction accidents and
fatalities remains stubbornly high [17, 18]. Numerous researches have revealed that
safety issues are tied upwithmanagement, emphasizing the necessity of construction
management for safety control and accident prevention [8]. Through identifying,
evaluating, and reacting to the potential risk in dynamic construction work at an
early stage, it is expected to eliminate safety hazards and then achieve a sustainable
reduction in fatalities in the construction industry.

2.2 Activities in CEM

CEM is consisting of a series of physical activities for constructing infrastructures,
residential and commercial buildings, which can be defined as a completed process
including designing, scheduling, budgeting, building itself. All sorts of construction
projects require appropriate management over the lifetime of a project, in order to
guide the project towards success under the control of time, cost, scope, quality,
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and collaboration. Project managers are responsible for project management, who
coordinate closely with other participants to draw up plans, schema, timelines, costs,
personnel arrangements, and others. They monitor the entire progress of work and
concentrate on all aspects of the project (i.e., labor, capital, time, equipment,material,
risk), in order to give back corresponding instructions to lower the possibility of
delays, budget overruns, high risks, and great conflicts. In short, the main activities
in CEM can be categorized into three major phases of construction as follows.

(1) Planning

Prior to the start of physical construction, the conception of the project is proposed
by clients. Then, its feasibility is analyzed comprehensively to clear the project
objectives. For meeting such a specific goal, detailed plans for the project develop-
ment are created in terms of resources, schedules, budgets, and dependencies, which
can potentially help in reducing cost, duration, and irrational process in the prac-
tical project. For instance, the schematic design can be drawn to fully describe the
building systems. Scheduling can chronologically distribute multiple activities, and
then assign dates, workers, and resources to a certain activity. It aims to fit the plan
to a reasonable time scale and workflow. Cost estimation is the process of predicting
the needed funds and resources for conducting a project within a defined scope. That
is to say, the planning phase incorporates activities mainly for forming project plans,
drawing design, and allocating labors, sources, and time. These activities assist in
rationally streamlining the construction process. They can serve as a reference to
monitor the actual process and guide it to be finished punctually within the estimated
budget.

(2) Construction

This is a phase of executing the physical construction, and thus, the planning made
at the previous phase is expected to pay off. For construction workers, they are
the manual labor to perform the on-site construction, who conduct a range of
basic tasks in a general sequence, including layout marking, excavation, foundation
work, column casting, wall construction, lintel, roofing, plastering, fixing of doors,
windows, electrical and plumbing works, tiles laying, painting, and others. Some
skilled workers are also needed to operate sophisticated machine tools. Regarding
project managers, they take charge of the on-site monitoring and assessment. That is
to say, managers oversee the actual construction process in terms of scope, budget,
and schedule, and then compare the observations to the formed planning. If an incon-
sistency is detected, the corresponding action can be enacted to bring the process
back into conformance or adjust plans to cope with changes. Moreover, managers
are also expected to identify the exposure of risk and the associated impact on the
performance, schedule, or budget of projects. Furthermore, both the qualitative and
quantitative risk analysis canbe carried out for quality control,which provides a better
understanding of the risk factors and their effects. As a result, timely responses can
be created to proactively address the potential issues, which can eventually minimize
the risk before it occurs.
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(3) Operation and Maintenance (O&M)

When construction is completed, the project will enter a new phase named O&M.
It is known that O&M takes most of the time within the lifecycle, leading to a large
amount of cost accounting for around 60% of the total project budget [6]. The goal
of O&M is to operate and maintain a constructed facility to meet the anticipated
functions over its lifecycle, which is crucial to ensure the safety and comfort of
users. Operation means the provision of day-to-day services to operate and control
the facility in an efficient, economical, and reliable manner. Maintenance aims to
minimize the possibility of system failure, which can be conducted from two aspects.
To bemore specific, preventivemaintenance creates plans and schedules to adjust and
guide the ongoing operation on a regular basis. It is useful in detecting the potential
risks, and thus, corresponding actions can be timely taken prior to unexpected events.
In contrast, corrective maintenance is implemented after problems have occurred. It
strives to repair the problematic parts to get them back on the normal status as quickly
as possible. Moreover, recent attention in O&M has focused on sustainability. The
execution of O&M must obey some energy regulations and standards to make the
facility run long-termly, safely, and energy-savingly. As a result, proper O&M is
proven to benefit the facility management a lot, such as to shorten response time to
issues, reduce unnecessary repairs, drive down costs, maximize the asset value, and
mitigate potential risk, which can eventually prolong the lifespan of the facility and
improve the users’ satisfaction.

2.3 Characteristics of CEM

Since a construction project is unique, temporary, and progressive in nature for
producing the desired objectives, CEM can be considered as a process to handle
a series of interrelated tasks over a fixed period within certain limitations. The key
characteristics of CEM are outlined from the following five points.

(1) Uniqueness

Due to the differences in client requirements, project size, conditions, influences, and
constraints, the construction projects differ from one another to enhance the difficulty
of project management. That is to say, we cannot simply replicate the scheduling,
design scheme, budget, and logistics of an existing project to a new one. Instead, it
only allows us to learn from previous projects with similar features to make decisions
on the current project. It should be noted that the construction project is very technical
and characteristically unique, and thus, a highly customizable solution is deemed as a
necessity to ensure the reliability and efficiency of the project. In addition, individuals
with differing roles, including designers, engineers, suppliers, contractors, managers,
and other service providers are temporarily organized in a project. It means that each
project is carried out by a unique team, and each team has its characteristics regarding
participants’ skills, knowledge, experience, communication, and collaboration.
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(2) Labor-intensive

Typically, a huge amount ofmanual labor should be required in a construction project,
who can offer great quantities of physical effort in charge of the project imple-
mentation, timely completion, and quality assurance. In general, the proportion of
labor costs can take up 30–60% of the total project budget, indicating that inten-
sive labor is a critical component in construction. These flexible workforces can be
accommodated to the changeable projects dynamically based on their initiative and
problem-solving ability. It has been found that 40 million workers were employed in
the construction sector in the year 2007, among whom 27% was skilled labor, 55%
represented the unskilled labor, and the rest denoted the support staff [7]. Currently,
there is fast growth in the demand for skilled and semi-skilled workers with more
skills and expertise, since they play an important role in improving the performance
and productivity of construction projects. In other words, this kind of labor force can
provide useful information and techniques to drive the project forward more easily,
efficiently, and safely.

(3) Dynamics

Although a project has been clearly defined from the beginning to the end, the actual
execution of the project is unable to always stick to the plan. That is to say, inevitable
changes or adjustments occur dynamically throughout the whole lifecycle of the
project, which are caused by various reasons. For instance, the project alternatives
need to be reformulated due to some human factors, including clients’ dissatisfaction,
designers’ and engineers’ mistakes, financial problems from contractors, and others.
Moreover, unforeseen conditions resulting from the undesired delays, bad weather,
complex geologic environment, additional demands of labor, equipment, materials,
and others are themajor causes of changes. Besides, when additions or reductions are
applied to the project scope, the scheduling and budget should be updated accordingly
to adapt to the changing circumstances. It is known that managing changes properly
is the guarantee of success in a construction project, and thus, project managers need
to flexibly identify changes, cope with dynamics, and perform effective controls.

(4) Complexity

The complexity of construction projects can arise from two aspects, namely the task
and participants. For one thing, construction tasks are heavy and diverse, which can
possibly meet conflicting scheduling or performance problems. Therefore, it is not
a straightforward job to formulate proper scheduling to align interconnected tasks,
resources, and teams. To make the operation process run smoothly, a variety of
factors, such as safety, security, environment, weather, workers, and others, should
be taken into full consideration. The strict time limit can even negatively boost the
pressure in executing the planned tasks. When some unexpected things happen in the
construction process, there is no enough time to consider solutions [20]. Additionally,
although the advanced technologies and new materials are adopted for more sustain-
able development, they can possibly contribute to a higher degree of complexity. For
another, groups of workers in different roles and varying proficiencies are commonly
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involved, who can work together, communicate, and share information with each
other. This kind ofmulti-disciplinary collaborationwill result in intricate interactions
in individuals and tasks. Besides, they tend to have conflicting business interests, and
thus, negotiations are needed to pursue the common goal.

(5) Uncertainty

Uncertainties are unknown before they actually occur, which can be regarded as
threats to unfortunately raise risk in project failure. Notably, a high level of uncer-
tainty is inherent in complicated construction projects, which is closely related to
various factors [19]. For instance, before the site construction, scheduling and cost
need to be estimated reasonably under great uncertainty. The improper estimation
will impede the progress of the project. As for the architecture design, some ques-
tions remain to be answered, such as whether the design can pass audits, whether
clients are satisfied with the design, and others. Moreover, a great deal of unavoid-
able uncertainty exists in the construction phase, such as the ground conditions,
soil-structure interaction, weather conditions, building material properties, design
changes, the reliability of suppliers, and others. If these uncertainties can be detected
and measured at an early stage, the project management can be optimized to act as
a reliable tool in mitigating potential risk in the construction project.

3 How AI Benefits CEM

Although AI stands out as transformational technology to potentially bring about
unprecedented changes in our work and life, its applications in CEM with the nature
of complexity, uncertainty, and dynamics are still in its infancy. In the immediate
future, the construction industry is projected to increasemore focus and investment in
AI to catch up with the fast pace of automation and digitalization [9].With the advent
of the building information modeling (BIM) and wireless sensor network (WSN),
huge amounts of data can be collected from the worksite every day along with some
features of “big data”, which yield great values to CEM.AI techniques can, therefore,
be deployed in a range of ways to improve the performance of construction projects.
In other words, AI has proven to take advantage of such rich data sources to train
suitable models and then deliver on its promises, such as prediction, optimization,
decision making, and others. The substantial benefits of AI in CEM can be outlined
as follows.

• Automation. AI drives the process of project management more technically
automatable and objective. Conventional construction management is heavily
based on experts’ knowledge, experience, and subjective judgment, which is
more prone to bias and confounding. To overcome these distinct disadvantages,
AI-based solutions are taken into account to pursue smart control. For instance,
machine learning algorithms can be employed to intelligently handle the mass
of accumulated data and discover hidden knowledge. The insights gained from



10 Introduction to Artificial Intelligence

advanced analytics help managers to better understand the construction project
and rapidly spot the project concerns in a data-driven manner. These advanced
algorithms have also been integrated into project management software, aiming
to automate the complete procedure for data analysis and decision making. As for
on-site construction monitoring, drones and sensors are utilized to automatically
record data and take images/videos for scanning, monitoring, and mapping the
construction status, environment, and progress, which offer a more comprehen-
sive picture of the site through various project stages without human interaction.
That is to say, evidence obtained by such techniques can replace the traditional
manual observation which tends to be time-consuming, tedious, and error-prone.

• Risk Mitigation. AI can monitor, recognize, evaluate, and predict potential risks
in terms of safety, quality, efficiency, and cost across teams and work areas. In
the risk and uncertainty analysis, AI tools based on probabilistic models, fuzzy
theory, machine learning, neural networks, and others equip computers with the
capability to efficiently learn data collected from the construction site. Thus,
computers can exploremuchmore risk-related data than humans could ever review
from both the qualitative and quantitative perspectives. In consequence, these
identified risks provide assistive and predictive insights on critical issues, and
thus, project managers can quickly prioritize possible risks and concentrate on
them to take proactive actions instead of reactions for risk mitigation, such as to
streamline operations on the job site, adjust staff arrangement, and keep projects
on time and budget. In other words, AI presents valuable opportunities to realize
early troubleshooting to prevent undesirable failures and accidents in the complex
project management [1]. Additionally, robots can take charge of unsafe activities,
in order to minimize the number of humans working in dangerous environments.

• High Efficiency. AI allows for optimizing the construction process, in order to
make the project run smoothly and finish on time and reliability. For instance,
process mining is a new AI-enabled approach to generate valuable insights into
the complicated construction, such as to track key workflows, predict deviations,
detect invisible bottlenecks, extract collaboration patterns, and others. The discov-
ered knowledge is critical to project success, which can guide the optimization
of the construction execution process. It is expected to avoid unnecessary steps,
reworks and conflicts, potential delays, and poor cooperation. In turn, tactic deci-
sions can be made for trouble-shooting at an early stage, driving the improvement
of operational efficiency. It is also effective in preventing costly correction at the
remaining stage. Moreover, AI-powered robots and autonomous systems have
been directly adopted on construction site. Since they can potentially replace
human workers to take over the repetitive and routine construction tasks, such as
bricklaying, welding, tiling, and others, they can be an ideal solution to address
labor shortages. Besides, they are able to work continuously without taking a
break at almost the same rate and quality, indicating that the proper use of smart
machinery will ensure efficiency, productivity, and even profitability.

• Digitalization. It should be noted that BIM provides a pool of information
concerning planning, construction, operation, and management, which has gone
far more than the 3Dmodeling to support various digital solutions. In other words,
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BIM has been considered as a digital backbone of future construction, which can
be reasonably integrated into AI to facilitate the digitalization of construction
projects. For BIM, it can provide a platform for not only collecting large data
about all aspects of the project, but also sharing, exchanging, and analyzing data
in real-time to realize in-time communication and collaboration among various
participants. Thus, all members have immediate access to the latest documents
and information, who can cooperatively examine the shared rich data sources. For
the AI techniques, they can deeply explore these massive amounts of data from
BIM to automate and improve the construction process. Based on the discovered
knowledge, strategic decisions can be informed for streamlining the complicated
workflow, shortening operation time, cutting costs, reducing risk, optimizing staff
arrangement, and others. In addition, the integration of BIM and AI can move
the paper-based work towards online management. For one thing, it can deliver
the most efficient and effective information to keep continuous updating of the
ongoing project. For another, it can take advantage of BIM data to make real-
time analysis, and thus, immediate reactions can be performed without delays to
prevent unexpected events.

• Computer Vision. Computer vision techniques have gradually taken the place
of the laborious and unreliable visual inspection in civil infrastructure condi-
tion assessment. Current advances in computer vision techniques lie in the deep
learning methods based on neural networks to automatically process, analyze,
and understand data in images or video through end-to-end learning, which
can conduct various tasks, like image classification, object detection, semantic
segmentation, and others. Towards the goal of intelligent management in the
construction project, computer vision plays an important role in two perspec-
tives, which are inspection and monitoring applications [14]. To be more specific,
inspection applications perform automated damage detection, structural compo-
nent recognition, unsafe behavior, and condition identification. Monitoring appli-
cations are non-contact methods to capture a quantitative understanding of the
infrastructure status, such as to estimate strain, displacement, and cracks’ length
and width. To sum up, the vision-based methods in CEM are comparatively cost-
effective, simple, efficient, and accurate, which are useful in robustly translating
image data into actional information for the purpose of structural health evaluation
and construction safety assurance.

4 Organization of the Book

This chapter briefly introduces the concept, development, and techniques of AI and
reviews activities, characteristics, and significance of CEM. The substantial benefits
of AI in CEM are summarized.

Chapter “Knowledge Representation and Discovery” describes the knowledge
representation and discovery and the relevant application in CEM. Many types
of knowledge representation and discovery methods are reviewed. One promising
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method, Structural EquationModel (SEM), is chosen to discover casual relationships
underlying safety leadership in construction. Amodel consisting of 5 latent variables
and 26 observed variables is established to learn from data and reveal relationships
between different stakeholders’ leaderships and construction safety performance.
The hypotheses are testified, and the overall model fit is assessed. Impacts of path
coefficients, stakeholder participation, and construction dynamics are investigated.

Chapter “Fuzzy Modeling and Reasoning” describes fuzzy modeling and
reasoning and its application in CEM. Many types of fuzzy modeling and reasoning
methods are reviewed. One outstanding method, Fuzzy Cognitive Maps (FCM), is
selected to assess Tunnel Boring Machine (TBM) performance and perform Root
Cause Analysis (RCA) in case of unsatisfactory performance. FCM is able to capture
and utilize construction experience and knowledge fromdomain experts, and a cause-
effectmodel consisting of nine concepts is established for simulating theTBMperfor-
mance. A tunnel case in the Wuhan metro system in China is used to demonstrate
the applicability of the developed approach. It is verified to be capable of modeling
the dynamics of system behaviors over time and performing many kinds of what-if
scenario analysis, including predictive, diagnostic, and hybrid RCA. It turns out to be
a more competitive solution that deals with uncertainty, dynamics, and interactions
in the approximate reasoning process.

Chapter “Time Series Prediction” describes the time series analysis technique and
its application in CEM. Several common time series analysis methods are reviewed.
A novel hybrid approach that integrates Wavelet Packet Transformation (WPT) and
Least Squares Support Vector Machines (LSSVM) is presented to enhance the accu-
racy and reliability in time series analysis and prediction. It is used to estimate the
magnitude of the tunnel-induced ground settlement over time. The original time-
domain signals (i.e., the measured settlements over a time period) are decomposed
into a series of sequences usingWPT, while LSSVMmodels are then built to predict
the target sequenceswithin high- and low-frequency regions.A realistic tunnel case is
utilized to demonstrate the feasibility and applicability of the proposedWPT-LSSVM
approach. Results indicate the proposed approach can achieve a higher accuracy and
reliability than the traditional time series analysis approaches.

Chapter “Information Fusion” describes the information fusion technique and its
application in CEM. Several common information fusion methods are reviewed. A
novel multi-classifier information fusion approach that integrates the probabilistic
support vector machine (SVM) and the improved Dempster-Shafer (D-S) evidence
theory is proposed. It is implemented to fuse classification results provided by the
base classifiers at the decision level for an overall risk evaluation. The proposed
approach is utilized to perform structural health assessment in operational tunnels.
Results indicate that the proposed approach exhibits more outstanding classifica-
tion performance and can efficiently fuse multi-sensory information with ubiquitous
uncertainties, conflicts, and biases.

Chapter “Dynamic Bayesian Networks” describes network modeling and
analytics in CEMusingAI. An excellentmethod, dynamic Bayesian network (DBN),
is highlighted, as DBN is able to model construction dynamics and update the
system status given new observations. Differences between the Bayesian network
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(BN) and DBN are reviewed. A DBN model consisting of various geological,
design, and mechanical variables is developed to reveal dynamics in tunnel-induced
damages over time. Results testify that the developed model is capable of performing
feed-forward, concurrent, and back-forward control respectively on a quantitative
basis.

Chapter “Process Mining” describes process mining and its application in CEM.
Process mining is regarded as an emerging data mining method, which leverages
various algorithms and mathematical models for the visualization and investiga-
tion of event logs and assists in discovering, evaluating, and improving the existing
process. Process mining is applied to deeply mining large volumes of event logs in
BIM project execution, aiming to improve the understanding and efficiency of the
operation process in the BIM-enabled project. A framework of process mining on
BIM event logs with step-by-step procedures is presented, where in-depth knowl-
edgediscovery is conducted in termsof the process discovery, conformance checking,
social network analysis, and decision tree classification.

Chapter “Agent-Based Simulation” describes the agent-based simulation for
improved decision support in CEM. Agent-based simulation provides a near-real
solution to performvariouswhat-if experimental scenario analysis, given someexper-
iments are impossible or hard to be conducted in reality, such as pedestrian evacu-
ation under an emergency. Several common methods in the agent-based simulation
are reviewed in this chapter. The promising social force model which can reflect the
anisotropic characteristics and dynamic features of pedestrian interaction is selected
to simulate and optimize pedestrian evacuation behaviors in a subway station. Several
route planning strategies are modeled in the simulation environment and validated
by actual observations. The developed approach can provide valuable theoretic and
practical insights into a deep understanding of route planning strategies during the
pedestrian evacuation, and thus, the improvement of safety and economic objectives
can further be achieved in the design or re-design of metro evacuation systems.

Chapter “Expert Systems” describes the expert system technique and its applica-
tion in CEM. The expert system provides a powerful tool for knowledge integration
and autonomous inference mechanism, which can solve complex problems to signif-
icantly reduce dependence on domain experts. Considered as a digital representation
of physical and functional characteristics of a facility, BIM has the capability of
generating, storing, exchanging, and sharing the building information in an interop-
erable and reusable way, providing an ideal solution for risk management. A novel
approach integrating BIM and expert systems is proposed to perceive the safety
risk at an early stage of the construction. Both case-based reasoning and rule-based
reasoning techniques are combined in the inference model to improve the flexibility
and comprehensiveness of the system reasoning capacity.

Chapter “ComputerVision” describes computer vision and its application inCEM.
Deep learning techniques are driving advances in computer vision, and different types
of deep learning techniques are reviewed in this chapter. A novel computer vision
approach named a spatial-channel hierarchical network (SCHNet) is proposed to
support the automated and reliable concrete crack segmentation at the pixel level.
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It not only considers the semantic interdependencies in spatial and channel dimen-
sions, but also adaptively integrates local features into their global dependencies.
Experimental results indicate that SCHNet can outperform state-of-the-art models.
It is robust to noises with a better generalization ability under various conditions,
including shadows, rough surfaces, and holes.

Chapter “Conclusions and Future Directions” summarizes the conclusions and
points out future directions. The AI’s functions of modeling and pattern detec-
tion, prediction, and optimization are highlighted, which create tremendous value
in revolutionizing the construction industry, leading to a more reliable, automated,
self-modifying, time-saving, and cost-effective process of CEM. Several emerging
applications of AI in CEM are put forward, which pave a more affordable and effec-
tive way to relieve the burden on manual labor and facilitate smart construction in
CEM.
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Knowledge Representation
and Discovery

1 Introduction

Construction is one of themost dangerous industriesworldwide, leading to a common
interest in improving construction safety performance due to humanitarian reasons
and rising costs ofworker compensation.Numerous researchers suggested the contin-
uous unsafe conditions were mainly because of a misalignment of management
commitment and stakeholders’ actions, that is, lack of safety leadership [15]. Effec-
tive leadership plays an important role in ensuring the success of temporary construc-
tion onsite organizations that are facing a high degree of uncertainty. Strong safety
leadership should be the key to enhancing construction safety performance.

Safety leadership has emerged within the Occupational Health and Safety (OHS)
literature as a key construct in construction safety management [31]. Many industrial
participants/stakeholders are involved in safety issues in construction, and effective
collaboration of those stakeholders can contribute to ensuring construction safety
performance. Zuofa and Ocheing [32] pointed out that senior managers had played
important role in safety leadership by assisting in effective safetymanagement. Other
important participators include the owner (O), the contractor (C), the supervisor (S),
and the designer (D). Romero et al. [22] summarized that the collective profes-
sionalization by multiple stakeholders was the key to strengthening the safety and
leadership in the construction industry. The relationship between those safety-related
internal and external factors within different stakeholders in construction projects has
not been fully investigated.

A long debate on the allocation of duty and responsibility for construction safety
management among main stakeholders exists. Wu et al. [27] concluded that the
owner’s greatest leverage was the leadership to influence safety perception, moti-
vation, and behavior of other stakeholders. Hadidi and Khater [9] emphasized the
significance of selecting contractors at the bidding stage to assure loss prevention
and better safety orientation during project implementation. Conchie et al. [5] high-
lighted the importance of supervisors’ safety leadership in promoting construction
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