Sun Kwok

Our Place in the Universe – II The Scientific Approach to Discovery

Our Place in the Universe - II

Sun Kwok

Our Place in the Universe - II

The Scientific Approach to Discovery

Sun Kwok Department of Earth, Ocean, and Atmospheric Sciences University of British Columbia Vancouver, BC, Canada

ISBN 978-3-030-80259-2 ISBN 978-3-030-80260-8 (eBook) https://doi.org/10.1007/978-3-030-80260-8

© Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cover illustration: Abell 2151 cluster of galaxies. Image taken with the MegaCam camera on the Canada-France-Hawaii Telescope. Credits: CFHT/Coelum - J.-.C. Cuillandre & G. Anselmi

This Springer imprint is published by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This is the second volume of the book *Our Place in the Universe*. The first volume *Understanding Fundamental Astronomy from Ancient Discoveries* covers the development of astronomy from ancient times to Newton. The book uses the historical development of astronomy to illustrate the process of rational reasoning and its effect on philosophy, religion, and society. This volume follows this theme and discusses the development of astronomy after Newton, and the parallel evolution of ideas in geology and biology. While the effect of science on technology is well known, the effects of science on how we see ourselves and our world are much less appreciated. The aim of this book is to demonstrate how science motivated intellectual thought and had a major impact on the social development of astronomy to illustrate the process of science, and the effects of evolution in science on our perception of the Universe and on ourselves.

In our educational system, science is often presented to our students as a series of facts. In reality, science is about the process of rational thinking and creativity. What we consider to be the truth is constantly evolving and has certainly changed greatly over the history of humankind. The essence of science is not so much about the current view of our world, but how we changed from one set of views to another. This book is not about the outcome but the process.

As an example, every student knows that the Earth revolves around the Sun. They accept the heliocentric theory as a fact because this was told to them by an authority. However, in my experience, almost no one could cite a single piece of direct evidence for the Earth going around the Sun. As we will see in Chaps. 2 and 3 of this book, direct confirmation of the heliocentric theory is not trivial and only came two hundred years after Copernicus. The fact that this is not emphasized in our teaching of science is indeed worrying. We are asking our students to accept certain facts of science without telling them the tortuous process by which we came to that conclusion. The goal of this book is to show how we know.

Science is often presented as "logical" and the development of science is taught in textbooks as one success after another. The version of scientific development

presented is often a sanitized version, where only successes are mentioned. In fact, there have been many (now forgotten) failures and misconceptions that were very popular at the time. When the correct theories came along, they were often resisted, ridiculed, or ignored by the contemporary authorities. If we are unaware of such struggles, we are likely to repeat the same mistakes.

Some may ask: why teach theories that we know to be wrong? The fact is that many of those theories were held up as the truth at the time. Only by tracing the process of discovery can we understand how science works. Students will be able to see current scientific theories in a more critical light and be able to more objectively assess information given to us by the media or authorities today. For scientists, if they are not aware of mistakes made in the past, they may find themselves making similar mistakes in their research now.

This book is based on a course designed for the Common Core Program of the University of Hong Kong (HKU). The HKU Common Core courses are not based on a specific discipline and are designed to help students develop broader perspectives and abilities to critically assess complex issues. I developed this course and taught it from 2010 to 2018. Every year, the class contained about 120 students from all faculties of the university, including architecture, arts, business and economics, dentistry, education, engineering, law, medicine, science, and social sciences. Because of the students' diverse background, no mathematical derivations or calculations were used. The students were, however, expected to understand qualitative concepts, develop geometric visualizations, and perform logical deductions.

At the end of each chapter are some discussion topics that can be used in tutorial sessions or be assigned as essay topics. These questions are designed to motivate students to think beyond the class materials and explore implications of the topics covered. Often these questions have no right or wrong answers and are open-ended to encourage creative thinking.

Jargons are great obstacles to learning. In this book, I try to minimize the use of jargons as much as possible and some technical terms are replaced by simple words with similar meaning. Some concepts have precise definitions, and the use of technical terms is unavoidable. All definitions are presented in the Glossary.

For more technical readers, I have added some optional mathematics and physics in this book, with additional materials presented in the Appendices. Non-mathematical readers can skip these parts. To focus on the evolution of concepts, I have deliberately omitted certain details. Readers who wish a more in-depth understanding of certain topics should consult the respective textbooks.

Every year, students ask me whether they will be handicapped by their lack of previous knowledge of physics and astronomy. In fact, the reverse is true. Students in science are told all the modern notions but usually have often never learned how we arrived at those conclusions. In this book, we try to retrace historical steps to find out how we got to these conclusions.

In addition to lectures, we had weekly tutorials, quizzes, assignments, computer laboratory exercises, a planetarium show, and exams. For the first half of the course, a planetarium show was developed to illustrate the celestial motions observed in different parts of the world and at different times in history. The laboratory exercises were based on computer software, allowing students to have first-hand experience viewing and recording data from simulated observations. The assessments were designed to test whether the students had understood the course materials, could connect material from different parts of the course, had achieved some degree of synthesis, and could apply the acquired knowledge to new situations.

My hope is to help students develop their sense of curiosity and acquire the confidence to ask questions and challenge assumptions. Modern university students should be knowledgeable about our world and aware of how Nature works. From the historical development of science, I hope students will learn to think analytically and quantitatively, keep an open mind, and remain independent from public opinion. They should be able to make rational judgments on the complicated issues facing society today and rise above the ignorance and prejudice that are prevalent in society. These ideas are reflected in my article "Science Education in the 21st Century" published in *Nature Astronomy*, Vol. **2**, p. 530–533 (2018).

For instructors, the two books *Our Place in the Universe: Understanding Fundamental Astronomy from Ancient Discoveries* and *Our Place in the Universe: The Scientific Approach to Discovery* can serve as textbooks for two one-semester general education courses. The first course can be taught independently, but it is advisable that students take the first course before taking the second course.

In the later chapters of this book, I have included some recent research discoveries in astrobiology. I am privileged to have contributed to research in this field during these exciting times. I am also grateful for the opportunity to work with and learn from many contemporary pioneers in this field. I would like to express my sincere appreciation to them, although many of their names are not specifically mentioned in this book.

Over the eight years that I taught the course while serving as Dean of Science, I was ably assisted by lecturers/instructors Tim Wotherspoon, Jason Pun, Anisia Tang, and Sze Leung Cheung. I thank Gray Kochhar-Lindgren, Director of the HKU Common Core Program, for his unyielding support.

Bruce Hrivnak and Anisia Tang provided helpful comments on an earlier draft. I thank Ramon Khanna, my editor at Springer, for encouraging me to publish this book. Clara Wang skillfully drew many of the illustrations in this book.

I first became interested in the subject of the history of science during my second year of undergraduate study at McMaster University, where Prof. Bertram Brockhouse (Nobel Prize in Physics, 1994) introduced me to the subject. His teaching made me realize that physics is more than just mechanical calculations; it is a subject with philosophical and social implications as well.

Vancouver, BC, Canada

Sun Kwok

Prologue

天地玄黃,宇宙洪荒。日月盈昃,辰宿列張。 寒來暑往,秋收冬藏。閏餘成歲,律呂調陽。

千字文 周興嗣

In the beginning, there was the black heaven and the yellow earth. The Universe was vast and without limit. The Sun rises and sets, the Moon goes through phases, and the stars spread over distinct constellations in the sky. The warm and cold seasons come and go, while we harvest in the fall and store our grains for the winter. A year is composed of an uneven number of months, and harmony of music governs the cosmos.

First eight verses from the *Thousand Character Essay* by Zhou Xing Si (470–521 A.D.), translated from Chinese.

Zhou, an official in the Court of the Liang Dynasty, was asked by the Emperor Wu 梁武帝 (reigned 502–549 A.D.) to arrange a set of 1,000 characters into an essay for the education of the young princes. He composed a rhymed essay of 250 four-character verses where each character was used only once. From the sixth century to the early twentieth century, this essay was commonly used as a primary text to teach young children the Chinese characters.

The essay begins with eight verses that express humans' desire to understand the Universe and their appreciation for the celestial objects' orderly movements. As Zhou describes it, people also recognize that observations of the Sun, Moon, and stars have led to the development of calendars and that the structure of the Universe can be understood by theoretical models.

These verses exemplify the yearning for knowledge of our place in the Universe, which is shared by all ancient cultures. Through tireless observations, our ancestors on different continents observed the behavior of the Sun, Moon, planets, and the stars. They were aware that these patterns were regular, but by no means simple. Although the data collected were similar across cultures, the interpretations of the celestial patterns differed. These interpretations were incorporated into social, religious, and philosophical structures. Throughout history, the evolution of our models of the Universe led to changes in these structures. This book is an attempt to tell the story of the evolution of astronomical development over two millennia and its effect on our society.

Contents

1	From	Copernicus to Enlightenment	1
	1.1	A Spherical Earth	2
	1.2	The First Cosmological Models	4
	1.3	Uneven Movements of the Sun and the Planets	5
	1.4	The Copernican Model	8
	1.5	Immutability of the Heavens	10
	1.6	A Physical Universe	10
	1.7	Social Implications of the Post-Renaissance Model of the	
		Universe	12
2	Empir	rical Evidence for the Heliocentric Model	15
	2.1	Empirical Evidence for the Rotation of the Earth	17
	2.2	Finite Speed of Light	20
	2.3	Search for Empirical Proof that the Earth Revolves Around the	
		Sun	21
	2.4	Shift of Stellar Position as the Result of Orbital Motion of the	
		Earth	24
	2.5	The Third Proof of the Earth's Revolution Around the Sun	25
	2.6	A Long Journey from Theory to Confirmation	25
3	Resolu	ition of the Theoretical Objections to the Heliocentric	
		y	27
	3.1	The Concept of Inertia	28
	3.2	Why We Do Not Feel We Are Moving Around the Sun?	28
	3.3	Why We Do Not Feel the Rotation of the Earth?	30
	3.4	Evolution to a True Heliocentric Model	31
	3.5	Artificial Satellites and Interplanetary Travel	33
	3.6	Final Vindication of Copernicus	34
	3.7	A Turning Point in Our View of the Universe	35

4	Size o	f the Solar System
	4.1	How Fast Is Heaven Turning?40
	4.2	No More Points Of Light 40
	4.3	How Far Are the Planets?41
	4.4	How Far Away Is the Sun?43
	4.5	A Changing Perception of the Size of the Solar System 45
5	Celest	ial Navigation and Exploration of the Heavens
	5.1	The Longitude Problem 51
	5.2	Stars Are Moving
	5.3	The Solar System Is Moving 55
	5.4	Unexpected Dividends
	5.5	Cosmological Implications
6	New N	Members of the Solar System 59
	6.1	The Origin of Comets 60
	6.2	Discovery of Uranus
	6.3	Prediction of Neptune
	6.4	Search for Vulcan
	6.5	Search for Planet X
	6.6	Lesson to Be Learned
7	Is the	Sun a Star?
	7.1	Brightness Drop-Off with Distance
	7.2	Distance to Stars
	7.3	Are All Stars the Same?
	7.4	Demotion of the Sun
8	A Nev	v Way of Thinking
	8.1	The Scientific Method
	8.2	Examples of Scientific Methods at Work
	8.3	What Is a Good Scientific Theory? 78
	8.4	How Do We Know that a Theory Is in Trouble?
	8.5	What Is Not a Scientific Question? 80
	8.6	Application of the Scientific Method to Other Disciplines 81
	8.7	Limitations of Science 81
9	What	Are Stars Made of?
	9.1	Color of Sunlight and Physical Objects
	9.2	Dark Lines in the Sun 85
	9.3	Does the Sun Contain the Same Elements as Earth?
	9.4	A New Element in the Sky
	9.5	The Mystery of Nebulium
	9.6	The Beginning of Astrophysics 89
	9.7	Different Kinds of Stars
	9.8	Unification of Matter in Heaven and on Earth

Contents

10	Origi	n of the Solar System	93
	10.1	Formation of the Solar System	94
	10.2	Extrasolar Planetary Systems	96
	10.3	The Outer Solar System	97
	10.4	The Question of Origins	99
11	The P	Plurality of Worlds	101
	11.1	What Is the Milky Way?	102
	11.2	Shape of the Milky Way	106
	11.3	A Larger Universe	107
	11.4	The Distance Problem	108
	11.5	Removal of the Sun from the Center of the Milky Way	109
	11.6	Philosophical Implications	110
12	The N	Vature of Nebulae	113
	12.1	Discovery of Nonstellar Objects	114
	12.2	The Mystery of Spiral Nebulae	116
	12.3	Island Universes or Gaseous Nebulae?	117
	12.4	The Resolution	119
	12.5	Sun's Motion in the Milky Way	122
	12.6	How Can Experts Be Wrong?	123
	12.7	Evolution of Our Understanding of the Universe	123
13	Are A	Il Motions Relative?	125
	13.1	Principle of Relativity	126
	13.2	The Need for a Fictitious Force	127
	13.3	We Can Tell the Earth Is Rotating Without Looking	100
	12.4	Outside	129
	13.4	Origin of the Inertial Force	130
	13.5	Mathematical Formulation of the Principle of Relativity	131
	13.6 13.7	Einstein's Theory of Gravity	132 134
14		Nature of Light and Matter	137
	14.1	Fundamental Elements of Terrestrial Matter	138
	14.2 14.3	Building Blocks of Matter	140 143
	14.5	The Confusion between Light and HeatExpansion of the Concept of Color	145
	14.4	Heat and Temperature	145
	14.5	Everything Shines	140
	14.0	The Search for Ether	147
	14.7	Quantum Theory of Light and Matter	150
	14.9	Science and Utility	151
15			
15	The H 15.1	Iuman-Star Connection What Powers the Sun?	155 156
	15.1	Source of the Sun's Energy	156
	13.4		137

	15.3	Direct Confirmation of Nuclear Fusion in the Sun	159
	15.4	The Solar Terrestrial Connection	160
	15.5	Origin of Chemical Elements	160
	15.6	Chemical Composition of the Human Body	161
	15.7	Universality of Physics and Chemistry	162
16	Is the	Universe Finite?	165
	16.1	Looking Back into the Past	166
	16.2	Expansion of the Universe	167
	16.3	Large-Scale Structure of the Universe	170
	16.4	The Beginning of Time	173
	16.5	An Evolving Universe	175
17	Early	History of the Earth	177
	17.1	Methods of Age Determination	178
	17.2	Radioactive Dating	179
	17.3	A Physical Connection between Heaven and Earth	181
	17.4	External Bombardment of the Early Earth	185
	17.5	Formation of the Moon	186
	17.6	Formation of the Ocean and the Atmosphere	188
	17.7	The Complex History of the Earth	189
18	Comn	non Ancestors	191
	18.1	The Evolution of Living Species	192
	18.2	Life Beyond What We Can See	194
	18.3	A New Realm of Life	195
	18.4	The Tree of Life	195
	18.5	Social Implications of Darwinism	197
19	Origin	n of Life	199
	19.1	Spontaneous Generation	199
	19.2	Panspermia: Life from Elsewhere	201
	19.3	Distinction Between Living and Non-living	202
	19.4	Abiogenesis: A Chemical Origin of Life	204
	19.5	Philosophy Guiding Science	206
	19.6	Remaining Questions	207
20	Comp	lexity in the Universe	209
	20.1	Molecules and Solids in the Interstellar Medium	210
	20.2	Minerals in Space	212
	20.3	The Discovery of Extraterrestrial Organics	215
	20.4	Abiotic Synthesis of Organics	217
	20.5	Unsolved Mysteries	218
	20.6	Extending the Frontiers of Exploration	219

21	Evolut	tion of the Earth Through the Ages	223
	21.1	The Continents Are Moving	224
	21.2	The Oxygen Evolution	226
	21.3	Life Explosion	228
	21.4	Extinction Events	229
	21.5	Emergence of Humans	231
	21.6	Lessons from the History of Life on Earth	233
22	Clima	te Changes Through the Ages	235
	22.1	Climate Cycles	236
	22.2	The Warm Earth	239
	22.3	Human-induced Climate Change	239
	22.4	Effects of Climate on Society	241
	22.5	Balance Between Development and Conservation	242
23	The L	ink Between Stars and Life on Earth	245
	23.1	Lifetimes of Stars	246
	23.2	Death of the Sun	247
	23.3	The Final Fate of Stars	248
	23.4	Stellar Synthesis of Complex Organics	251
	23.5	Birth of New Stars and Planetary Systems from Stellar	
		Debris	251
	23.6	External Delivery of Organics to Earth and Their Effects	
		on the Origin of Life	252
	23.7	The Future of the Human Species	255
24		n Other Worlds	257
	24.1	Conditions for Life	258
	24.2	Search for Life in the Solar System	259
	24.3	Search for Signs of Life on Other Planets in the Galaxy	260
	24.4	Search for Extraterrestrial Intelligence	262
	24.5	Direct Contact with Alien Life	265
	24.6	Did Aliens Visit the Earth?	265
	24.7	Different Paths of Scientific Development among Alien	
		Civilizations	267
	24.8	The Social Implication of Discovery of Extraterrestrial Life	268
	24.9	Ethical Issues of Planetary Exploration and Engineering	268
	24.10	Nonbiological Alien Life	269
25		lace in the Universe	271
	25.1	Changing Spatial Scale of the Universe	272
	25.2	On the Temporal Scale	273
	25.2		
	25.3	On the Relative Scale	274
	25.3 25.4	On the Relative Scale	274 275
	25.3	On the Relative Scale	274

26	The C	ommon Links in Our Journey	279
	26.1	A 300-year Success Story	280
	26.2	The Interdisciplinary Nature of Science	281
	26.3	The Path to Discovery	282
	26.4	The Human Aspects of Science	283
	26.5	How Science Should Be Taught?	285
	26.6	How Science Is Done	287
	26.7	The Ethics of Science	288
	26.8	Science and Technology	290
	26.9	Science and Society	291
	26.10	The Hidden Assumptions Behind Modern Science	292
	26.11	Is There a Limit to Science?	295
		I. Units of Measurement	301
Apj	pendix I	II. Astronomical Measurements	303
		V. Photometric Method to Estimate the Distances of	.
Sta	rs		305
Apj	pendix V	V. Mass of the Milky Way	307
Apj	pendix V	VI. Examples of Inertial Forces	309
Apj	pendix V	VII. Astronomy from Other Planetary Systems	311
Rev	iew Exe	ercises	315
Glo	ssary		319
Fur	ther Re	ading	329
Ind	ex		333

About the Author

Sun Kwok is a professional astronomer and author, specializing in astrochemistry and stellar evolution. He is best known for his theory on the origin of planetary nebulae and the death of Sun-like stars. His recent research covered the topic of the synthesis of complex organic compounds in the late stages of stellar evolution. His recent books include *The Origin and Evolution of Planetary Nebulae* (Cambridge, 2000), *Cosmic Butterflies* (Cambridge, 2001), *Physics and Chemistry of the Interstellar Medium* (University Science Books, 2007), *Organic Matter in the Universe* (Wiley, 2012), *Stardust: The Cosmic Seeds of Life* (Springer, 2013), and *Our Place in the Universe: Understanding Fundamental Astronomy from Ancient Discoveries* (Springer 2017). He has lectured extensively at major universities, research institutes, and public forums all over the world. He has been a guest observer on many space missions, including the *Hubble Space Telescope* and the *Infrared Space Observatory*.

He has performed extensive service in international organizations, including as the President of Astrobiology Commission of the International Astronomical Union (IAU), President of IAU Interstellar Matter Commission, chairman of IAU Planetary Nebulae Working Group, and an organizing committee member of IAU Astrochemistry Working Group. His academic affiliations include Dean of Science and Chair Professor of Space Science at the University of Hong Kong, Director of the Institute of Astronomy and Astrophysics, Academia Sinica in Taiwan, Killiam Fellow of the Canada Council for the Arts, and Professor of Astronomy at the University of Calgary in Canada. He currently works at the University of British Columbia in Canada.

List of Figures

Fig. 1.1	The first cosmological model of a flat Earth and a spherical
	sky
Fig. 1.2	Changing horizon on a spherical Earth
Fig. 1.3	The two-sphere Universe model
Fig. 1.4	A model of an armillary sphere
Fig. 1.5	The use of eccentric, epicycle, and equant in Ptolemy's model of planetary motion
Fig. 1.6	Schematic diagram of Ptolemy's cosmological model
Fig. 2.1	A schematic drawing of the Tychonic system
Fig. 2.2	Illustration of the Coriolis force
Fig. 2.3	Foucault's pendulum
Fig. 2.4	Oblateness of the Earth
Fig. 2.5	A schematic diagram illustrating the method used by Rømer to measure the speed of light
Fig. 2.6	A schematic diagram illustrating the measurement of stellar parallax
Fig. 2.7	A schematic diagram illustrating the aberration of starlight
Fig. 3.1	A merry-go-round
Fig. 3.2	Copernicus's model of planetary motion
Fig. 3.3	Kepler's law of planetary motion
Fig. 3.4	Artificial satellites
Fig. 3.5	Space flight to Mars
Fig. 3.6	"Empedocles Breaks through the Crystal Spheres" is a wood engraving by an unknown artist
Fig. 4.1	Relationship between distance and angular size
Fig. 4.2	Huygens's method to determine the Earth-Sun distance
Fig. 4.3	The method of triangulation
Fig. 4.4	Transit of Venus on June 6, 2012
Fig. 4.5	The change of Earth-Sun distance over history
	(900–2000 A.D.)

Fig. 5.1	World map based on the work of Ptolemy	48
Fig. 5.2	Paths of stars at different latitudes	49
Fig. 5.3	Celestial navigation	50
Fig. 5.4	Portuguese explorations	50
Fig. 5.5	A sextant is used to measure the altitude of celestial objects	
	above the horizon	52
Fig. 5.6	The Big Dipper as seen in 50,000 B.C. and 2020 A.D.	54
Fig. 5.7	The effect of solar motion on the proper motions of stars	55
Fig. 6.1	An artist's depiction of the comet of 1577 seen over Prague	60
Fig. 6.2	Conic sections	61
Fig. 6.3	Halley's Comet in 1066 depicted in the Bayeux Tapestry	62
Fig. 6.4	A schematic drawing illustrating the advance of the perihelion	
	of Mercury	65
Fig. 7.1	Schematic diagram illustrating the photometric method for stellar	
	distance determination	71
Fig. 9.1	Dark lines in the solar spectrum	85
Fig. 9.2	Discovery of emission line spectrum in stars	88
Fig. 9.3	Comparison between the continuous spectrum of white sunlight	
	and the emission line spectrum of a nebula	89
Fig. 10.1	A schematic drawing illustrating how the terrestrial planets were	
-	formed	95
Fig. 10.2	Detection of extrasolar planets using the radial velocity	
	method	96
Fig. 10.3	A schematic illustration of a planetary transit	97
Fig. 10.4	A schematic drawing of the Kuiper Belt and the Oort Cloud	98
Fig. 11.1	The Milky Way	103
Fig. 11.2	The galactic plane in the celestial sphere	104
Fig. 11.3	View of the Milky Way from Honolulu, Hawaii, USA	105
Fig. 11.4	View of the Milky Way from Melbourne, Australia	105
Fig. 11.5	Model of the Milky Way by Thomas Wright	106
Fig. 11.6	Distribution of stars as mapped by Herschel	107
Fig. 11.7	Kapteyn's model of the Milky Way has the Sun at its center	107
Fig. 11.8	Globular cluster M13	109
Fig. 11.9	A map of the distribution of globular clusters projected on the	
	plane of the Milky Way	110
Fig. 12.1	Messier's drawing of M31, the Andromeda Nebula	115
Fig. 12.2	Drawing of M51 as sketched by Lord Rosse as seen from his	
	72-inch telescope in 1849	116
Fig. 12.3	Modern image of the spiral galaxy NGC 4535	117
Fig. 12.4	A schematic diagram of the structure of the Milky Way	120
Fig. 12.5	An example of a spiral galaxy viewed sideways	121
Fig. 13.1	Principle of relativity	126
Fig. 13.2	Pendulum at the North Pole	129
Fig. 13.3	Comparison between the Ptolemaic (left) and Copernican (right)	
	cosmologies	131

Fig. 13.4	The shortest path between two points on a sphere is a great circle	133
Fig. 13.5	Bending of starlight through curvature of space	134
Fig. 14.1	The Periodic Table	139
Fig. 14.2	Examples of knots and links illustrating Lord Kelvin's knotted	107
8	vortex theory of atoms	141
Fig. 14.3	A simplified schematic drawing of the Bohr atom	143
Fig. 14.4	The electromagnetic spectrum	146
Fig. 14.5	The Planck radiation law	149
Fig. 16.1	The velocity-distance relationship as originally published by	
	Hubble	168
Fig. 16.2	The balloon analogy of an expanding universe	169
Fig. 16.3	Abell 2151 cluster of galaxies	171
Fig. 16.4	A schematic diagram illustrating the possible geometries of the Universe	172
Fig. 16.5	A schematic diagram illustrating how we can determine the	172
115. 10.5	geometry of the Universe	172
Fig. 17.1	Method of tree-ring dating	179
Fig. 17.2	Schematic picture of radioactive decay	180
Fig. 17.3	Engraving showing the 1833 Leonid meteor shower	183
Fig. 17.4	Comets as the cause of meteor showers	184
Fig. 17.5	Map of some of the largest impact basins on the Moon with	
0	diameters >300 km	186
Fig. 17.6	Cause of the tides	187
Fig. 17.7	Heavy bombardment during the early history of the Earth	188
Fig. 18.1	Voyage of the Beagle from December 27, 1831, to October 2, 1836	192
Fig. 18.2	Gorillas, chimpanzees, and humans branched off the tree of life	192
Fig. 10.2	at different times in the past	193
Fig. 18.3	The tree of life based on ribosomal RNA sequence data	195
Fig. 19.1	Pasteur's experiment to disprove spontaneous generation	201
Fig. 19.1	A schematic drawing of the double helix structure of the DNA	201
1 lg. 17.2	molecule	203
Fig. 19.3	The Miller-Urey experiment	205
Fig. 20.1	Schematic diagram illustrating the rotation, stretching, and	200
115. 20.1	bending motion of molecules	211
Fig. 20.2	An example of a spectrum of the Galactic Center in the millimeter-	211
1 15. 20.2	wave region	213
Fig. 20.3	Infrared spectra of two red giants as observed by the <i>Infrared</i>	213
8. 20.0	Astronomical Satellite Low-Resolution Spectrometer	214
Fig. 20.4	The chemical structure of benzene	215
Fig. 20.5	The unidentified infrared emissions bands were first detected	-10
8. 20.0	in the planetary nebula NGC 7027 in the constellation	
	of Cygnus	218

Fig. 21.1	The ring of fire	224
Fig. 21.2	A conceptual map of the supercontinent Pangaea	226
Fig. 21.3	The Earth has seven major tectonic plates and more minor	
	ones	227
Fig. 21.4	Change in the complexity of living organisms over the history	
	of the Earth	228
Fig. 21.5	The five extinction events since the Cambrian period	230
Fig. 21.6	An artistic perception of an asteroid impact	231
Fig. 21.7	A schematic diagram illustrating the routes of human migration	
	out of Africa based on genome analysis	232
Fig. 21.8	Geological and biological timeline of the history of the Earth	233
Fig. 22.1	Temperature variation of the Earth in recent history as determined	
	from Antarctic ice cores	237
Fig. 22.2	Schematic illustrations of the three effects contributing to the	
	Milankovitch cycles	238
Fig. 22.3	Greenhouse effect	240
Fig. 22.4	Global atmospheric carbon dioxide concentrations (CO ₂) in parts	
	per million (ppm) for the past 800,000 years	241
Fig. 23.1	Stars on the main sequence	246
Fig. 23.2	A schematic diagram illustrating the structure of an asymptotic	
	giant branch star	248
Fig. 23.3	NGC 6302 in the constellation of Scorpius is one of about 4000	
	known planetary nebulae in the Milky Way galaxy	249
Fig. 23.4	A schematic diagram showing the life cycle of a solar-like	
	star	250
Fig. 23.5	Electron microscope image of a pre-solar silicon carbide (SiC)	
	grain	253
Fig. 23.6	A cartoon illustrating the manufacturing of organic compounds	
	in planetary nebulae and their ejection into interstellar space	254
Fig. 24.1	An artist's rendition of the surface of Titan based on data	
	obtained from the Cassini mission	260
Fig. 24.2	The spectrum of the Earth's atmosphere and clouds carry	
	signatures of life	261
Fig. 24.3	Earthshine	261
Fig. 24.4	A schematic drawing illustrating how the atmospheric spectrum	
	of an extrasolar planet can be observed during planetary	
	transit	262
Fig. 24.5	Gauss's proposal for extraterrestrial communication	263
Fig. 24.6	A proposal by von Littrow to send signals to intelligent	
	extraterrestrials on Mars	263
Fig. 26.1	A schematic diagram illustrating the change in rotational velocity	
	in a typical spiral galaxy	281

List of Tables

Table 4.1	Minimum and maximum angular sizes of planets	41
Table 17.1	Examples of radioactive clocks	180

Chapter 1 From Copernicus to Enlightenment

As soon as humans developed a sense of awareness of their surroundings, they realized that their lives are governed by daily cycles of day and night and annual cycles of seasons. They also made the association that these cycles are related to the Sun. For practical and religious reasons, they became keen observers of the heavens. Our ancestors were in awe not only of the existence of celestial objects – the Sun, the Moon, and the stars – but also of the fact that they all move. Not only do they move, but they also do so in regular patterns. The Sun, the Moon, and the stars rise day after day without fail. After the Sun sets and the Earth is covered in darkness, stars can be seen to rise from the eastern horizon, move across the sky, and set in the opposite horizon. The existence of messages from the gods. Motivated by the desire to decipher the hidden meaning of these patterns, our ancestors observed the movement of celestial objects with great diligence.

They soon learned that these patterns, although regular, were complicated. The Sun rises at different times and rises to different heights each day. The length of daylight varies through the year, with longer days in summer and shorter days in winter. When the Sun is highest in the sky, a stick planted vertically on the ground always casts its shadow in the same direction, which is referred to as "north."¹ The existence of this special direction allowed our ancestors to designate four directions: south being opposite to north, and east and west perpendicular to the line of north and south. Although the Sun rises in the general eastern directions in the summer and in more southernly directions in the winter. As early as 3000 years ago, ancient civilizations realized that there are four special days in a year: summer solstice when the Sun rises in the northernmost direction, winter solstice when the Sun rises in the

https://doi.org/10.1007/978-3-030-80260-8_1

¹In order to simplify the narrative, our references to seasons and other observed events are for the northern hemisphere. This statement is true for an observer in mid-northern latitudes.

[©] Springer Nature Switzerland AG 2021

S. Kwok, Our Place in the Universe - II,

southernmost direction, and vernal and autumnal equinoxes when the Sun rises in the exact east.

Both the Sun and the stars appear to revolve around the Earth each day, but the period of revolution of the stars is slightly shorter (by about 4 minutes) than that of the Sun. This is manifested by stars rising slightly earlier each night, and new stars appearing on the eastern horizon the following night. This results in different constellations of stars being seen at different times of the year: for example, the constellation of Orion is seen in the winter and the constellation of Sagittarius in the summer.

Like the Sun, the Moon also rises in the east and sets in the west. However, unlike the Sun, the Moon changes its shape daily, going through phases. The Moon is sometimes seen at night and sometimes during the day, but its time of appearance is related to its phases. The full Moon rises in the early evening and is seen only during the night, whereas the new Moon rises in the early morning. Although the new Moon is in the sky throughout the day, it is hard to see as it is close to the Sun.

The Sun's and stars' asynchronous movements suggest that in addition to the daily motion of the Sun, the Sun is also simultaneously slowly moving relative to the stars over the period of a year. The daily motion of the Sun is from east to west, but its yearly motion through the stars is from west to east. Like the Sun, the Moon also moves relative to the stars, but much more quickly. Instead of a year, the Moon goes through the stars over a period of 27.3 days. This period is close to, but not exactly the same, as the period of the phases of the Moon, which is 29.5 days.

The Sun and the Moon are not the only objects that move relative to the stars. Our ancestors also knew of five bright celestial objects that move through the stars. For this reason, they are called planets, which originated from the Greek word for wandering stars. The planets Mercury, Venus, Mars, Jupiter, and Saturn all move relative to the stars along the same path of the Sun (called the ecliptic), but with different periods. Like the Sun, they usually travel from west to east relative to the stars. But most strangely, they appear to reverse directions from time to time.

The regular patterns of motions of celestial objects provided humans with the first motivation to understand the working of the heavens. This cultivated the seeds for rational thinking. The first example of abstract thinking is the development of a model of the Universe. The fact that the Sun and the stars appear to revolve around the Earth in circular paths led to the first cosmological model of a flat Earth and a spherical sky. The celestial objects move from horizon to horizon on the surface of a sphere, called the celestial sphere. The axis upon which the stars and the Sun turns is assumed to be the pole that holds up the canopy of the sky (Fig. 1.1).

1.1 A Spherical Earth

Although the Earth appears obviously flat from our everyday experience, there are some disconcerting observations that caused ancient astronomers to have doubts about this perception. If we live on a flat Earth, we would see the same stars no

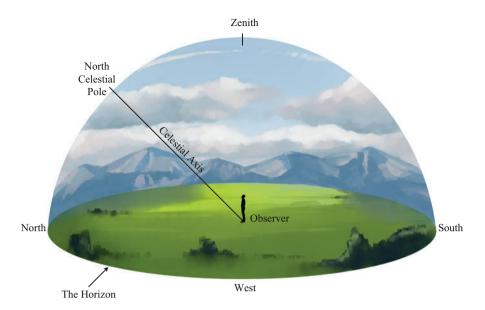


Fig. 1.1 The first cosmological model of a flat Earth and a spherical sky. The celestial axis around which the stars revolve is inclined with respect to the horizon (shown in green). The north celestial pole is the only point on the celestial sphere that does not turn. This figure corresponds to an observer located in the mid-northern latitude

matter where we are. However, some stars can only be seen from certain locations on Earth: Canopus, the second brightest star in the sky, can be seen from Alexandria but not from Athens. Contrary to intuitive expectations, this polar axis around which the stars turn is not planted perpendicularly but is inclined with respect to the horizon. This inclination angle varies from place to place: at Athens, the polar axis is inclined 38° relative to the horizon; in Alexandria, Egypt, it is 31°.

Around 500 B.C., Greek astronomers deduced that the Earth is round from the shape of its shadow during lunar eclipses. Eclipses occur at a precise time, but the hour of occurrence (as measured from the time at noon) as recorded by observers in the east is always later than that recorded by those in the west. The evidence for a spherical Earth was summarized by Claudius Ptolemy (100–175) in his book *Almagest*.

Using a simple stick planted on the ground and measuring the length and angle of its shadow over the course of a day, ancient observers could trace the exact daily paths of the Sun. Over the course of a year, these paths vary from one day to the next. Observers at different locations on Earth also see different apparent paths of the Sun across the sky (Chap. 5, Vol. 1). An observer in Athens never sees the Sun directly overhead but an observer in southern Egypt does. These results are not compatible with the idea of a flat Earth. By measuring the angle of the Sun at Alexandria on the longest day of the year (summer solstice) when the Sun shines vertically onto the city of Syene in southern Egypt, Eratosthenes was able to determine the size of the

spherical Earth (Sect. 12.1, Vol. 1). Through the observations of the Sun, the Moon, and the stars, ancient astronomers were able to determine not only that the Earth was round, but also the size of the spherical Earth.

1.2 The First Cosmological Models

After our ancestors realized that the Earth is round and not flat, they were able to make sense of many peculiarities of the motion of celestial objects. The different inclination of the polar axis at different locations is because observers at different latitudes have different horizons (Fig. 1.2). The change in orientation of the horizon accounts for the reason that different stars are visible by observers at different locations. While an observer will see stars rise and set, a star that is too far south of the celestial equator is never visible to an observer in the northern hemisphere because it never rises above his horizon (Fig. 1.2).

All the apparent complexities of the motion of the Sun and the stars can be explained by a two-sphere universe model where a spherical Earth is situated at the center of a celestial sphere upon whose surface the stars lie. In this model, the celestial sphere revolves around the Earth from east to west each day. Because of the rotation of the celestial sphere, stars rise above the horizon in the east and set below the horizon in the west. Some stars can be seen throughout the night but some stars cannot be seen at all (Fig. 1.2).

The Sun also revolves around the Earth, but its motion is slightly slower than that of the stars by four minutes each day. Over the course of a year, the Sun travels across the celestial sphere relative to the stars from west to east along the plane of the ecliptic, which is inclined 23.5° with respect to the equator of the spherical Earth (Fig. 1.3). Because of this inclination angle, the Sun goes through a north-south motion over the course of a year.

The intersection points between the ecliptic and the celestial equator are the vernal and autumnal equinoxes. When the Sun crosses these two points, sunlight shines directly on the equator and the lengths of day and night are equal. On these two days, the Sun rises exactly in the east and sets exactly in the west. The northernmost and southernmost points of the ecliptic are the summer and winter solstices. When the Sun is at these two points, the difference in lengths of day and night is most extreme. Sunrise and sunset will be at their northernmost (on summer solstice) and southernmost (on winter solstice) directions of the year. The two-sphere model, developed by the Greeks over 2000 years ago, can successfully explain the changing seasons and all the known observational facts of the apparent motions of the Sun and the stars.

A practical device called the armillary sphere (Fig. 1.4) based on the two-sphere universe model can be used to predict the time and direction of sunrise/sunset from any place on Earth. It can also determine the length of each day of the year for anywhere on Earth. The two-sphere Universe model was extremely successful.

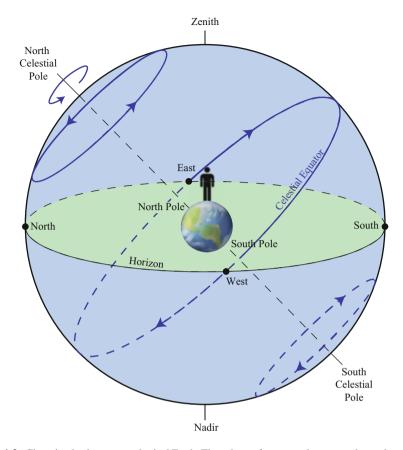
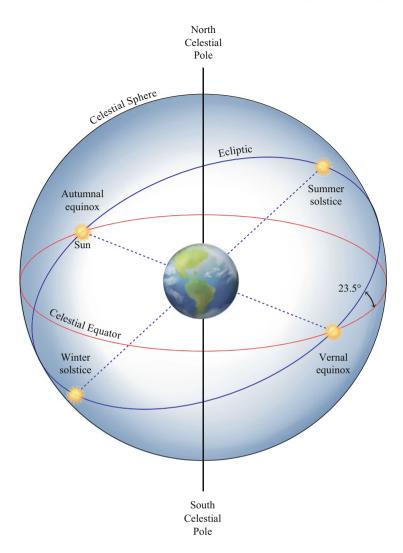



Fig. 1.2 Changing horizon on a spherical Earth. The sphere of stars revolves around an axis, whose angle of inclination with respect to the horizon (the green plane) is dependent on the location of the observer on the spherical Earth. This diagram illustrates the example of an observer at approximately 45° latitude north. The blue circles are examples of trails of three stars at different declinations over one sidereal day. Parts of the trails that are below the horizon (shown as dashed lines) cannot be seen by the observer

1.3 Uneven Movements of the Sun and the Planets

While the two-sphere Universe model represented a tremendous success in explaining the movement of celestial objects, unfortunately, there are other complications. Although the seasons return in regular annual intervals, the lengths of each season are unequal. This anomaly was known as early as 330 B.C. by Callippus (370–330 B.C.), and the lengths of the seasons were measured by Hipparchus (185–120 B.C.) to be $94\frac{1}{2}$, $92\frac{1}{2}$, $88\frac{1}{8}$, and $90\frac{1}{8}$ days for spring, summer, autumn, and winter, respectively (in the northern hemisphere). Although the planets generally revolve around the Earth from west to east, as does the Sun, they appear to reverse direction (retrograde motion) from time to time. The sphere of fixed stars is not

Fig. 1.3 The two-sphere Universe model. The model consists of an inner sphere (the Earth) and an outer sphere (the celestial sphere) and can successfully explain the apparent motion of the Sun at all locations on Earth. The daily (east to west) motion of the Sun is explained by the rotation of the celestial sphere around the north-south axis of the Earth. Perpendicular to this axis is the celestial equator (in red), which is an extension of the Earth's equator to the celestial sphere. The annual (north-south) motion of the Sun is explained by its movement along the ecliptic (in blue), which is inclined with respect to the celestial equator by 23.5°

oriented permanently with respect to the ecliptic, the annual path of the Sun. The intersection point between the celestial equator and the ecliptic shifts about 1° every 100 years. This phenomenon is known as the precession of the equinox.

Fig. 1.4 A model of an armillary sphere. The spherical Earth is at the center. Depending on the latitude of the observer, the north-south axis of the Earth is inclined with respect to the horizon (the thick outside plate). Five rings perpendicular to the north-south axis are the Arctic Circle, Tropic of Cancer, the Equator, Tropic of Capricorn, and Antarctic Circle. The ecliptic (a thick band) is inclined 23.5° with respect to the equator (Chap. 7, Vol. 1). Image created by the Technology-Enriched Learning Initiative of the University of Hong Kong

In order to explain these anomalies, Ptolemy in the first century A.D. introduced additional elements into the two-sphere universe model. Epicycles (cycles upon cycles) were introduced to explain the retrograde motions of the planets. A planet moves at uniform speed around an epicycle whose center revolves along a large circle called the deferent. When the planet is inside of the deferent, it is in retrograde motion (Fig. 1.5).

The concepts of eccentric and equant were also needed to explain the unequal lengths of the seasons, the uneven motion of the planets, and the precession of the equinox. The center of the deferent is separated from the position of the Earth by the eccentric. The center of the epicycle revolves uniformly relative to the equant, not the center of the deferent. All three mathematical constructs are necessary to successfully explain planetary motions.

Ptolemy's model of the Universe consists of a stationary Earth at the center, with a celestial sphere of stars revolving around it. Between the Earth and the celestial sphere are the Sun, the Moon, and the planets all revolving around the Earth near the plane of the ecliptic. The order of celestial bodies from near to far is the Moon, Mercury, Venus, the Sun, Mars, Jupiter, and Saturn (Fig. 1.6). To Ptolemy, the epicycles are not just mathematical entities but carry real physical meaning. The orbits and epicycles of the Sun, the Moon, and the planets fill the interior of the celestial sphere without any empty space.

By noting that the horizon of an observer always bisects the whole celestial sphere into two halves no matter where the observer is located on the spherical Earth, Ptolemy concluded that the Earth must be very much smaller than the celestial sphere. In the model of a two-sphere Universe, the Earth is just a point in comparison to the size of the celestial sphere.

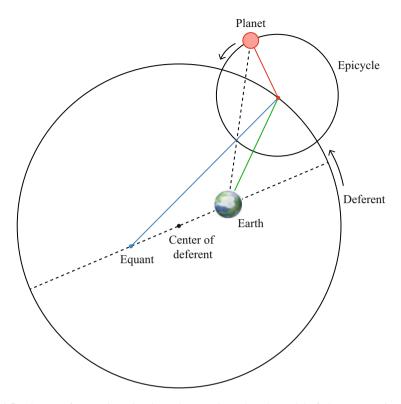
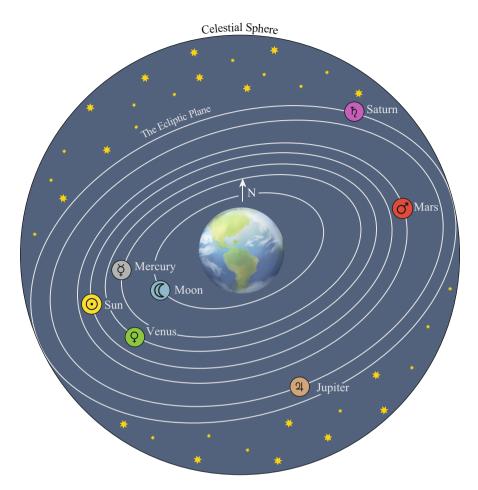



Fig. 1.5 The use of eccentric, epicycle, and equant in Ptolemy's model of planetary motion. The Earth and the equant are placed at equal distances on opposite sides of the center of the deferent. The planet moves uniformly around the center of the epicycle which revolves around the deferent centered on a point eccentric from the Earth. The angular speed of the center of the epicycle is uniform relative to the equant point

Given the complexity of the motions of the Sun, the Moon, and the planets, Ptolemy faced a formidable task. The high degree of accuracy of his model's predictions – which can quantitatively forecast the positions of the Sun, the Moon, and the planets hundreds of years into the future – is a testament to the model's success. Ptolemy's book *Almagest* represents the pinnacle of Greek science and stood for 1500 years before being challenged.

1.4 The Copernican Model

Aristarchus (310–230 B.C.) was the first person to suggest that the Sun, not the Earth, is the center of the Universe. Using his measurement that the Sun is 20 times farther away from the Earth than the Moon is, he estimated that the Sun is seven times larger than the Earth (Sect. 12.2, Vol. 1). He argued that it was unreasonable to

Fig. 1.6 Schematic diagram of Ptolemy's cosmological model. The celestial sphere upon which all stars lie revolves around a stationary Earth once a day. The Sun, the Moon, and the five planets revolve around the Earth on the plane of the ecliptic also once a day. In addition, these seven celestial objects also move relative to the stars with different periods. The plane of the ecliptic is inclined with respect to the equator of the Earth. The epicycles are not shown in this diagram. The sizes of the planetary orbits and the celestial sphere are not to scale. The Earth should be just a point in comparison to the size of the celestial sphere

assume that a larger body (the Sun) should revolve around a smaller body (the Earth). The heliocentric model was taken up by Nicolaus Copernicus (1473–1543). Copernicus considered the concept of equant in Ptolemy's model as violating the spirit of uniform circular motion and proceeded to seek an alternative without the use of the equant. Copernicus placed the Sun near the center of the Universe, with the Earth and the other five planets revolving around it. The only object that revolved around the Earth is the Moon.

Although Copernicus's model was not more accurate and had more epicycles than the model of Ptolemy, he did remove some unexpected coincidences in Ptolemy's model such as the alignment between the lines connecting the planets to the centers of their epicycles being always in parallel with the line connecting the Earth and the Sun, and the planets revolving around the centers of their epicycles at the same rate as the Sun revolves around the Earth (Sect. 15.3, Vol. 1). Copernicus's model also has the esthetic advantage of providing a natural explanation for the retrograde motions of the planets. From the observed synodic periods (time from conjunction to conjunction or from opposition to opposition) of the planets, he was able to derive the true periods of revolution (sidereal periods) of the planets (Sect. 16.1, Vol. 1). The heliocentric model also naturally explains why the superior planets (Mars, Jupiter, and Saturn) are brightest during opposition, without assuming artificial periods for their epicycles (Sect. 15.3, Vol. 1). Most significantly, Copernicus can predict the relative distances between the planets and the Sun, therefore resolving the ambiguity in the order of Mercury and Venus in Ptolemy's model (Sect. 16.2, Vol. 1).

1.5 Immutability of the Heavens

One of the essences of Aristotelian cosmology is the immutability of the heavens. This was further entrenched into the Christian doctrine that the fixed stars came into existence at the time of Creation and were everlasting and unchanging. In 1572, Tycho Brahe (1546–1601) noted the appearance of a new star in the constellation Cassiopeia. Tycho carefully measured the separations of the new star from nearby stars as the stars move from horizon to near the zenith and to the opposite horizon. He found no change in the separations, suggesting that the new star was located far above the Moon and was part of the fixed stars. The appearance of this new star represented a clear violation of the principle of the immutability of the heavens.

1.6 A Physical Universe

Like Ptolemy's model, Copernicus's model relies purely on geometry to describe the motions of celestial objects. All objects move in perfect circles and at uniform rates. By removing both assumptions, Johannes Kepler (1571–1630) greatly simplified Copernicus's model. From Tycho's accurate measurements of Mars's apparent motion in the sky, Kepler found that its orbit around the Sun is best described by an ellipse, with the Sun located in one of the two foci of the ellipse (his first law of planetary motion). He also found that the revolution speed of a planet varied during its orbit, and did so in relation to its distance to the Sun (faster when they are near the Sun and slower when they are far from the Sun). The varying speeds of Mars's and the Earth's motions around the Sun can be summarized by his second law which