Foundation XML and E4X
for Flash and Flex

Sas Jacobs

et

EEEEEEEEEEEEEEEEEEEE

an Apress® company

Foundation XML and E4X for Flash and Flex

Copyright © 2009 by Sas Jacobs

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the
copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1634-6
ISBN-13 (electronic): 978-1-4302-1635-3

Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name,
we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013.
Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley, CA 94705.
Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses
are also available for most titles. For more information, reference our Special Bulk Sales—eBook Licensing web page at
http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the
preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or
damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the Downloads section.

Credits

Lead Editor
Ben Renow-Clarke

Technical Reviewer
Kevin Ruse

Editorial Board

Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham,
Tony Campbell, Gary Cornell, Jonathan Gennick,

Michelle Lowman, Matthew Moodie, Jeffrey Pepper,

Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager
Beth Christmas

Copy Editor
Marilyn Smith

Associate Production Director
Kari Brooks-Copony

Production Editor
Ellie Fountain

Compositor
Patrick Cunningham

Proofreader
Lisa Hamilton

Indexer
Broccoli Information Management

Artist
April Milne

Cover Image Designer
Corné van Dooren

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

I’d like to dedicate this book to my Grandma Lucy, who died
while | was writing it. You are a beautiful person, and | miss
you very much.

CONTENTS AT A GLANCE

About the Author...... xvii
About the Technical Reviewer .. XiX
About the Cover Image Designer.. XXi
Acknowledgments........ xxiii
Introduction. XXV
Chapter 1 INTRODUCTIONTO XML 1
Chapter 2 GENERATING XML CONTENT 33
Chapter 3 ACTIONSCRIPT3.0 AND XML 65
Chapter 4 USING E4AX EXPRESSIONS 97
Chapter 5 USING THE URLLOADER CLASS WITH

XML DOCUMENTS 135
Chapter 6 LOADING METHODS SPECIFIC TO FLEX 169
Chapter 7 LOADING METHODS SPECIFIC TO FLASH.................. 203
Chapter 8 MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0 ...233
Chapter 9 COMMUNICATING WITH THE SERVER 279
Chapter 10 CONSUMING WEB SERVICES WITH FLEX 329
Chapter 11 CONSUMING WEB SERVICES WITH FLASH 373
Chapter 12 FLASH CASE STUDY i, 407
Chapter 13 FLEX CASE STUDY 439
IndeX 480

CONTENTS

About the Author........ Xvii
About the Technical Reviewer Xix
About the Cover Image Designer.. XXi
Acknowledgments.... xxiii
Introduction........ XXV
Chapter T INTRODUCTIONTO XML 1
What is XML? . 1
Understanding XML 2

Storing information in XML documents 2

XML, inthe beginning 3

AN XML @Xample . ..o 4

WHY XML? e e 5
SIMIPlE 5
Flexible . ..o 5
DESCriPtIVE . 6
Accessible ... 6
Independent 6

o Tof £ 7

P o 7

Why is XML important in Flash and Flex? 7
XML as @ SWF data SOUICE oottt et et ettt et 7

MXML N FleX oo e e 8
ActionScript 3.0 and XMLot 8

XML document SeCtionst e 9
DOCUMENt ProlOg . oottt et e e e e 9

XML declaration 9

Processing instructions e 10

Document Type Definitionst e 10

DocumeNt tree ... e 1
WhitESPaCE . .ot 1

NS PACES . .ottt e 1

vii

CONTENTS

Structuring XML documents o e 12
Elements ... 13
Writing elements 13
Naming elements 14
Populating elements 14

The first element 15

AT DULES . o 15
Writing attributes 15
Naming attributes 16
Structuring attributes as elements 16

Xt o 16
ENities . oot 17
COMMENTS . . oot e e e e e 17

CD AT A 18
Asimple XML document i 18
Understanding well-formed documents i 20
Element structure 21
Element nesting o 21
Element CloSingot 21
Element opening and closing tags i 22
Quotes for attributes 22
Documents that aren’t well-formed 23
XML, HTML, and XHTMLo e e e e e e e e e e et 24
Understanding HTML e e e et 24
How is XML different from HTML? e 24
Where does XHTML fit in? e 25
Understanding related recommendations i 27
Understanding DTDs and XML schemas i, 27
Understanding XSLt 29
SUMIMIANY ottt e e e e e e e e e e e 30
Chapter 2 GENERATING XML CONTENT 33
Authoring XML documents inatexteditor 34
Using text and HTML editors it e 34
Using XML @ditorsot e 35
Using Stylus Studio 2008 XMLot 35
Working with Dreamweaver 41
Generating XML content fromadatabase 43
Using a web server to generate XML content i, 43
Working with VB INET e e 44
Working with PHP 47
Working with ColdFusion 49
Generating XML from other software packages i 50
Getting started with XML in Excel 2007 and Word 2007 50
Generating XML from Word 2007 i 51
Creating an XML document in Word using Save Ascouirirnen... 51
Creating XML content in Word by usingaschema................ 53

CONTENTS

Generating XML from Excel 2007 i 56
Generating an XML document in Excel using Save As ..., 56
Creating XML content in Excel usingaschema 57

Creating XML content with Access 2007 i 59

Validation and XML content in SWF applications 61
SUMMANY ottt ettt e e e e e e e e e e e e e e e e e e 62
Chapter 3 ACTIONSCRIPT3.0 AND XML 65
Differences between ActionScript 2.0 and 3.0 66
XML as an ActionScript data type 67
Writing XML inline within ActionScripto e 67
Writing XML with the XML tag in Flexc.. i 68
Overview of the new ActionScript 3.0 classes it 68

The ActionScript 3.0 XML €lassttt 68

The XMLLISt Classottt e e e e e e e 69

The XMLListCollection €lassot e 69

The QName and Namespace Classesouiin i 69

Working with the XML class o e 69

Properties of the XML classo i e 70
Working with XML propertiesin Flash 71
Working with XML propertiesin Flex, 72

Methods of the XML Class e 73

Locating XML Contentt 73
Instructions for the code samples i 74
Working with attribute() and attributes() 76
Finding child elements 77
Finding descendants i 77
Finding elements 78
Finding the parent element 78
Locating texto 79

Finding information about XML content 80
Finding an object’s position withinits parent 80
Determining content type 81
Determining the number of elements 81
Displaying the name of anelement 81
Determining the typeof node 81
Displaying a string representation of XML 82

Modifying XML content 82

Working with the XMLList class e 83
Working with the XMLListCollection class in Flex 84

Setting up the Flex application i 85

Using a function to filter an XMLListCollection 86

Sorting an XMLListCollection 88

Understanding the Namespace Classt i 89
Understanding the QName class e 91
Limitations of working with the XML class i, 93
SUMIMAIY .ttt et e e e e e e e e e e e 94

CONTENTS

Chapter 4 USING E4X EXPRESSIONS 97
Understanding E4AX eXPresSSionsot utt et et e e e e 98
Working through the examples 99
Working with Flash 100
Working with Flex e 100

Using the dot operator to specifyapath, 101
Returning texto 101
Returning an XMLLISt o e 102
Specifying an index 104
Finding the last element e 105
Casting returned content 105

Using the wildcard operator (*)t 106

Using the attribute operator (@)t 108
Looping through attributes 108
Using the descendants operator (L)t 109
Working with filter eXpressionst e 1M1
Working with equality 112
Finding inequality i 114
Other COMPAriSONS\ttt 114
Using AND and OR in conditionsottt 115
Using the additive operator (+) 116
Including other ActionScript eXpressionsoo.iiiiiein . 117
ASSIgNING ValUBS . .ot 17
Simple assignment with = 118
Compound assignment with += 118
Deleting CONteNt 119
EAX N aCtion . ..o 120
Flash example 120
Flex eXample ... o e 127
UMY ettt et e et e e e e e e e e e 133

Chapter 5 USING THE URLLOADER CLASS WITH

XML DOCUMENTS 135

Using the URLLoAder Classttt e e e et 136
Properties of the URLLoader class i, 136
Methods of the URLLoader classo it 137
Events of the URLLoader class 138
Limits of the URLLoader classoiuiiriine i 139
Putting it all together 139
Creating a URLLoader object 139
Making the request o 139
Sending variables with the request 140
Tracking the progress of arequestt 141
ReCEIVING @ FBSPONSE . . ottt et ettt e e e 142
DeteCting EITOrS .ottt 142
Working through examples i 143
Working in Flash 143
Working in Flexo 146

CONTENTS

Updating content with the URLLoaderclass 154
Sending variables in a Flash application 154
Sending variables in a Flex application 158

Understanding Flash Player security 164
Understanding security sandboxes 164
Creating a cross-domain policy file 165

Writing a cross-domain policy file 165

Issues with the cross-domain policy file, 166

Proxying data locally 166
SUMMANY .ottt e e e e e e e e e e e e e e 167
Chapter 6 LOADING METHODS SPECIFIC TO FLEX 169

Loading external content 170

Using the <mx:HTTPService> tagouit ittt 170
Properties of the <mx:HTTPService>tag 171
Methods of the <mx:HTTPService>tag i, 174
Events of the <mx:HTTPService>tag i 174
Putting it all together 175

Creating an HTTPService requestottt 175
Making the request i e 175
Sending variables with therequest 176
Specifying a return typeot 177
Specifying arequest method 177
RECEIVING @ FESPONSE . . o\ttt et e e e e e e e e e e e e 177

Using the HTTPService Class it e e 178
Properties, methods, and events of the HTTPService class 178
Putting it all together 179

Creating an HTTPService requestt 179
Making the request e 179
Sending variables with the request 180
Specifying areturn type 180
Specifying arequest method 180
ReCEIVING @ r8SPONSE . .t 180

Accessing loaded content 181
Accessing the lastResult property directly 181
Binding the lastResult property 181

Working through an <mx:HTTPService> tagexample 182

Working through an HTTPService class example i, 184

Passing variables with the request 191
Using <mxcrequest>tosend variables 191
Sending variables with the HTTPService class i, 194

SUMMANY .ottt e e e e e e e e e e e e e e e e e e 200

CONTENTS

Chapter 7 LOADING METHODS SPECIFICTO FLASH.................. 203
Understanding the AS 2.0 data components i 204
Understanding the XMLCONNECTOr ot e e e 206

Displaying read-only XML content 206
Displaying updatable XML data i 207
Configuring the XMLCONNECtOr it e e ettt 207
Using the Component Inspector i 208
Creating a schema from an XML document 209
Creating a schema by adding fields 211
Understanding schemasettings i 211
Triggering the XMLConnector componentt ennenn... 213
Testing for a loaded XML document i 214
Working through a loading example i 214
Binding XML data directly to Ul components it iiiinann.... 215
Adding a binding 216
Configuring the binding 217
Working through a binding example 219
Extending the binding example 220

Using the DataSet component i 223
Creating bindings with a DataSet component 224
Putting it all together 226
SUMMANY oottt et e e e e e e e e e e e e e e 231

Chapter 8 MODIFYING XML CONTENT WITH ACTIONSCRIPT 3.0 ...233

Setting up the examples 234
Setting up the Flash examples i e 234
Setting up the Flex examples i 234

Changing element and attribute values 235

Adding, editing, and deleting XML content 237
Using appendChild() o 238
Using prependChild() i e 239
COPYINg @ N0 . .ot e e 239
Inserting achildnode 240
Editing content 241
Using setChildren()t e e 242
Deleting an element 242

Modifying element names and NamMesPacesiit et 243
AddiNg @ NAMESPACE ...ttt 243
ReMOVINg @ NAMESPACE it 244
Setting the namespace i e 245
Changing the local element name i 245
Changing the qualified elementname 246

Working through a modification example 247
Working in Flash 248
Working in Flexo 260
Points to note about the example 276

SUMIMIANY ettt e e e e e e e e e e e 277

Xii

CONTENTS

Chapter 9 COMMUNICATING WITH THE SERVER 279
Sending data to the server 280
Structuring the file path 280
Sending the variables 281
Choosing amethod 282
Choosing the format 283
Working with the URLLoader Classt it 284
Sending variables with the URLLoader class, 284
ReCEIVING @ FeSPONSE . o ottt et e e e e e e e 285
Handling errors 286
Working through a URLLoader class example 286
Understanding the VB .INET Pagettt et e 287
Understanding the PHP pageo e 290
Understanding the ColdFusion page i, 291
Working through the Flashexample i ... 292
Working through the Flex example 298
Working with the <mx:HTTPService> element 309
Sending variables with the <mx:HTTPService> element 309
ReCEIVING @ r8SPONSE . . o 31
Handling @rrors o 312
Working through an <HTTPService> element example 312
Working with the HTTPService class in Flex i 316
Sending variables with the HTTPService class i, 316
ReCEIVING @ r8SPONSE . . ot 317
Handling errors oo 317
Working through a HTTPService class example 318
Choosing the Flex approach e 326
SUMMANY oottt et e e e e e e e e e e e e e 327
Chapter 10 CONSUMING WEB SERVICES WITH FLEX 329
Understanding Web Servicest e 330
Understanding SOAP web servicesot 330
Understanding therole of WSDL e 331
Using Flex to consume aweb service it 333
Working with the <mx:WebService> element 333
Creating the web service request i 333
Specifying the operation 334
Making the request 334
Receiving the response i 335
Accessing the reply 335
Understanding the resultFormat of an operation 336
Handling errorso 337
Working through a tag-based example i 337
Working with the WebService class i i 344
Properties of the WebService class i, 344
Methods of the WebService class i 345
Events of the WebService classo 345
Understanding the Operation class i 346

CONTENTS

Properties of the Operationclass 346
Methods of the Operation class 347

Events of the Operation class i, 348
Consuming a web service with ActionScript i 348
Creating the web service request i 348
Specifying the operation 349
Making the request 349
Receiving the response i 350
Accessing the reply 350
Understanding returned data typest 351
Handling errors 351
Working through a scripted example 352
Using Flex Builder to manage web services i 362
Working through the Web Service Introspection wizard 363
Managing web services 365
Consuming the web service 366
Using MXML tags with the generated classes 366
Scripting the generated classes i 369
SUMIMIANY ottt ettt e e e e e e e e e e e 371
Chapter 11 CONSUMING WEB SERVICES WITH FLASH 373
Consuming web services with the URLLoader class 374
Understanding the WSDLfile e 375
Using GET to consume a web Servicec..iuiiiiiinin e, 375
Working through a GET example 377
Consuming a web service with POST e 384
Working through a POST example i 384
Consuming a SOAP web service with the as3webservice extension 388
Working through an as3webservice example 389
Consuming a SOAP web service with the WebServiceConnector component 393
Configuring the WebServiceConnector i 393
Adding parameters 394
Determining the arguments for the operation 395
Adding parameter bindings 395
Triggering the web services call i 397
Binding the results 397
Accessing the results in ActionScript 399
Viewing the Web Services panel ... 399
Working through a WebServiceConnector example 401
SUMIMIANY ettt e e e e e e e e e e e 405
Chapter 12 FLASH CASE STUDY 407
Understanding Flickro 408
Applying for a Flickr Key o 409
Making a Flickr request 409

Xiv

CONTENTS

Understanding the Flickr APl e 409
Understanding the returned photo XML document 410
Understanding the returned people XML document 410
Finding recent photos e 411
Finding interesting photos 412
Searching for photos 412
Finding owner information 413

Receiving a FlicKr response i 413
Receiving photo information 414
Receiving person information 414
Findingthe URLof aphoto e 414
Finding the page containingthephoto 415

Building the application 416

Working through the interface 416

Setting up the application 417

Getting the recent photos list 419

Displaying a large image and title 423

Adding paging functionality 426

Making cosmetic changes to theinterface 427

Viewing interesting photos 428

Searching FLiCKr o 429

Showing owner information 430

SUMMIANY . ottt e e e e e e e e e e 436
Chapter 13 FLEX CASE STUDY i ... 439
Understanding Adobe Kuler e 439

Applying for a Kuler Key 4141

Understanding the Kuler feeds i 441
Accessing an existing feed 441
Searching Kuler 442

Receiving a Kuler response e 444

Building the application 446

Working through the interface 447

Setting up the application 448

Creating the custom class file i 449

Getting the highest rated themes 453

Displaying the theme 458

Adding paging functionality 465

Displaying the most popular schemes 468

Searching KUler 470

Reviewing the completed code i 471
KulerLoader.aso 471
ColorSwatch.mxml 474
KulerCompleted.mxml e 475

UMY ettt e et e e e e e e e e e 478
IndeX 480

XV

ABOUT THE AUTHOR

Sas Jacobs is a web developer and author who works with Flash,
Flex, and XML. Sas has written several books on these topics and has
spoken about them at conferences such as Flashforward, webDU,
and FlashKit. Nowadays, Sas works as a software developer in the
area of e-learning, where she tries to share her passion for all things
ActionScript.

When she’s not working, Sas loves traveling, photography, running,
and her son.

XVii

ABOUT THE TECHNICAL REVIEWER

Kevin Ruse is the principal of Kevin Ruse and Associates Inc., a web and print design and
consulting firm based in Santa Clara, California. Kevin has been a trainer in web development
and graphic design in a variety of environments, including De Anza Community College and
the University of California, Santa Cruz. Kevin has also taught the staff and faculty at Stanford
University and University of California, Berkeley.

Kevin is an Adobe Certified Instructor and a Certified Training Partner for the Altova XML Suite
of software and the <oXygen/> XML editor. He currently teaches the following languages and
software: Flex, Fireworks, Flash, Dreamweaver, Photoshop, InDesign, Acrobat, Quark XPress,
JavaScript, ActionScript, MXML, XML, XSLT, DTD/Schema, ColdFusion, HTML, XHTML, and CSS.

Kevin is the author of Web Standards Design Guide, a college textbook. He is an enthusiastic

instructor who maintains a strong belief that with patience, determination, and guidance, all
individuals can reach their maximum potential.

Xix

ABOUT THE COVER IMAGE DESIGNER

Corné van Dooren designed the front cover image for this book.
After taking a brief from friends of ED to create a new design for the
Foundation series, he worked at combining technological and organic
forms, with the results now appearing on this and other books’
covers.

Corné spent his childhood drawing on everything at hand and then
began exploring the infinite world of multimedia, and his journey
of discovery hasn’t stopped since. His mantra has always been, “The
only limit to multimedia is the imagination,” a saying that keeps him
moving forward constantly.

Corné works for many international clients, writes features for multimedia magazines, reviews and
tests software, authors multimedia studies, and works on many other friends of ED books. You can
see more of his work at and contact him through his web site, www.cornevandooren. com.

If you like Corné’s work, be sure to check out his chapter in New Masters of Photoshop: Volume 2
(friends of ED, 2004).

ACKNOWLEDGMENTS

Thanks again to all the people at friends of ED for your hard work in putting this book together.
You’re a great team and, as always, it has been a pleasure working with you.

xXiii

INTRODUCTION

This book started out as an update to my first book on Flash and XML. Originally, the idea was
to update the content with the changes to XML in ActionScript 3.0. However, when it came to
drafting the table of contents, | realized that there was a whole audience of Flex developers who
would also benefit from a book about XML and ActionScript 3.0. Hence, this book was born!

So, my plan is for this book to cater to both audiences: Flash designer/developers and Flex devel-
opers. I've included common code approaches, as well as topics that are specific to each package.
I've tried to show readers how to achieve the same XML results in both software packages.

This book is best suited to people who have limited experience in the areas of XML and
ActionScript 3.0. It is really pitched at introductory level users who are keen to learn more
about ActionScript 3.0. The book is purposely simple in its approach, showing how to achieve
common tasks required for working with XML in Flash and Flex. The Flash sections show
function-based approaches, whereas the Flex sections show how to work with custom classes.

| hope that you find this book useful and that it whets your appetite for working with XML in
your SWF applications. Hopefully, you'll find that the power and simplicity of XML will inspire
you in your Flash and Flex development efforts!

Layout conventions

To keep this book as clear and easy to follow as possible, the following text conventions are
used throughout:

Important words or concepts are normally highlighted on the first appearance in italics.
Code is presented in fixed-width font.

New or changed code is normally presented in bold fixed-width font.

Pseudo-code and variable input are written in italic fixed-width font.

Menu commands are written in the form Menu » Submenu » Submenu.

Where | want to draw your attention to something, I’'ve highlighted it like this:

(Ahem, don’t say | didn’t warn you. J

® Sometimes code won't fit on a single line in a book. Where this happens, | use an arrow
like this: w.

This is a very, very long section of code that should be written all
won the same line without a break.

Chapter 1

INTRODUCTION TO XML

If you work in the web design or development area, you’ve probably heard of XML.
It’s the basis of all modern web sites, but how many of us actually know what it
really means?

This chapter introduces XML and explains why it is such an important standard for
exchanging information. I'll cover some of the basic concepts behind XML, including
the rules governing the structure of XML documents. I'll also review some of the uses
for XML and the reasons you might need to use it in your SWF applications. You’ll
see some examples of XML documents and, by the end of the chapter, have a solid
understanding of XML and its related concepts.

If you're already familiar with XML and are comfortable generating XML docu-
ments, feel free to skip forward to Chapter 3. If not, read on! You can download the
resources referred to in this chapter from http://www.friendsofed.com.

What is XML?

Let’s start by answering the most basic question of all: what is XML? It’s very difficult
to provide a short answer to this question. The people who invented XML, the World
Wide Web Consortium (W3C), provide the following definition for XML in their glos-
sary at http://www.w3.0rg/TR/DOM-Level-2-Core/glossary.html.

CHAPTER 1

Extensible Markup Language (XML) is an extremely simple dialect of SGML. The goal is to enable generic
SGML to be served, received, and processed on the Web in the way that is now possible with HTML. XML
has been designed for ease of implementation and for interoperability with both SGML and HTML.

| think the definition is very accurate if you already know about XML, but it doesn’t really explain XML
to a novice. Let’s go back to basics and see what that definition really means.

Understanding XML

XML describes a format that you can use to share information. By itself, XML doesn’t do anything other
than store information. It’s not a programming language, so you can’t use it to create stand-alone
applications. XML simply describes information. XML documents need humans or software packages
to process the information that they contain.

XML stands for Extensible Markup Language, which is a little misleading, because XML is actually
a metalanguage, so you can use it to create other markup languages. That’s what the word extensible
means in the acronym. The term markup means that the languages you create use tags to surround
or mark up text, which you’ll be familiar with if you write Extensible Hypertext Markup Language
(XHTML).

In fact, XHTML is one of the languages created by XML. We call XHTML a vocabulary of XML. It was
created when HTML was redefined according to XML rules. For example, in XHTML, all tags must be in
lowercase. This requirement doesn’t apply to HTML.

Think about the tags you use in XHTML, such as <p></p> and <h1></h1>. These tags mark up infor-
mation that will display on a web page. You use these in a very specific way, according to some
predefined rules. For example, one rule says that you can’t include <p></p> tags in the <head> section
of a web page.

It’s possible to make up your own XML vocabulary or work within a group to create an industry-wide
language based on XML. By agreeing on an XML vocabulary, groups can share information using
a common set of markup tags and structures. Chemical Markup Language (CML), for example, allows
scientists to share molecular information in a standardized way. There are specific rules for structur-
ing CML documents and referring to molecular information. MathML is another vocabulary of XML
that describes mathematical operations. But you don’t need to work with an existing vocabulary to
include XML in your applications. It’s possible—in fact, very likely—that you’ll create your own XML
structures to suit the particular needs of your application. You’'ll see this as we work through the
examples in the book.

So what type of information can you store in an XML document?

Storing information in XML documents

XML documents work best with structured information, similar to what you would find in a database.
Examples include lists of names and addresses, product catalogs, sales orders, an iTunes library—
anything with a standardized format. Like a database, XML documents can show hierarchical relation-
ships. Instead of breaking the information into tables and fields, elements and tags describe the data.
By nesting tags inside each another, you can create a hierarchy of parent and child elements.

INTRODUCTION TO XML

The following code block shows some sample XML elements. You can see the hierarchical relationship
between the elements, and the tag names describe their contents.

<contact>
<name>Sas Jacobs</name>
<address>123 Red Street, Redland, Australia</address>
<phone>123 456</phone>

</contact>

The code sample describes contact details, similar to what you would see in an address book. Most of
us have an address book that we use to store contact information about our friends and colleagues.
You might have the information in a software package like Outlook or Outlook Express. It might also
exist on your mobile phone.

Your address book contains many different names, but you store the same information about each
contact: name, phone number, and address. The way the information is stored depends on the soft-
ware package you’ve chosen. If the manufacturer changes the package or discontinues it, you’ll need
to find a new way to store information about your contacts.

Transferring the information to a new software program is likely to be difficult. You’ll need to export it
from the first package, rearrange the contents to suit the second package, and then import the data.
Most software applications don’t share a standard format for contact data, although some can share
information. You must rely on the standards created by each company.

As an alternative, you could use an XML document to store the information. You could create your
own tag names to describe the data. Tags like <contact>, <phone>, and <address> would provide clear
descriptions for your information. Any human who read the document would be able to understand
what information the document held.

Because the address book XML document has a standard format, you could use it to display your
contacts on a web page. Web browsers contain an XML parser to process the XML content. You
could also print out your contacts, or even build a SWF movie in Flash or Flex to display and manage
your contacts.

Your friends could agree on which tags to use and share their address books with each other. You
could all save your contacts in the same place and use tags to determine who had contributed each
entry. When you use a standardized structure for storage, you have endless choices about how to
work with the information.

So if XML is so useful, how did it all start?

XML, in the beginning

XML has been around since 1998. It is based on Standard Generalized Markup Language (SGML),
which was in turn was created out of Generalized Markup Language (GML) in the 1960s. XML is actu-
ally a simplified version of SGML.

SGML describes how to write languages, specifically those that work with text in electronic documents.
It is also an international standard: 1SO 8879. SGML was actually one of the considerations for HTML
when it was first developed.

CHAPTER 1

The first XML recommendation was released in February 1998. Since then, XML has increased in popu-
larity and is now a worldwide standard for sharing information. Human beings, databases, and many
popular software packages use XML documents to store and exchange information. Web services and
RSS feeds also use an XML format to share content over the Internet.

The W3C developed the XML specification. The W3C also works with other recommendations such as
HTML, XHTML, and Cascading Style Sheets (CSS). Detailed information about the XML specification
is available from the W3C’s web site at http://www.w3c.org/XML/. The current specification is XML
1.1 (Second Edition), dated 16 August 2006. You can view this specification at http://www.w3.o0rg/
TR/2006/REC-xm111-20060816/.

The W3C has also created a family of related recommendations that work together to create an
independent framework for managing markup languages. The other areas covered by recommen-
dations include XML schemas, which describe the structure and syntax of an XML document; XML
stylesheets, which allow the transformation and output of XML content; and XPath, which describes
how to navigate or locate specific parts of XML documents.

When it created XML, the W3C published the following goals at http://www.w3.0rg/TR/REC-xm1/
#sec-origin-goals:

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute minimum, ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance.

In other words, XML should be easy to use in a variety of settings, by both people and software appli-
cations. The rules for XML documents should also be clear so they are easy to create.

An XML example

The following code block shows a simple XML document with address book data containing a single
contact. If you've worked with XHTML, you’ll see that the elements are written in a similar way.

<?xml version="1.0"?>
<phoneBook>
<contact id="1">
<name>Sas Jacobs</name>
<address>123 Some Street, Some City, Some Country</address>
<phone>123 456</phone>
</contact>
</phoneBook>

INTRODUCTION TO XML

The information is stored between tags, and the names of these tags are descriptive—for example,
<name>, <address>, and <phone>. The casing of the opening and closing tags is consistent. The hierar-
chy within the document shows that the information relates to a single <contact> element. You can
use any names for these elements, as long as you follow the rules for constructing XML documents.
These rules are presented in the “Structuring XML documents” and “Understanding well-formed
documents” sections later in the chapter.

Now that you know a little more about XML, you may be wondering why it is so important and why
might you want to use XML as a source of data.

Why XML?

Quite simply, XML is simple, flexible, descriptive, accessible, independent, precise, and free! Let’s look
at each of these advantages of XML in turn.

Simple

The rules for creating XML documents are very simple. You just need a text editor or another software
package capable of generating XML formatted data. The only proviso is that you follow some basic
rules so that the XML document is well-formed. You'll find out what this means a little later in the
chapter, in the “Understanding well-formed documents” section.

Reading an XML document is also simple. Tag names are normally descriptive, so you can figure out
what data each element contains. The hierarchical structure of elements allows you to work out the
relationships between each piece of information.

Flexible

One key aspect of XML is its flexibility. As long as you follow some simple rules, you can structure an
XML document in any way you like. The choice of tag names, attributes, and structures is completely
flexible so you can tailor it to suit your data. You can also agree on an XML vocabulary so you can
share information with other people. A Document Type Definition or schema describes the “gram-
mar,” or rules for the language.

XML documents provide data for use in different applications. You can generate an XML document
from a corporate software package, transform it to display on a web site using Extensible Stylesheet
Language Transformations (XSLT), share it with staff on portable devices, use it to create PDF files with
Extensible Stylesheet Formatting Objects (XSL-FO), and provide it to other software packages. You can
reuse the same data in several different settings. The ability to repurpose information is one of XML'’s
key strengths.

XSLT and XSL-FO are two related XML recommendations. Both of these recommenda-
tions describe how to change or transform an XML document into a different type of
output. You might use an XSLT stylesheet to create HTML or text from an XML docu-
ment. You could use XSL-FO to create a PDF document.

CHAPTER 1

The way XML information displays is also flexible. You can display any XML document in any XML
processor, perhaps a web browser, to see the structure of elements. You can also use the document
to display the following:

® A printed list of summary data

® A web page displaying the full details of each element
® A SWF movie that allows you to search the XML content

Descriptive

Because you can choose your own tag names, an XML document becomes a description of your data.
Some people call XML documents self-describing.

The hierarchy of elements means that XML documents show relationships between information in
a similar way to a database. For example, the hierarchies in the address book document tell us that
each contact has a name, address, and phone number, and that we can store many different contacts.

Accessible

XML documents separate data from presentation, so you can have access to the information without
worrying about how it displays. This makes the data accessible to many different people, devices, and
software packages. For example, the sample address book XML document could be accessed in the
following ways:

® Read aloud by a screen reader

@ Displayed on a web site

® Printed to a PDF file

® Processed automatically by a software package
® Viewed on a mobile phone

XML documents use Unicode for their standard character set, so you can write XML documents in any
number of different languages. (The Unicode standard is maintained by the Unicode Consortium; see
http://www.unicode.org/.) A SWF application could offer multilingual support simply by using differ-
ent XML documents with equivalent content.

Independent

XML is platform- and device-independent. It doesn’t matter if you view the data on a PC, Macintosh,
or handheld device. The data is still the same, and people can exchange it seamlessly. Programmers
can also use XML to share information between software packages that otherwise couldn’t easily com-
municate with each other.

You don’t need a specific software package to work with XML documents. You can type the content
in just about any software package capable of receiving text. You can read the document in a web
browser, text editor, or any other XML processor. XML documents can provide a text-based alternative
to database content. In the case of web services, XML is an intermediary between you and someone
else’s database.

INTRODUCTION TO XML

XML doesn’t have “flavors” that are specific to a single web browser (like CSS), version, or operating
system. You don’t need to create three different versions of your XML document to handle different
viewing conditions.

Precise

XML is a precise standard. If you want your XML document to be read by an XML parser, it must be
well-formed. Documents that aren’t well-formed won’t display. You’re probably wondering what
well-formed means. We'll cover that a little later, in the “Understanding well-formed documents” section.

When a schema or Document Type Definition is included within an XML document, an XML processor
can validate the content to make sure that the document structure conforms to the structural rules
you’ve established. XML documents with schemas provide standards, so there is only one way that the
data they contain can be structured and interpreted.

Free

XML is a specification that isn’t owned by any company or commercial enterprise. This means that it’s
free to use XML—you don’t have to buy any special software or other technology. In fact, most major
software packages either support XML or plan to support it in the future.

So why should you use XML in your Flash and Flex projects?

Why is XML important in Flash and Flex?

XML is an important tool for all web developers. Many people consider XML the lingua franca of the
Internet as it provides the standard for data exchange among humans and machines in many different
settings.

An understanding of XML is essential for Flash and Flex developers for the following reasons:

® XML is one way for Flash and Flex developers to store content that powers SWF movies.
® Flex uses a vocabulary of XML, called MXML, to describe interfaces.

@ XML provides a mechanism for working with data that is disconnected from a database or the
Internet.

® ActionScript 3.0 contains features to make working with XML much easier than in previous
versions, so it’s a sound alternative to plain-text files for content.

XML as a SWF data source

Storing content outside a SWF application means that clients can update their own content without
needing to learn either Flash or Flex, or contact the developer each time they want to make a change.
It’s also possible to provide client tools that make it easy to generate the content automatically.

Developers will understand the importance of storing information for SWF movies in an external data
source. Doing so allows the content of a SWF application to change without the need to recompile it
each time. Simply update the source document to update the information within the application.

CHAPTER 1

There are many possible sources of external data: text files, databases, and XML documents. While it’s
possible to create external text files for a SWF file, it’s more practical to use an XML document, which
can include the data and describe the hierarchical relationships between the data.

Although a developer or client can create an XML document by hand, it’s easier to generate the
content automatically. With the assistance of a web server and a server-side language like PHP, Visual
Basic .NET (VB .NET), or ColdFusion, databases can easily generate XML content suitable for a SWF
application. You’ll see how this can be done in the next chapter. In terms of security, it’s good practice
to use an XML layer between a user and database.

Many software packages are capable of exporting their content in an XML format. The most recent
versions of Microsoft Office allow you to save Word, Excel, and Access documents using either
Microsoft’s XML vocabularies or your own. Using standard business tools to generate XML content
allows clients to take control of their own application content.

For SWF applications that need to be portable, XML is an excellent choice as a data source. An XML
document is usually small in file size, making it easy to include on a CD, DVD, or handheld device.

MXML in Flex

In order to get the most out of Flex, developers need a good understanding of XML. Flex uses an XML
vocabulary called MXML to describe application interfaces. MXML is a markup language that provides
the same role in Flex applications as XHTML does in web pages.

MXML consists of a set of tags that correspond to ActionScript 3.0 classes. Because MXML is a vocabu-
lary of XML, it must follow the same rules and be well-formed. I'll cover this term in more detail later
in the chapter.

ActionScript 3.0 and XML

ActionScript 3.0 greatly simplifies the process of working with XML documents compared with earlier
versions. XML is a native data type in this version of ActionScript, making it much easier to work with
in both Flash and Flex.

If you’ve worked with XML in an earlier version of ActionScript, you’ll be used to writing complicated
expressions and looping through collections of nodes to locate specific information in an XML docu-
ment. The new process means that you can target content in an XML document by using element
names instead. This change is significant and makes working with XML content much easier than in
earlier versions of ActionScript. | have found that ActionScript 3.0 has saved me hours of develop-
ment time when it comes to working with XML content. You'll find out more about the changes to
ActionScript in Chapter 3.

ActionScript 3.0 also includes a full implementation of the ECMAScript for XML (E4X) standard,
ECMA-357 (see http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-357.pdf).
Because ActionScript 3.0 adheres to international standards, you can take advantage of any existing
knowledge you have in this area. Learning E4X means that you’ll be able to apply the same skills when
working with JavaScript.

Now that you appreciate why XML is important to Flash and Flex developers, let’s look more closely
inside an XML document.

INTRODUCTION TO XML

XML document sections

It’s important to understand exactly what the term XML document means. This term refers to a collec-
tion of content that meets XML construction rules. The document part of the term has a more general
meaning than with software packages. In Flash or Flex, for example, a document is a physical file.
While an XML document can be a physical file, it can also refer to a stream of information that doesn’t
exist in a physical sense. You can create these streams from a database using a web server, and you’ll
see how this is done later in the book. As long as the information is structured according to XML rules,
it qualifies as an XML document.

An XML document is divided into two sections: the prolog and the content, or document tree. The
content exists inside the document root or root element.

Document prolog

The document prolog appears at the top of an XML document and contains information about the
XML document as a whole. It must appear before the root element in the document. The prolog is
a bit like the <head> section of an XHTML document.

The prolog consists of the following:

® An XML declaration
® Processing instructions
® Document Type Definitions (DTDs)

XML declaration

The prolog usually starts with an XML declaration to indicate to humans and computers that the con-
tent is an XML document. This declaration is optional but if it is present, it must appear on the first
line. At a minimum, the declaration appears as follows:

<?xml version="1.0"?>

The minimum information that must appear inside an XML declaration is an XML version. The preced-
ing declaration uses version 1.0.

At the time of writing, the latest recommendation is XML 1.1. However, you should
continue to use the version="1.0" attribute value for backward-compatibility with
XML processors, unless you specifically need version 1.1. For example, XML 1.1 allows
characters that can’t be used in XML 1.0 and has slightly different requirements for
namespaces.

The XML declaration can also include the encoding and standalone attributes. The order of these
attributes is important.

Encoding determines the character set for the XML document. You can use Unicode character sets
UTF-8 and UTF-16 or ISO character sets like ISO 8859-1, Latin-1, or Western European. If no encoding
attribute is included, it is assumed that the document uses UTF-8 encoding. Languages like Japanese

CHAPTER 1

10

and Chinese need UTF-16 encoding. Western European languages often use ISO 8859-1 to cope with
diacritical characters, such as accent marks, that aren’t part of the English language.

The encoding attribute must appear after the version attribute. Here are some sample declarations
that include an encoding attribute:

<?xml version="1.0" encoding="UTF-8"?>
<?xml version="1.0" encoding="UTF-16"?>
<?xml version="1.0" encoding="IS0-8859-1">

The standalone attribute indicates whether the XML document uses external information, such as
a DTD. A DTD specifies the rules about which elements and attributes to use in the XML document. It
also provides information about the number of times each element can appear and whether an ele-
ment is required or optional.

The standalone attribute is optional. When it’s included, it must appear as the last attribute in the
declaration. The value standalone="no" can’t be used when you are including an external DTD or
stylesheet. Here is an XML declaration that includes this attribute:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

Processing instructions

The prolog can also include processing instructions (Pls). Processing instructions pass information
about the XML document to other applications that may need that information in order to process
the XML.

Processing instructions start with the characters <? and end with ?>. You can add your own pro-
cessing instructions or have them generated automatically by software packages. The first item in
a processing instruction is a name, called the processing instruction target. Processing instruction
names that start with xml are reserved.

One common processing instruction is the inclusion of an external XSLT stylesheet. An XSLT stylesheet
transforms the content of an XML document into a different structure, and I'll cover this topic in more
detail later in this chapter, in the “Understanding XSL” section. A processing instruction that includes
an XSLT stylesheet must appear before the document root. The following line shows how this process-
ing instruction might be written:

<?xml-stylesheet type="text/xsl" href="listStyle.xs1"?>

Processing instructions can also appear in other places in the XML document.

Document Type Definitions

DTDs, or DOCTYPE declarations, can also appear in the prolog. A DTD provides rules about the struc-
ture of elements and attributes within the XML document. It explains which elements are legal in
the XML document, and tells you which elements are required and which are optional. In other
words, a DTD provides the rules for a valid XML document and explains how the document should be
constructed.

INTRODUCTION TO XML

The prolog can include a set of declarations about the XML document, a bit like an embedded CSS
stylesheet in an XHTML document. The prolog can also include a reference to an external DTD as well
as or instead of these declarations. The following shows an external reference to a DTD:

<?xml version="1.0"?>
<IDOCTYPE phoneBook SYSTEM "phoneBook.dtd">

All the other content in an XML document appears within the document tree.

Document tree

Everything that isn’t in the prolog is contained within the document tree. The tree contains all of the
content within the document. The section “Structuring XML content” explains exactly what items
appear here.

The document tree starts with a document root or root element. An XML document can have only one
root element. All of the content within the XML document must appear inside the document root. In
HTML documents, the <html> tag is the root element. This is a rule of a well-formed document.

Whitespace

XML documents include whitespace so that humans can read them more easily. Whitespace refers to
spaces, tabs, and returns that space out the content in the document. The XML specification allows
you to include whitespace anywhere within an XML document except before the XML declaration.

XML processors can interpret whitespace in an XML document, but many won’t actu-
ally display the spaces. If whitespace is important, there are ways to force an XML
processor to display the spaces using the xml:space attribute in an element. I’ll leave
you to research that topic on your own if it’'s something you need to do.

Namespaces

XML documents can get very complicated. One XML document can reference another XML document,
and different rules may apply in each case. XML documents can also summarize content from multiple
sources. For example, you might combine several different XML documents into one.

It’s possible that an XML document will contain elements that use the same name but that come from
different locations and have different meanings. For example, you might use the <table> element
as part of an XHTML reference in a document about furniture, which also needs to use a <table>
element as a description of the type of furniture.

In order to overcome this problem, you can use namespaces to distinguish between elements.
Namespaces associate each XML element with an owner to ensure it is unique within a document,
even if there are other elements that use the same name.

Each namespace includes a reference to a Uniform Resource Identifier (URI) as a way to ensure its
uniqueness. A URI is an Internet address, and each URI must be unique in the XML document. The
URIs used in an XML document don’t need to point to anything, although they can.

1

CHAPTER 1

12

You can define a namespace using the xmlns attribute within an element. Each namespace usually has
a prefix that you use to identify elements belonging to that namespace. You can use any prefix that
you like, as long as it doesn’t start with xml1 and doesn’t include spaces.

Here is an example of using a namespace:

<FOE:details xmlns:FOE="http://www.friendsofed.com/ns/">
<name>Sas Jacobs</name>
</FOE:details>

In the <details> element, the FOE prefix refers to the namespace http://www.friendsofed.com/ns/.
You can also use this prefix with other elements and attributes to indicate that they are part of the
same namespace, like this:

<FOE:address>
123 Some Street, Some City, Some Country
</FOE:address>

This prefix indicates that the <address> element also comes from the http://www.friendsofed.com/
ns/ namespace.

You can also define a namespace without using a prefix. If you do this, the namespace will apply to all
elements that don’t have a prefix or namespace defined. It is referred to as the default namespace.

In an XHTML document, the <html> element includes a namespace without a prefix:
<html xmlns="http://www.w3.0rg/1999/xhtml">

The namespace then applies to all of the child elements of the <html> element; in other words, all of
the remaining elements in the XHTML document.

It isn’t compulsory to use namespaces in your XML documents, but it can be a good idea. Namespaces
are also important when you start to work with schemas and stylesheets. ActionScript 3.0 provides
mechanisms for working with namespaces when dealing with complex XML documents in SWF
applications.

You can find out more about namespaces by reading the latest recommendation at the W3C site. At
the time of writing, this was the Namespaces in XML 1.1 (Second Edition) recommendation at http://
www.w3.0rg/TR/xml-names11/.

Structuring XML documents

XML documents contain both information and markup. The information about the document appears
in the prolog, as discussed in the previous section. You can divide markup into the following:

® Elements

8 Attributes

@ Text

® Entities

