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Swift Book Forward

Whenever I present on Serverless computing, I often start by affirming
that the name itself is a misnomer and joke some clever marketing person
coined it. In retrospect, it is actually a disservice to name such a powerful
technology by what it takes away. Granted, I am not going to try to attempt
to rename it here nor would I want to try to. Instead, let me suggest that
Serverless is best viewed by what it attempts to enable which is allowing
programmers to write efficient functions that perform some cool task in
their favorite language and not care at all about where it runs or how it
scales.

In this book, you will be doing just that, learning how to write Swift
language functions that implement some of the most popular use cases
that drive adoption of Serverless. These use cases should cause light bulbs
to go off as they clearly showcase how turning to Serverless for many
common programming tasks can garner large savings in terms of compute
costs while reducing operational overhead dramatically. It is my hope that
each and every developer who finishes the contents of this book will be
able to recognize these patterns when tasked to write some new Cloud-
based service and choose to do so using Serverless technology.

Notice that I used the word “attempts” in the first paragraph; allow
me to explain. After describing this vision of Serverless and my wishes for
you to embrace it, we should have a reality check. Serverless is still trying
to figure itself out. What I mean is that despite being generally available in
some form as a compute technology offered for more than a few years via
services such as AWS Lambda, MS Azure, or IBM Cloud Functions, there
is no real standard for how it is implemented. Therefore, the programming
and deployment models, the programming conventions, the supported
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languages, and even the use cases themselves will be presented in different
ways (if at all) from different providers. Some Serverless platform providers
may not even have a thought-out programming model, a disservice we will
discuss, or even include some of the most important features needed to
implement the use cases.

Do not despair. In the end, if you write good RESTful functions that are
not tightly coupled to proprietary frameworks or APIs, tooling is available
to help you easily package them to whichever platform serves your needs
the best. The Cloud providers will, in my opinion over time, all evolve
to acknowledge the same patterns and strengths and come to support
a common programming model based on an event-centric, observer
pattern. This book, I am proud to say, chose the Apache OpenWhisk
platform which, in my biased opinion, is the gold standard for Serverless.
Why do I say that? Because OpenWhisk represents a platform that was
originally designed and implemented by many great minds in IBM
Research who not only understood the value of creating a highly scalable
platform around the observer pattern but also placed the simplicity
and usability of the developer as the top priority. After being donated
to the Apache Software Foundation (ASF), OpenWhisk only got better
as it was battle-hardened and fine-tuned by top-notch developers from
around the world. Each of these developers strove to make OpenWhisk
code efficient and performant for both their own personal use cases and
those of their customers. Even better, they made sure OpenWhisk could
be run anywhere and on any Cloud, public, private, or hybrid where you
can run containers. Kubernetes became the preferred framework, but
experimental deployments have also shown that it could be run on Mesos
or OpenShift if needed. I should confess some of my favorite community
members actually run OpenWhisk themselves on AWS or IBM Kubernetes
services. This is a great way for companies that want to explore hosting
their own Serverless platform to test-drive the technology. My colleagues
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at Apache have even had great success running minimal configurations of
the platform for local development or as part of edge computing platforms,
which is a nice segue.

What does the future hold for Serverless? When I said that Serverless is
trying to “figure itself out,” what I more accurately should say is that those
who “get it” are running with it. Those that see the goals of event-driven,
reactive programming come to fruition without having to stand up even a
service framework being realized, now want to take it further. Truthfully,
when I think of and talk about Serverless, I mean Function-as-a-Service
(FaaS) because in order for the technology to go to places it needs to go to,
it needs to be small, fast, and lean. However, so many of us have had to and
are still working hard just to migrate legacy applications to Cloud likely
using Containers popularized by Docker. Even some of us, excited to adopt
Serverless as the ultimate reactive programming platform, have found that
we have “bound” great functional code to proprietary service frameworks.
In these cases, Containers may be the only simple option to bring our
function, whole stack in tow, with us in order to attempt to advantage
Serverless scaling characteristics without spending countless hours
decoupling code. But never accept that running functions in containers
equates to Serverless or is its culmination simply because you can scale
them.

As you can imagine with all the code locked in legacy and proprietary
frameworks, the reliance and focus on advantaging Containers will go on
for quite some time, but Containers are not the end vehicle that will carry
Serverless to these new and exciting places. Even as I write this, people in
the Apache OpenWhisk community and other cutting-edge visionaries
are trying to see how they optimize the best Serverless use cases by taking
them “to the edge.” Focusing on running simple functions in response to
events, what a good Serverless platform does, such as OpenWhisk, aligns
well for processing and analyzing data for most modern data needs. This
means using Serverless “under the covers” to process event data generated
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by millions upon millions of Internet of Things (IoT) devices or handle
requests to rapidly prepare and serve data to mobile devices as part of
Content Delivery Networks (CDNs). Additionally, as you will learn in this
book, one of the premier use cases for Serverless is the ability to quickly
create APIs in Public Clouds where functions can sniff, modify, or enhance
data to and from some existing backend services. If you ever write a new
Cloud-based service and do not use Serverless APIs for your frontend, you
are likely missing out on many advantages and savings.

In fact, if the programmer-oriented vision I laid out earlier for
Serverless holds true, there may be a future where the term “Serverless”
evaporates entirely as it just becomes “good Cloud Programming”. Swift
developers specifically, being highly aware of programming efficiently for
mobile and wearable devices, may be the best poised to understand and
take Serverless where it needs to go. Indeed, I am quite excited to see an
uptick in adoption and discussion of Swift in Serverless circles from the
readers of this book to help shape its future.

Cheers to you as you take Serverless for a ride, go “off road,” and
perhaps take it to see places it has not yet been!

Matt Rutkowski
IBM STSM, CTO for Open Serverless Technologies
June 2020
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CHAPTER 1

Introducing Serverless

Today “the Cloud” is everywhere, it permeates our lives, and it is
impossible to imagine ourselves without it. Without Cloud technology, we
wouldn’t have globally available applications like Airbnb, Uber, Facebook,
Google, IBM Cloud, Netflix, Apple iTunes, Amazon, and Microsoft Azure,
to name but a few Cloud-based services.

Cloud services do not depend on dedicated hardware servers, but
on ephemeral APIs! that can be accessible by everyone, from anywhere,
on any type of device, from desktops to smartphones. All it takes is just a
computer, like a lightweight laptop, or even a smartphone.

So the Cloud is really thousands and thousands of APIs coupled to
swarms of cheap hardware, and into this revolutionary mix we introduce

“Serverless,” a new programming model that is changing the world.

Serverless: The next generation of Cloud
computing

Serverless has become the new Cloud programming model, which only
requires the programmer to pass in the Function-as-a-Service to the Cloud
API for execution. It involves no operations or any maintenance for you as
a Cloud developer.

'APIs, a plural of an API - that is a short for an application programming
interface - which one would use to access a function of an application.

© Marek Sadowski and Lennart Frantzell 2020 1
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Using the Serverless programming model, you can efficiently deploy
your APIs with a minimum effort. And serve your APIs without worry while
just paying for actual code usage, since the code is being executed by an
API consumer.

If you are a client-side developer for iOS in Swift or other mobile or
traditional platforms using other programming languages or if you are
a Cloud engineer and you want to get hands-on experience in using
Serverless - the latest and greatest Cloud-side technology - this book is
for you.

Serverless will help you develop lean, Cloud-based APIs that are as
cost-efficient and lightweight as possible for consumer and business APIs
alike. Serverless technology has been mainstreamed by well-established
enterprises like Amazon, Microsoft, Google, and IBM and embraced
by startups like Slack and so on where Serverless effortlessly enriches
stand-alone applications almost effortlessly with information sourced in
Social Networks, results of big data processing, or supported by Artificial
Intelligence (AI) and Machine Learning (ML).

If the Cloud became the social and industrial infrastructure of today,
then Serverless technology is the latest generation of Cloud services.
Serverless services are superlight thanks to dynamical allocation of
machine resources. Those resources are allocated only when needed,
instead of forcing the developer to pre-arrange these resources ahead of
time in order to be used later for the estimated earlier loads. Furthermore,
in order to stay on the safe side, the typical server-based resources are
often oversized and rarely saturated. While Serverless technology allows
operators to adapt and respond to the given load, the provided computers
are being billed for only the gigabyte seconds of the allocation that was
actually used by the applications. Moreover, organizations that use
Serverless are responsible only for the functions they deploy, while Cloud
operators are taking care of all the maintenance and operations of the
underlying libraries, operating systems, and hardware.
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Note Event-based modern architecture is allowing developers to
decrease time to market. This chapter answers the questions what it
is, when, why to use it, and how.

Traditional client-server computing has dominated the computer
scene since at least the 1980s. Clients connected to beefy dedicated
servers, called on-premise (or on-prem servers), which provided the
compute and data storage needed for crunching the problems and
changing the world. The fall of the Berlin Wall in November 1989 not only
proved the superiority of Western democracy but also of the client-server
model on which democracy was based.

In the beginning of the third millennium, with newly minted
millennials, the Cloud made its entry on the world scene with Amazon's
Elastic Compute Cloud. Startup companies realized that they could move
their own computer services from their own dedicated data centers to
Amazon’s Cloud and cut their initial investments and decrease the startup
costs dramatically. Instead of paying for hardware upfront, they paid for
the access to hardware in time slices.

Servers were cheaper in the Cloud than in each startup’s data center,
but you still had to pay for maintenance and support on an ongoing
basis. What made Serverless revolutionary is that you can now replace
monolithic servers with spinning applications on virtual machines (VMs)
with Serverless functions. These functions are only invoked by client
requests when they are needed. Serverless is a revolution which, going
forward, will have repercussions throughout the world. So now the change
concerns moving from paying per servers to actual gigabyte seconds the
CPUs were spinning for the Serverless functions.

So what is Serverless more precisely? Let’s consider the following
typical scenario for the Serverless function.
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A user uploads a picture to her/his Cloud account. As soon as the
picture is loaded, it generates an event (the new picture in the folder). As
soon as our app detects this event, it triggers a function. The function sends
arequest to an Al-based Visual Recognition service that tags the pictures.
Thanks to provided tags, the app can now update the automatic description
and catalogue the picture according to the pre-trained classifiers of Visual
Recognition. In such a way, the application may provide a user with
suggestions for the image classifications. At the same time, the AI analysis
can make the service providers aware if the uploaded content might be Not
Suitable for Work (NSFW) due to the explicit or harmful content.

Please see the following simple example implementation of Hello
World Serverless function that responds to a simple text input with a
simple greeting. As an input, you provide a name in the JSON format:

{

"name": "Marek & Lennart"

Your Serverless function will respond with the greeting message
customized with the provided name. The function itself is written in IBM
Cloud in Functions - the IBM implementation of the Apache OpenWhisk
project, an open source Serverless platform hosted in IBM Cloud. Since
IBM Cloud provides a generous free tier for developers who want to test the
examples in this book, they will be based on this flavor of the Open Source
project (you might want to use a different provider of Apache OpenWhisk).
Your first implementation of a greeting function in Swift will look like this:

func main(args: [String:Any]) -> [String:Any] {
if let name = args["name"] as? String {
return [ "greeting": "Hello \(name)!" ]
} else {
return [ "greeting": "Hello stranger!" ]
}
}

4
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This implementation of the Serverless function is authored for the
Apache OpenWhisk Swift 4.2 runtime which is hosted as part of the IBM
Cloud Functions service running in IBM Cloud. In addition, this function
was written in the built-in, language-aware editor that comes with the
IBM Cloud Functions user web interface. Figure 1-1 shows how the Swift
function looks in the browser.

Mameipace : Namespace-Serverless-Swift  Location : Dallas

Change Inpst # |REIETERIG] Activations Colupsa M ©

Mo Activations Here
Trvokon your Action and see
the results

Figure 1-1. Serverless function implemented in Apache OpenWhisk
as it seen in the IBM Cloud Functions browser-based editor

When your Serverless function is invoked, the result would look like this:

Activation ID:
45a4f1af985e4b93a4f1af985e3b9374
Results:

{

"greeting": "Hello Marek & Lennart!"

}
Logs:

[]
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The results will appear on the right-hand side of your editor in a
browser (Figure 1-2). You might notice the very short time of the Serverless
function execution - especially after the function has been “warmed up”
(i.e., called and installed in the memory of the Serverless function engine -
we will discuss more on “warming up” functions in the following chapters).

helloworid Namespace : Namespace-Senveriess-Swift  Location : Dallas

@) hello-world/helloworld wesmg
code Code @ w4 Changs tnput # Activations Collsgse fB)  Chear @
Pacarrters 15

X v @ helioworkd 1ms 9/9/2019, 04:54:06
Runtime 3

'
Endpaints 3 Activation ID:
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Figure 1-2. The result of an execution of the Serverless function

The function was created with the help of the Quickstart Templates of a
Hello World function for Swift 4.2 language - please see Figures 1-3 and 1-4
for your reference.

Croate Action Create Sequence
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Create Trigger Install Packages
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and invoke all connected namespace
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Figure 1-3. Selecting a Quickstart Templates in IBM Cloud
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Figure 1-4. Hello World Serverless template-based example from
IBM Cloud

Finally, the resulting Swift function will appear in your Action library as
shown in Figure 1-5.

I Pamneons Acuons ff.l"upa:e Serveriess-Swift -
A et 4 : -
Gettng Started
Actiona
A =l
APIs
Montor ~ hello-world <
b 10 = [res por page | 1-1 of 1 items 10t1 pages -
Namespace Sattings e RUNTDME WD ACTION MEMORY  TIMEOUT
& helioword Swin a2 wot Enabled 56 MB 0

Figure 1-5. Hello World Serverless function in the Actions library in
IBM Cloud

The Action here represents the basic executable element of Apache
OpenWhisk, which when called produces a result in a JSON text format
(Figure 1-6).



