/ d —* - vea
" h o

erverless
wift

Apache OpenWhisk for
i0S developers

Marek Sadowski
Lennart Frantzell

APress’

Serverless Swift

Apache OpenWhisk for i0OS
developers

Marek Sadowski
Lennart Frantzell

Apress’

Serverless Swift: Apache OpenWhisk for iOS developers

Marek Sadowski Lennart Frantzell
Walnut Creek, CA, USA Sunnyvale, CA, USA
ISBN-13 (pbk): 978-1-4842-5835-4 ISBN-13 (electronic): 978-1-4842-5836-1

https://doi.org/10.1007/978-1-4842-5836-1

Copyright © 2020 by Marek Sadowski and Lennart Frantzell

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5835-4. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5836-1

To Marta, Mikolaj “Nick,” Helena, my brother,
and my parents - for your love
To my grandchildren Nessa and Niko
To Raymond Camden, Andrew Trice, Chris Bailey,
and Neil Patterson, without whom we wouldn’t dare

Table of Contents

About the AULNOLS......ccouremeiimrennsssrrsnnssrrsnnsssrssnsssrssnnssssssnnssssnsnnnsssnnnns Xi

About the Technical REVIEWETccuremerssrremmssssssmnssssssnnsssssssnnssssnsnnnssnns xiii

Swift Book FOrward..........couuummmmsssmmmssssssssssssssssnssssssssssssssnsnssssssssnsnssnnns XV

Chapter 1: Introducing Serverless.......ccuummmmmsmmnmmssssnnnsmssssssnsssssssnssesss 1
Serverless: The next generation of Cloud computingcccveevvverrerierievessenserenns 1
Introduction to event-based programmingcccvrevieinnninesnsnsse e 9
An architecture for SErverless ... 11
Cloud-based programming MOdelccccvveernrenerenernsesessesesese s sessesenns 12
WHEN 10 USE SEIVEIIESSvccervruerrrriserinesissesess s e srs s se s s e sesnsens 16
Traditional servers still have their strengths........cccccovrvrinirsnrnr e 17
1] 4= 7 18

Chapter 2: Actors in the Serverless SPacecousemssansssassssnsssansssas 19
The economiCS Of SEIVEIIESS.......ccccoerreeerererere e 19
The reliability 0f SEIVEIIESSccceoveerreerrerere e 24
Resources required 10 run SErveriess........ocvnnniniennsnseness s sessessens 25
The operation weight is on the Cloud provider side.........ccccoverivrnrniriennsensenen 27
The actors in the Serverless SPaCe........ccvvvrrrrrere s 28

AMAazon Lambda.........cocrnn 29
Microsoft Azure FUNCLIONS..........coccoereeecrercreree e 30
Google Cloud FUNCTIONS ... 31
IBM Cloud FUNCHIONS.......cceieeeeerieerercnesee e 32

TABLE OF CONTENTS

0pen SoUurce and SEIVEIIESS......uuvvererererrererrsesseressessssessessesssssssessessessssessessens 34
Apache OPENWRISK........cccocrererirerirerere s sas e se e sas e sesnenens 35
SUMMANY..c..ctiiir e e e e s s b e s b e e e aennn 36
Chapter 3: Apache OpenWhisk — Open Source Project........ccccceeennnrns 37
Overview of Apache OpenWhisk Open SoOurce project........ccevvnvrserernsensensens 38
Who is supporting the Apache OpenWhisk project?ccuevnrerereserensesenenens 42
Natively supported languages by Apache OpenWhisk.........ccceevvrirverernsenienens 45
The adoption of Swift as an open source IangUAQE.........ceerrevererreriererersersersenns 46
SErver-side VS. SEIVEIIESS ..o sesnans 48
The server-side SOIUION ... 48

The Serverless SOIULION.........ccovcvrerererere e 50
Extending i0S programming with Serverless in the Cloudc.ccocvvvvviniennene 51
When to use Serverless — and when not — patterns and antipatterns................ 54
1] 4= 7 57
Chapter 4: Hello World from Apache OpenWhisk in Swiftcceeue. 59
“HEHIO WO ...ttt 59
Writing the first Hello World in SWift..........ccoverenennereere e 60
Create a Hello World from a command-line interface...........c.cooeevnrerereserenscnenns 68
Setting up the local environment ..o 68
Calling a Serverless function from a mobile i0S app in Swiftccocvivvvverene. 75
1] 4= 82
Chapter 5: Apache OpenWhisk Deep Dive........ccccurrnssnnnrmssssnnnssssssnnnnss 83
FUNCLIONS ... 84

Lo T o SR 84
Invoking actions in @ PACKAGEcceveerenrermrenmrsesesessesessese e sessssessesessesesessesenns 90
Creating and using package bindings........c...ccuvrerrenernsesnesnssse e ssssesenns 92

TABLE OF CONTENTS

Options for SErverless ACHION........ccveverrrerern s s sressssessesaens 94
WED ACTIONS ... 98
Feeds and event providers.........cccvrvnrnininnsnsnse s 100
HOOKS......cevccrircserese e 100
POIING....cceireerineserese e sr s sr s e ne e 100
CONNEBCLIONS.....coviviciiri e 101
Difference between feed and trigger.........ovvvvvrivnsnrrrene s s sesennens 101
Implementing feed actions..........ccccvvrvrrenrircr e 101
Rules and triggers......cconnnnn s s 102
108 SDK ...t e 108
Entities, namespaces, and PErmiSSIONS.......ccuverierrerreerersersesssessersessesssessessensees 112
SEUUBNCES ..vveuerrrserrssesessee s s s e e sr e e e s r e e e e b nra e nns 115
SUMMANY . veitetrerere e se s s s a e e s e s sae s e e e s e s aesae e s e s aesae e e e nannaees 119
Chapter 6: The Complete iOS App Using Serverless Swift........ccuuees 121
Step 1. The architeCture OVEIVIEWccoveerevernicreneser e 121
Step 2. Setup of the Mobile appP.......ccovvvvrinnnrr e ——— 123
Step 3. Provisioning of free services in the IBM Cloud...........cccoevirininieniennens 124
Step 4. The flow chart of the Serverless backendccccvevvevivierrensenieniennes 125
Step 5. The €ore NLU aCtiON........cccccvvvvverreriernninse s ses s s ses e e ssesessessessens 126
Step 6. Building a multi-file action in Swift with DOCKEFcceerverierersersernens 128
Step 7. Deploying of multi-file action in IBM Cloudc.ccoeevvrerrerierierensensennens 130
Step 8. Fanning out the initial action...........ccccevevvinininncnrnc e 132
Step 8. Storing Hacker News IDs in the Cloudant DB...........c.cccovererencnene. 135
Step 9. Creating the SEQUENCEccvcererrininere e 137
Step 10. Using the quick template to create a Cloudant DB event
listener — triggering an event on insert of a record in Cloudant DB............. 137
Step 11. Analyzing the news with Watson NLU SErvice..........cceerrererrerseraenns 139

vii

TABLE OF CONTENTS

Step 12. Extending the sequence from the template with NLU and

inserting results into DB aCtionsc.ccocvvvnvninnsnsne s sesennens 140

Step 13. Getting your Hacker News with NLU analysisccccoeeevieniernne 142

Step 14. Updating the basic app to show the results obtained with

help of the Serverless Mobile Backend...........c.ccocevvvnvriennnninienesenseniennns 143
SUMMAIY . eeiteiriere et a e e s e s sae s e e e s e s aesae e s e s aesae e e e naennees 146

Chapter 7: Use CaSesuuvemeersrrrsssssssssssssnssssssssssssssnsnssssssssssssnnnnnnnnnes 147

Serverless DACKENS..........cccovrrrmnineseri s 148
MoDbile BACKENUS........cc.coerereereeeree e 151
Data PrOCESSINGceueereeererererreereesesesse e e se s se e s se s s e sne e nrens 153
Al data ProCESSING ..c.vvevrreerrrerrresere s s e s s srs e s e e sessssssssnens 154
Internet of Things and Edge readycccvvvnnenmnesennsesnssesesssesessesessssessenes 156
Event Stream ProCeSSiNgoovvrrerererserseressssessessessesessessessesessessessessssessessenes 160
Conversational SCENANOS.........covuiieererrrrsesse e 161
SCHEAUIE TASKS......cceerererreerrererrseee e 163

Interval-based trggersS. ... 164

Fire-once-based triggers. ..o vrrrnererenernsesessesess s sesseens 164

CRON-DASEA triggEIS......ccerrrerrrererreerrssesesesessese s sesse e s ssssesessessssassssnns 165
SUMMANY....ctivierinerrress e r e e npn e e 165

Chapter 8: Cloud Native Development Best Practicesuosneeennnnns 167

Security aspects and IAMcceererrrnierierssensesese s s sss s s ssessssessessens 168
Privileged access managementcccoevvinvninnsnsense s sesennens 169
Lo 1 R 170
API Gateway fENCING.......ccovvrererrererreseressesessesessssesessesessesessssesessssessssessssssenns 171
Multi-region deployments with Serverless functions...........ccocerievviniennens 172

viii

TABLE OF CONTENTS

Cold—warm start of Serverless Swift functionsccceeevnnnnnnscssnnnnenes 174
Pre-warming for cold startscccccucvvrinninininnsns e 175
Alternative approach without the complexity of Dockercccoevvviniennns 176
STAYING WA ... 177

Docker and server-side Swift for business transaction support.............cce..... 177

Cloud providers for Apache OpenWhISK.........cccvvrveriernnensenserinssssessesessssessessenes 180
IBM ClIOUdcoouenereceessesssesssssssssssssse e e s s sssssasasanas 180
AODE /0 ... 180
NIMDEIIA ..ottt 181

SUMMANY....eieeerercseree s se e e s re e nen e s 181

Chapter 9: CONCIUSIONS.......cuuvmemmmmsssnnnmmssssssnmmsssssnnsssssssnsssssssnnnnssssnnns 183

Summary of topics and key takeawaysccuevrnvernessinsesnsesnsesesesesessesenns 183

When to use Serverless — Apache OpenWhisk — and when not to use it.......... 184
When to run workload on SErverlesscovenmnesnnnsssssesesssssssesenens 185
When running Serverless is not practical............cccucvrrrrinsvinnennnescrinsenens 185
Patterns and antipatterns.........ccccovvnininnnncnisr 186
Serverless benefits are still often misunderstood...........c.cocovvrerencrnicnene 188
How to connect with authors and the technologyc.ccovvernesernscnenenens 189

About the authors and how to contact them.........cccovininiinsniin 190

Appendix A: Signing Up for the IBM Cloud Accountccccessneennennn 193
SQN UP PrOCESS .euveverrerersersesersesessessssessessesssssssessessessssessessesssssssessessesssssssessens 193

. | § |

ix

About the Authors

Marek Sadowski is a full-stack developer advocate, a robotics startup
founder, and an entrepreneur. Born in Poland, he has about 20 years of
experience in consulting large enterprises in America, Europe, Japan,

the Middle East, and Africa. As a graduate from the International Space
University, Marek pioneered research on VR goggles for the virtual reality
system to control robots on Mars in NASA Ames in 1999. He also founded
a startup to deliver robotics solutions and services for industries. In 2014,
Marek moved to Silicon Valley to promote Edge, IoT, robotics, and mobile
solutions driven with AI, APIs, and Cloud native.

Lennart Frantzell is a developer advocate with IBM in San Francisco,
focusing on Blockchain and Al. Born in Sweden, Lennart moved to Silicon
Valley in the late 1980s to work with Al technology, especially with Expert
Systems. He worked on a team that specialized in taking prototypes from
IBM Research and productizing them, making them ready for distribution
all over the world. When the “AI Winter” put the brakes to development of
Expert Systems, Lennart moved to object-oriented programming and from
there to the IBM Internet Division, part of the burgeoning Internet and
Web movement in the late 1990s.

About the Technical Reviewer

Matt Rutkowski is an STSM and Master Inventor at IBM developing open
infrastructure and industry standards along with open source for over

20 years in areas including banking, digital media and entertainment,
and security compliance and specializing in Cloud for the last 9+ years.
Most recently, he is the IBM lead for and a committer to the Apache
OpenWhisk Serverless computing project at Apache Software Foundation
(ASF) serving on its Project Management Committee and as a committer.
In addition, he has worked on Cloud Orchestration, Security, Audit,

and Compliance standards. Specifically, he has chaired and been lead
editor for such standards as OASIS Topology Orchestration for Cloud
Applications (TOSCA), OASIS CloudID, and DMTF Cloud Auditing (CADF)
which he founded. Furthermore, he has contributed to implementations
of these standards within communities such as Apache, CNCF, and
OpensStack.

xiii

Swift Book Forward

Whenever I present on Serverless computing, I often start by affirming
that the name itself is a misnomer and joke some clever marketing person
coined it. In retrospect, it is actually a disservice to name such a powerful
technology by what it takes away. Granted, I am not going to try to attempt
to rename it here nor would I want to try to. Instead, let me suggest that
Serverless is best viewed by what it attempts to enable which is allowing
programmers to write efficient functions that perform some cool task in
their favorite language and not care at all about where it runs or how it
scales.

In this book, you will be doing just that, learning how to write Swift
language functions that implement some of the most popular use cases
that drive adoption of Serverless. These use cases should cause light bulbs
to go off as they clearly showcase how turning to Serverless for many
common programming tasks can garner large savings in terms of compute
costs while reducing operational overhead dramatically. It is my hope that
each and every developer who finishes the contents of this book will be
able to recognize these patterns when tasked to write some new Cloud-
based service and choose to do so using Serverless technology.

Notice that I used the word “attempts” in the first paragraph; allow
me to explain. After describing this vision of Serverless and my wishes for
you to embrace it, we should have a reality check. Serverless is still trying
to figure itself out. What I mean is that despite being generally available in
some form as a compute technology offered for more than a few years via
services such as AWS Lambda, MS Azure, or IBM Cloud Functions, there
is no real standard for how it is implemented. Therefore, the programming
and deployment models, the programming conventions, the supported

SWIFT BOOK FORWARD

languages, and even the use cases themselves will be presented in different
ways (if at all) from different providers. Some Serverless platform providers
may not even have a thought-out programming model, a disservice we will
discuss, or even include some of the most important features needed to
implement the use cases.

Do not despair. In the end, if you write good RESTful functions that are
not tightly coupled to proprietary frameworks or APIs, tooling is available
to help you easily package them to whichever platform serves your needs
the best. The Cloud providers will, in my opinion over time, all evolve
to acknowledge the same patterns and strengths and come to support
a common programming model based on an event-centric, observer
pattern. This book, I am proud to say, chose the Apache OpenWhisk
platform which, in my biased opinion, is the gold standard for Serverless.
Why do I say that? Because OpenWhisk represents a platform that was
originally designed and implemented by many great minds in IBM
Research who not only understood the value of creating a highly scalable
platform around the observer pattern but also placed the simplicity
and usability of the developer as the top priority. After being donated
to the Apache Software Foundation (ASF), OpenWhisk only got better
as it was battle-hardened and fine-tuned by top-notch developers from
around the world. Each of these developers strove to make OpenWhisk
code efficient and performant for both their own personal use cases and
those of their customers. Even better, they made sure OpenWhisk could
be run anywhere and on any Cloud, public, private, or hybrid where you
can run containers. Kubernetes became the preferred framework, but
experimental deployments have also shown that it could be run on Mesos
or OpenShift if needed. I should confess some of my favorite community
members actually run OpenWhisk themselves on AWS or IBM Kubernetes
services. This is a great way for companies that want to explore hosting
their own Serverless platform to test-drive the technology. My colleagues

SWIFT BOOK FORWARD

at Apache have even had great success running minimal configurations of
the platform for local development or as part of edge computing platforms,
which is a nice segue.

What does the future hold for Serverless? When I said that Serverless is
trying to “figure itself out,” what I more accurately should say is that those
who “get it” are running with it. Those that see the goals of event-driven,
reactive programming come to fruition without having to stand up even a
service framework being realized, now want to take it further. Truthfully,
when I think of and talk about Serverless, I mean Function-as-a-Service
(FaaS) because in order for the technology to go to places it needs to go to,
it needs to be small, fast, and lean. However, so many of us have had to and
are still working hard just to migrate legacy applications to Cloud likely
using Containers popularized by Docker. Even some of us, excited to adopt
Serverless as the ultimate reactive programming platform, have found that
we have “bound” great functional code to proprietary service frameworks.
In these cases, Containers may be the only simple option to bring our
function, whole stack in tow, with us in order to attempt to advantage
Serverless scaling characteristics without spending countless hours
decoupling code. But never accept that running functions in containers
equates to Serverless or is its culmination simply because you can scale
them.

As you can imagine with all the code locked in legacy and proprietary
frameworks, the reliance and focus on advantaging Containers will go on
for quite some time, but Containers are not the end vehicle that will carry
Serverless to these new and exciting places. Even as I write this, people in
the Apache OpenWhisk community and other cutting-edge visionaries
are trying to see how they optimize the best Serverless use cases by taking
them “to the edge.” Focusing on running simple functions in response to
events, what a good Serverless platform does, such as OpenWhisk, aligns
well for processing and analyzing data for most modern data needs. This
means using Serverless “under the covers” to process event data generated

xvii

SWIFT BOOK FORWARD

by millions upon millions of Internet of Things (IoT) devices or handle
requests to rapidly prepare and serve data to mobile devices as part of
Content Delivery Networks (CDNs). Additionally, as you will learn in this
book, one of the premier use cases for Serverless is the ability to quickly
create APIs in Public Clouds where functions can sniff, modify, or enhance
data to and from some existing backend services. If you ever write a new
Cloud-based service and do not use Serverless APIs for your frontend, you
are likely missing out on many advantages and savings.

In fact, if the programmer-oriented vision I laid out earlier for
Serverless holds true, there may be a future where the term “Serverless”
evaporates entirely as it just becomes “good Cloud Programming”. Swift
developers specifically, being highly aware of programming efficiently for
mobile and wearable devices, may be the best poised to understand and
take Serverless where it needs to go. Indeed, I am quite excited to see an
uptick in adoption and discussion of Swift in Serverless circles from the
readers of this book to help shape its future.

Cheers to you as you take Serverless for a ride, go “off road,” and
perhaps take it to see places it has not yet been!

Matt Rutkowski
IBM STSM, CTO for Open Serverless Technologies
June 2020

xviii

CHAPTER 1

Introducing Serverless

Today “the Cloud” is everywhere, it permeates our lives, and it is
impossible to imagine ourselves without it. Without Cloud technology, we
wouldn’t have globally available applications like Airbnb, Uber, Facebook,
Google, IBM Cloud, Netflix, Apple iTunes, Amazon, and Microsoft Azure,
to name but a few Cloud-based services.

Cloud services do not depend on dedicated hardware servers, but
on ephemeral APIs! that can be accessible by everyone, from anywhere,
on any type of device, from desktops to smartphones. All it takes is just a
computer, like a lightweight laptop, or even a smartphone.

So the Cloud is really thousands and thousands of APIs coupled to
swarms of cheap hardware, and into this revolutionary mix we introduce

“Serverless,” a new programming model that is changing the world.

Serverless: The next generation of Cloud
computing

Serverless has become the new Cloud programming model, which only
requires the programmer to pass in the Function-as-a-Service to the Cloud
API for execution. It involves no operations or any maintenance for you as
a Cloud developer.

'APIs, a plural of an API - that is a short for an application programming
interface - which one would use to access a function of an application.

© Marek Sadowski and Lennart Frantzell 2020 1
M. Sadowski and L. Frantzell, Serverless Swift,
https://doi.org/10.1007/978-1-4842-5836-1_1

https://doi.org/10.1007/978-1-4842-5836-1_1#DOI

CHAPTER 1 INTRODUCING SERVERLESS

Using the Serverless programming model, you can efficiently deploy
your APIs with a minimum effort. And serve your APIs without worry while
just paying for actual code usage, since the code is being executed by an
API consumer.

If you are a client-side developer for iOS in Swift or other mobile or
traditional platforms using other programming languages or if you are
a Cloud engineer and you want to get hands-on experience in using
Serverless - the latest and greatest Cloud-side technology - this book is
for you.

Serverless will help you develop lean, Cloud-based APIs that are as
cost-efficient and lightweight as possible for consumer and business APIs
alike. Serverless technology has been mainstreamed by well-established
enterprises like Amazon, Microsoft, Google, and IBM and embraced
by startups like Slack and so on where Serverless effortlessly enriches
stand-alone applications almost effortlessly with information sourced in
Social Networks, results of big data processing, or supported by Artificial
Intelligence (AI) and Machine Learning (ML).

If the Cloud became the social and industrial infrastructure of today,
then Serverless technology is the latest generation of Cloud services.
Serverless services are superlight thanks to dynamical allocation of
machine resources. Those resources are allocated only when needed,
instead of forcing the developer to pre-arrange these resources ahead of
time in order to be used later for the estimated earlier loads. Furthermore,
in order to stay on the safe side, the typical server-based resources are
often oversized and rarely saturated. While Serverless technology allows
operators to adapt and respond to the given load, the provided computers
are being billed for only the gigabyte seconds of the allocation that was
actually used by the applications. Moreover, organizations that use
Serverless are responsible only for the functions they deploy, while Cloud
operators are taking care of all the maintenance and operations of the
underlying libraries, operating systems, and hardware.

CHAPTER 1 INTRODUCING SERVERLESS

Note Event-based modern architecture is allowing developers to
decrease time to market. This chapter answers the questions what it
is, when, why to use it, and how.

Traditional client-server computing has dominated the computer
scene since at least the 1980s. Clients connected to beefy dedicated
servers, called on-premise (or on-prem servers), which provided the
compute and data storage needed for crunching the problems and
changing the world. The fall of the Berlin Wall in November 1989 not only
proved the superiority of Western democracy but also of the client-server
model on which democracy was based.

In the beginning of the third millennium, with newly minted
millennials, the Cloud made its entry on the world scene with Amazon's
Elastic Compute Cloud. Startup companies realized that they could move
their own computer services from their own dedicated data centers to
Amazon’s Cloud and cut their initial investments and decrease the startup
costs dramatically. Instead of paying for hardware upfront, they paid for
the access to hardware in time slices.

Servers were cheaper in the Cloud than in each startup’s data center,
but you still had to pay for maintenance and support on an ongoing
basis. What made Serverless revolutionary is that you can now replace
monolithic servers with spinning applications on virtual machines (VMs)
with Serverless functions. These functions are only invoked by client
requests when they are needed. Serverless is a revolution which, going
forward, will have repercussions throughout the world. So now the change
concerns moving from paying per servers to actual gigabyte seconds the
CPUs were spinning for the Serverless functions.

So what is Serverless more precisely? Let’s consider the following
typical scenario for the Serverless function.

CHAPTER 1 INTRODUCING SERVERLESS

A user uploads a picture to her/his Cloud account. As soon as the
picture is loaded, it generates an event (the new picture in the folder). As
soon as our app detects this event, it triggers a function. The function sends
arequest to an Al-based Visual Recognition service that tags the pictures.
Thanks to provided tags, the app can now update the automatic description
and catalogue the picture according to the pre-trained classifiers of Visual
Recognition. In such a way, the application may provide a user with
suggestions for the image classifications. At the same time, the AI analysis
can make the service providers aware if the uploaded content might be Not
Suitable for Work (NSFW) due to the explicit or harmful content.

Please see the following simple example implementation of Hello
World Serverless function that responds to a simple text input with a
simple greeting. As an input, you provide a name in the JSON format:

{

"name": "Marek & Lennart"

Your Serverless function will respond with the greeting message
customized with the provided name. The function itself is written in IBM
Cloud in Functions - the IBM implementation of the Apache OpenWhisk
project, an open source Serverless platform hosted in IBM Cloud. Since
IBM Cloud provides a generous free tier for developers who want to test the
examples in this book, they will be based on this flavor of the Open Source
project (you might want to use a different provider of Apache OpenWhisk).
Your first implementation of a greeting function in Swift will look like this:

func main(args: [String:Any]) -> [String:Any] {
if let name = args["name"] as? String {
return ["greeting": "Hello \(name)!"]
} else {
return ["greeting": "Hello stranger!"]
}
}

4

CHAPTER 1 INTRODUCING SERVERLESS

This implementation of the Serverless function is authored for the
Apache OpenWhisk Swift 4.2 runtime which is hosted as part of the IBM
Cloud Functions service running in IBM Cloud. In addition, this function
was written in the built-in, language-aware editor that comes with the
IBM Cloud Functions user web interface. Figure 1-1 shows how the Swift
function looks in the browser.

Mameipace : Namespace-Serverless-Swift Location : Dallas

Change Inpst # |REIETERIG] Activations Colupsa M ©

Mo Activations Here
Trvokon your Action and see
the results

Figure 1-1. Serverless function implemented in Apache OpenWhisk
as it seen in the IBM Cloud Functions browser-based editor

When your Serverless function is invoked, the result would look like this:

Activation ID:
45a4f1af985e4b93a4f1af985e3b9374
Results:

{

"greeting": "Hello Marek & Lennart!"

}
Logs:

[]

CHAPTER 1 INTRODUCING SERVERLESS

The results will appear on the right-hand side of your editor in a
browser (Figure 1-2). You might notice the very short time of the Serverless
function execution - especially after the function has been “warmed up”
(i.e., called and installed in the memory of the Serverless function engine -
we will discuss more on “warming up” functions in the following chapters).

helloworid Namespace : Namespace-Senveriess-Swift Location : Dallas

@) hello-world/helloworld wesmg
code Code @ w4 Changs tnput # Activations Collsgse fB) Chear @
Pacarrters 15

X v @ helioworkd 1ms 9/9/2019, 04:54:06
Runtime 3

'
Endpaints 3 Activation ID:

& S5a41aE ML Jad F 1AL BESRINNITH

1 Results:
Connected Triggers ™ 3
Enciosing Sequences]

Loges

Logs

Figure 1-2. The result of an execution of the Serverless function

The function was created with the help of the Quickstart Templates of a
Hello World function for Swift 4.2 language - please see Figures 1-3 and 1-4
for your reference.

Croate Action Create Sequence

ALy E! Gt s2arted quickly iaing ane Actiorn contain your f Sequinces imvolke Actiont i
of the Templates. A mamber functon coce and are a linoar oroer, passang

My o use cases are avadathe. invokad by events or REST paramaters from one 1S the
from a helio world acthon to APl calls. et

Logs (a1 invoking functions from

Claustant or Fvent Sireaens

Create Trigger Install Packages

‘ Trigggers recetvn wveets from # | Inataling Packages installs
outide [BM Cloud Functions Feutable Actons in10 your
and invoke all connected namespace
Actians

Figure 1-3. Selecting a Quickstart Templates in IBM Cloud

CHAPTER 1 INTRODUCING SERVERLESS

il Functions
~
—— Deploy Template
Actioen
T 2
Triggers
Template \ Choese Template
AP)
Gt started quickly using one of the Hello World st Eers
Mond Templates. A number of use cases are B . tion il accep! » sngie caramate) e 4 Choucart 06 has & Gocumeet 4dited of
available, from a hello world action to AR, e i N S e, Lo the Changs in e corbide
Logs [irwoking functions from Cloudant or Event — -
Namesgace Settings Streans.

e menaghe

Periodic Slack Reminder
e i

parede alach clonst cbiect sorage

Figure 1-4. Hello World Serverless template-based example from
IBM Cloud

Finally, the resulting Swift function will appear in your Action library as
shown in Figure 1-5.

I Pamneons Acuons ff.l"upa:e Serveriess-Swift -
A et 4 : -
Gettng Started
Actiona
A =l
APIs
Montor ~ hello-world <
b 10 = [res por page | 1-1 of 1 items 10t1 pages -
Namespace Sattings e RUNTDME WD ACTION MEMORY TIMEOUT
& helioword Swin a2 wot Enabled 56 MB 0

Figure 1-5. Hello World Serverless function in the Actions library in
IBM Cloud

The Action here represents the basic executable element of Apache
OpenWhisk, which when called produces a result in a JSON text format
(Figure 1-6).

