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Introduction

This book compares some of the best-known dynamic HTML page
creation systems. It includes some older systems such as CGI and SSH as
well as newer systems such as Flask and Django. Each system is examined
and compared with the other systems to discover each of their strengths
and weaknesses.

This should give you a basis for choosing the correct system for your
dynamic HTML page needs. For each system, I will provide example
programs so that if you are not experienced with a system, you can get a
taste of what building an application with it is like.



Preface: Document
Conventions

This book uses several conventions to highlight certain words and phrases
and draw attention to specific pieces of information. The convention used
depends on the type of information displayed.

Computer Commands

Computer commands are usually presented in a bold font such as in the
following example:

The Unix command 1s run from the command shell is used to
present a list of files and directories.

Filenames

Filenames are usually presented in monospaced text such as in the
following example:

To see the contents of the file report.txt use the command cat
report.txt.

Programming Language Elements
and Literals

Programming language elements include such things variable names, literals,
constants, symbols, tokens, functions, class names, and other objects.

xvii
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Literal data is taken directly from a computer screen or a computer
language literal value and is usually presented in monospaced text such as
within the following example:

The following line is the output from running 1s:

en-US Makefile publican.cfg

Computer Output and Source Code

Computer output data is taken directly from a computer screen and
usually presented in monospaced text such as in the following example.
This information is usually set off from the rest of the text.

books Desktop  documentation drafts mss photos  stuff swn
books tests Desktopl downloads images notes scripts svgs

Source-code listings are also set off from the rest of the text, as shown
in Listing P-1.

Listing P-1. This Is a Source Code Listing

from _ future  import print function
import sys
import libvirt

conn = libvirt.open('qgemu:///system")
if conn == None:
print('Failed to open connection to qemu:///system', \
file=sys.stderr)
exit(1)
conn.close()
exit(0)
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PREFACE: DOCUMENT CONVENTIONS

Notes and Warnings

Finally, we use three visual styles to draw attention to information that
might otherwise be overlooked.

(ONote Notes are tips, shortcuts, or alternative approaches to the
task at hand. Ignoring a note should have no negative consequences,
but you might miss out on a trick that makes your life easier.

vvImportant Important boxes detail things that are easily missed:
configuration changes that apply only to the current session, or
services that need restarting before an update will apply. Ignoring a
box labeled “Important” will not cause data loss but may cause
irritation and frustration.

@Warning Warnings should not be ignored. Ignoring warnings will
most likely cause data loss.

Xix



CHAPTER 1

Introduction to Web
Servers

This chapter introduces web servers, the services they provide, and how
they work. This information is essential to web developers so they can
make proper use of their web server and provide the best web experience
to their users.

All web servers use the same building blocks to serve up web pages
to the user. While we could look at all the available web servers, it really is
not necessary since they all are designed around the same building blocks.
Instead, we will concentrate on the Apache web server since it is the most
popular. All the other web servers use the same building blocks and design
principles as the Apache server.

Glossary of Terms

When delving into technical information, it is important that you
understand the terminology used. For that reason, please review the

following web server terms:

e Common Gateway Interface (CGI): This describes a
process that serves up a dynamic web page. The web
page is built by a program provided by the web server

© David Ashley 2020 1
D. Ashley, Foundation Dynamic Web Pages with Python,
https://doi.org/10.1007/978-1-4842-6339-6_1
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administrator. A common set of information is available

to the program via the program’s environment.

e Hypertext Transport Protocol (HTTP): This is a set
of rules used to describe a request by the user to the
web server and the returned information. The request
and the reply must follow strict rules for the request
to be understood by the server and for the reply to be
understood by the user’s browser.

e Hypertext Markup Language (HTML): This code is used
to build a web page that is displayed by a browser, and
the Apache web server is used to serve the web page to
users (clients). There are several versions of this code,
but we will be using the latest version (5.0) in this book.

e Cascading Style Sheets (CSS): These sheets define the
styles to be used by one or more web pages. These
styles are used to define fonts, colors, and the size of a
section of text within a defined area of the HTML page.

These terms should give you a good starting point for discussing how
a web server works. All of these terms will receive wider attention and
definition throughout this book.

The Apache Web Server

The Apache web server (today this is known formally as the HTTP Server)
dates back to the mid-1990s when it started gaining widespread use. The
web server is a project of the Apache Software Foundation, which manages
several projects. There are currently more than 200 million lines of code
managed by the foundation for the Apache web server. The current release
as of this writing is 2.4.41.
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Starting with Apache version 2.0, Apache uses a hook architecture to
define new functionality via modules. We will study this in a subsequent
chapter.

When you first look at hooks, they will seem a little complicated, but in
reality, they are not since most of the time you are only modifying Apache
alittle. This will reduce the code you need to write to implement a hook to
a minimum.

The Apache web server uses a config file to define everything the
server needs to know about all the hooks you want to include in Apache.
It also defines the main server and any virtual servers you want to include.
In addition, it defines the name of the server, the home directory for the
server, the CGI directory to be used, any aliases needed by the server, the
server name, any specific handlers used by that server, the port to be used
by the server, the error log to be used, and several other factors.

Once configuration is complete, the Apache server is now ready to
supply files to a client browser. This is called the request-response cycle.
For each request sent by the browser to the server, the request must travel
through the request-response cycle to produce a response that is sent
back to the browser. While this looks simple on the surface, the request-
response cycle is both powerful and flexible. It can allow programs you
create, called modules, to modify both the request and the response in
many flexible ways. A module can also create the response from scratch
and can include inputs from resources outside of Apache, such as a
database or other external data repository.

Figure 1-1 shows the request-response loop of Apache plus the startup
and shutdown phases of the server.
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Figure 1-1. The Apache request-response loop
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Modules not only can be used in the request-response cycle but in
other portions of Apache such as during configuration, shutdown/cleanup,
processing security requests, and other valuable functions. As you can see,
modules allow flexible and powerful methods to be created by the server
administrator to help with providing a great experience for their users.

Modules are not the only way to create dynamic web pages. Another
way is by invoking available Apache services that can call an external
program to create the page. The CGI process is usually invoked to supply
this service, but there are other ways as well. Each of these ways will be
examined in this book. It will be up to you to decide the best methodology
for use in your environment.

The shaded request/response loop can have several forms. One such
form is as a loop inside one of several processes under Apache. Another is
running the loop as a thread inside a single process under Apache. All of
these forms are designed to make the most efficient process of responding
to arequest that an operating system may provide.

The Keep-Alive loop is for HTTP 2.0 requests if supported by the web
server. It allows the connection to stay open to the client until all requests
have been processed. The loop here describes how a single request is
processed by Apache. If the web server is not running HTTP 2.0 requests,
then each request/response will close the connection once the response
has been sent.

Nginx Web Server

The Nginx server was designed as a low-cost (in terms of system
requirements) alternative to the Apache server. Probably the biggest
difference between Nginx and Apache is that Nginx has an asynchronous
event-driven architecture rather than using multiple threads to process
each request. While this can provide predictable performance under high
loads, it does come with some downsides. For instance, a request can end
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up waiting in the queue longer than the request attempt will survive on the
network; i.e., the requester can give up before the request is ever processed
if there are too few processing routines. While this problem is not exclusive
to this server, it does still exist.

Recently the Nginx server has become popular within the community
because of its smaller footprint and flexible design. However, since many
of the principles that we will use to describe the Apache server also apply
to the Nginx server, I will not delve deeply into Nginx and will discuss it
only when differences between the two servers are important, especially in
regard to dynamic web page design.

Apache Tomcat Server

The Apache Tomcat server is written in Java, which makes it difficult

to compare to the more standard web servers. While some principles

of dynamic web page design are similar, there are many differences.
Therefore, and because it’s less commonly used than Apache and Nginx, I
will not attempt to cover it in this book.

Configuring the Apache Web Server

The Apache web server has a single main configuration file and a number
of optional configuration files. The main file is named httpd.conf, and it
controls which optional files are loaded as well as the location where they
can be found. It also specifies the global features used by the server.

Listing 1-1 shows an unedited version of the httpd. conf file. Following
the listing, I will describe the sections that need to be modified to give you
a usable configuration file.
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Listing 1-1. The Unedited httpd.conf File

HOoH = OH =

This is the main Apache HTTP server configuration file.

It contains the

configuration directives that give the server its
instructions.

See <URL:http://httpd.apache.org/docs/2.4/> for detailed
information.

In particular, see
<URL:http://httpd.apache.org/docs/2.4/mod/directives.html>
for a discussion of each configuration directive.

See the httpd.conf(5) man page for more information on this
configuration,
and httpd.service(8) on using and configuring the httpd service.

Do NOT simply read the instructions in here without
understanding

what they do. They're here only as hints or reminders.
If you are unsure

consult the online docs. You have been warned.

Configuration and logfile names: If the filenames you specify
for many

of the server's control files begin with "/" (or "drive:/"
for Win32), the

server will use that explicit path. If the filenames do
*not* begin

with "/", the value of ServerRoot is prepended -- so
'log/access_log'
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with ServerRoot set to '/www' will be interpreted by the
server as '/www/log/access_log', where as '/log/access_log'
will be

interpreted as '/log/access log'.

# ServerRoot: The top of the directory tree under which the

H* OB O OB

#
#

server's
configuration, error, and log files are kept.

Do not add a slash at the end of the directory path. If you point
ServerRoot at a non-local disk, be sure to specify a local
disk on the

Mutex directive, if file-based mutexes are used. If you wish
to share the

same ServerRoot for multiple httpd daemons, you will need to
change at

least PidFile.

ServerRoot "/etc/httpd"

H+ R

Listen: Allows you to bind Apache to specific IP addresses
and/or

ports, instead of the default. See also the <VirtualHost>
directive.

Change this to Listen on specific IP addresses as shown below to
prevent Apache from glomming onto all bound IP addresses.

#listen 12.34.56.78:80
Listen 80



