Foundation
Dynamic Web
Pages with Python

Create Dynamic Web Pages with
Django and Flask

David Ashley

ApPress’

Foundation Dynamic
Web Pages with
Python

Create Dynamic Web Pages
with Django and Flask

David Ashley

Apress’

Foundation Dynamic Web Pages with Python

David Ashley
Austin, TX, USA

ISBN-13 (pbk): 978-1-4842-6338-9 ISBN-13 (electronic): 978-1-4842-6339-6
https://doi.org/10.1007/978-1-4842-6339-6

Copyright © 2020 by David Ashley

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar
Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6338-9. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6339-6

This book is dedicated to Debbie and Jim. A brother never
had a better sister and brother-in-law.

Table of Contents

About the AUthOrccccviissemmmmmsssssmmmsssssnmssssssn s nans ix
About the Technical REVIEWETccussssmssmsssssnnsssssssssnssssssssnsssssssnnsssssnns xi
Acknowledgments........ccurrmssnnmmsssnsssssnsssssnnssssnsssssnsesssnsssssnnssssnnssssnns Xiii
Introductionccccciisemmmmisssnnnnmnssssnnnnsssssn s XV
Preface: Document Conventions.......ccucurussmsmssssssssssssssssssssssnssssnnssssas Xvii
Chapter 1: Introduction to Web Serversc..ccccnmnnnmmnnnnsssnnnmnssssssnsnns 1
GIOSSArY OF TEIMIS.....eiteierrererreserseserse e e s s s e e s re e s e e sresa e e s e saesnese e e s e saens 1
The APAChe WED SEIVETcccverererrerererersese e s s ss s e ssesnessssssnesaees 2
T L= T T 5
Apache TOMCAL SEIVENcccveriiirirere e sne 6
Configuring the Apache Webh SErVer ... 6
0rganizing Your Webh SErVEr........c.ccvveernesenesessssessssessssssessssessssesssssssssssessssesenns 26
Operating SYStem LinkKS........ccccuiuvrmennenmninsensnesssssesssse s sessessssssessnses 26
APAChE DIrClIVES......ccviereric e 27
U] 4= S 27
Chapter 2: HTML Pages and CSS..........ccuusmmmmmsssnnnnmmsssssssmssssssssssssssnnns 29
o 0 TS 29
Document and Metadata Tags........ccccvvvvrverininsn e 31

The TEXETAQGS ...vevereree e e n e s e 32
Grouping CoNtENt TAgS......eevrerrerererrerserersesersersessessssessessessesessessessessssessessees 33
SECHONING TAYS +.vveererrerrererrereressesessersesessssesessessesessessessessesessessessessssessessens 34

TABLE OF CONTENTS

Creating TabIESvcvvererererrere s s sa e se s sre e se e ene s 35
Creating FOrMS.......vcvverere e res s sse s s e ss s s e s sae e saesre e s e saeene s 36
Embedding Content TagScvcvrererrnrenrerernnensessersesessesessessssessessessssessessesaes 37
CSS EIBMENTS......cvcecccrerisrses s sr s sesnans 38
LRI 1< o] (0] P 40
Border and Background Propertiesccocvvvverrenneriersersesseesessessesssessesennes 43
BoX MOdEl Propertiescccvcrverrereriennensesessessee e sessessesssessesessssssessessesnes 46
L o (0] 0 1= T 47
Transition, Animation, and Transform Properties.........ccccecvvvvirvrvenseeneriennen 48
03 T=T g a0 0T (T 50
Organizing HTML and CSS DOCUMENTScccovvcvirencnnsene s 50
Simple HTML and CSS Pagesccoevvrerirenernserinsesesssesss e sessesessesessssesenns 52

A Complete HTML @and CSS PAQEccererrrrererenerenereeeresese e 57
Creating a Library of HTML Page Segmentscoucvnvrnenmsenssensesesesessnsenenns 65
11T 111 1T o SRS 69
Chapter 3: Using CGI and Python.........cccccccimmmnssnemnmnssssnnnmnssssssnssssssnnns 71
Your First cgi-bin Program.........cccoccvvrvnninininin s sesses s 71
CGI Program Strategy.......cccovererrrernienirsscris e sese s sesse e sessesessssesessesenns 75
Setting Up the htmI_lib Parts.........ccccovvnvninnnnsnnn s 76
A Portable and Maintainable CGI Program............ccccornsernsenesesersssesensesessenensnns 78
More Partial HTML SKEletons..........ccoveevnrenrnesesssesnsesssesessssessssessssssessssessssesenns 84
Hyperlink HTML SKEIetONS.........ccccovenernsennnenesesesssesssesesss s sessesessssessnnes 84

A More Complicated Hyperlink EXamplecccccevvvvnininnnnsnnenesessensennens 94
Calling and Passing Data to a CGl Programc.ccocevvvnvenennsensensesesensensensens 100
The GET Methodccoviirirriininise s sees 101
The POST Method ..ot snens 107

TABLE OF CONTENTS

Another POST Method with HTML Text Data...........cccovmermnnmsmseressssnssesenens 112
Using POST with @ dropdoWn BOXccccevererrerierenensessesensssessessessssessessesses 115
COOKIES N CGl....cueeerrrreceseresssssssese e e sesss s e sss s e sesesssssssas 117
Sending Cookies from the SErver...........crrncvnnsnn s 117
RetrieVing COOKIES......cvvererrererrerereresseressessssessessessssesessessessssessessessesessessens 119
SUMMANY..c..citiiiire e s b e e b se e e s R r e e e nne s 120
Chapter 4: Using SSI and Python.........cccccccnniinseessnnnnnnnnsssssssssnnnns 123
Getting Started.........cccvveerrrerrese s 123
The config SSI DIF€CHIVE......cccvreeerrrerrreserese s 125
The eCh0 SSI DIFrECTIVEcocvereriricri e 129
The eXEC SSI DIrECHIVEcccverrrrirceri s 130
The fSize SSI DIFECHIVEcccoevererrreccrirer s 135
The flastmod SSI DIreCHIVE........ccoveeereerecre e 138
The include SSI DIreCHIVEc.vcccrererererer s 140
Additional SSI DIr€CHIVES.......ceevrrererreserrssesesese s sess s ses e sessssesssnens 142
The SSI St DIrECLIVEceeereveererreerrese s s s 142
The SSI Conditional DIreCHIVES.......ccveerrrrererenereseressesese s senns 147
SUMMANY ...t p e b e e 158
Chapter 5: Using Flask and Jinja.......ccccssemmmmmssssnnnmssssssnnssssssssnsssssnns 159
WSGH aNd FIASKcccovrerrirrirerinisecssse s e s sesnsnans 160
Installing and TeStING WSGIcecvvrierernnenreresessssesessessssessessessssessessesses 160
Installing and Testing FIask ... 166
JINJAZ oo nn 171
SUMMAIY..c..eitiiiire e s b e s bbb e s aer e e e nne s 181

vii

TABLE OF CONTENTS

Chapter 6: Django......c.ccccrrrsssnnnmmssssnsnsessssssssssssssnsssssssssnssssssnnnnssssnnns 183
Django ant WSGL........cc.cccvrererenerinerinesers e ses s e se s e e sss e sesnssessenes 183
Configuring and Testing Djangoccccvvrierinnnnine s sessessens 185
Django and TeMPIALes.........ccovererenmrnerere s 191
Using a Database With Djangoccueeevenernsesnesnnese s sessesessssessenes 198
L1414 OO 199

Chapter 7: Comparing CGl, SSI, Flask, and Djangoccccuusseensrsssnnns 201
Installation and Configurationc.ccvvevrerrernsnsnsere s esees 201

CGl Installation and Configurationccccevverrerrerensensesienssessessesesessesennes 202
SSl Installation and Configurationcccvevrerievnrnrnrene s 202
Flask Installation and Configuration............cccvevivnrnsenieninnensensenesessensennens 203
Django Installation and Configurationcccceeevvrnvenierinsensensenesessensennens 203
PYINON USAQEorceeeeceererer ettt r s s e s s sae s s a e s 204
CGI PYthon USAQEcevereeveererersereesensersessessssessessesssssssessessesssssssessesssssssensenses 204
SSIPYhON USAQE ...cvververeeererereeressersersessssesessessessssessessesssssssessessessessssessees 205
FIask Python USAgecceecerveriernerierrirsee e res e se s sse e sessse e ssenneas 205
Django Python USAge.........ccccuvrrirniririnsin s sse s ssessesseessessesnens 206
Template ProCesSing......cccoivirvnierennnnsne s s snes 206
CGI Template ProCESSINGccovererirernierinesire e ses s sessesessesesenses 206
SSI Template ProCESSINGccccerrvvevirerirenirnse s s sens 207
Flask Template Processing.......ccccoouvmvminiennsmnseniessssssese s sessessessssessensens 207
Django Template ProCeSSINGcccecerrerreereeriersensee s sesses e s ssesseessessessens 207
DataDaSE ACCESS......coereecrerererree e s 207
RESEAPIS ... 208
SUMMANY....ceitierteerrsese e se e sr s e e nr e e 208
1T = 209

viii

About the Author

David Ashley is a technical writer for
SkillSoft where he specializes in open source,
particularly Linux. As a member of the Linux
Fedora documentation team he recently led
the Libvirt project documentation and wrote
the Python programs included with it. He
has developed in 20 different programming
languages during his 30 years as a software
developer and IT consultant, including

more than 18 years at IBM and 12 years with

American Airlines.

ix

About the Technical Reviewer

Akshay Saini is Mumbai-based tech book
reviewer with several years’ experience in IT as
a software developer specializing in Python.
Recently he has developed new product
solutions for the media and entertainment
industry for clients such as Olympic
Broadcasting Services (OBS), ViacomCBS,

and Sportcast.

Reviewing and writing a tech book has
always been on his bucket list, and with this book it became a reality.

He is a tech lover and spends much time developing software to build a
better future for society.

Acknowledgments

I'would like to acknowledge the people who contributed their time and
efforts to this book. There are just too many to list here, but I would

especially like to acknowledge all the people at Apress who helped put this
book together.

xiii

Introduction

This book compares some of the best-known dynamic HTML page
creation systems. It includes some older systems such as CGI and SSH as
well as newer systems such as Flask and Django. Each system is examined
and compared with the other systems to discover each of their strengths
and weaknesses.

This should give you a basis for choosing the correct system for your
dynamic HTML page needs. For each system, I will provide example
programs so that if you are not experienced with a system, you can get a
taste of what building an application with it is like.

Preface: Document
Conventions

This book uses several conventions to highlight certain words and phrases
and draw attention to specific pieces of information. The convention used
depends on the type of information displayed.

Computer Commands

Computer commands are usually presented in a bold font such as in the
following example:

The Unix command 1s run from the command shell is used to
present a list of files and directories.

Filenames

Filenames are usually presented in monospaced text such as in the
following example:

To see the contents of the file report.txt use the command cat
report.txt.

Programming Language Elements
and Literals

Programming language elements include such things variable names, literals,
constants, symbols, tokens, functions, class names, and other objects.

xvii

PREFACE: DOCUMENT CONVENTIONS

Literal data is taken directly from a computer screen or a computer
language literal value and is usually presented in monospaced text such as
within the following example:

The following line is the output from running 1s:

en-US Makefile publican.cfg

Computer Output and Source Code

Computer output data is taken directly from a computer screen and
usually presented in monospaced text such as in the following example.
This information is usually set off from the rest of the text.

books Desktop documentation drafts mss photos stuff swn
books tests Desktopl downloads images notes scripts svgs

Source-code listings are also set off from the rest of the text, as shown
in Listing P-1.

Listing P-1. This Is a Source Code Listing

from _ future import print function
import sys
import libvirt

conn = libvirt.open('qgemu:///system")
if conn == None:
print('Failed to open connection to qemu:///system', \
file=sys.stderr)
exit(1)
conn.close()
exit(0)

xviii

PREFACE: DOCUMENT CONVENTIONS

Notes and Warnings

Finally, we use three visual styles to draw attention to information that
might otherwise be overlooked.

(ONote Notes are tips, shortcuts, or alternative approaches to the
task at hand. Ignoring a note should have no negative consequences,
but you might miss out on a trick that makes your life easier.

vvImportant Important boxes detail things that are easily missed:
configuration changes that apply only to the current session, or
services that need restarting before an update will apply. Ignoring a
box labeled “Important” will not cause data loss but may cause
irritation and frustration.

@Warning Warnings should not be ignored. Ignoring warnings will
most likely cause data loss.

Xix

CHAPTER 1

Introduction to Web
Servers

This chapter introduces web servers, the services they provide, and how
they work. This information is essential to web developers so they can
make proper use of their web server and provide the best web experience
to their users.

All web servers use the same building blocks to serve up web pages
to the user. While we could look at all the available web servers, it really is
not necessary since they all are designed around the same building blocks.
Instead, we will concentrate on the Apache web server since it is the most
popular. All the other web servers use the same building blocks and design
principles as the Apache server.

Glossary of Terms

When delving into technical information, it is important that you
understand the terminology used. For that reason, please review the

following web server terms:

e Common Gateway Interface (CGI): This describes a
process that serves up a dynamic web page. The web
page is built by a program provided by the web server

© David Ashley 2020 1
D. Ashley, Foundation Dynamic Web Pages with Python,
https://doi.org/10.1007/978-1-4842-6339-6_1

https://doi.org/10.1007/978-1-4842-6339-6_1#DOI

CHAPTER 1 INTRODUCTION TO WEB SERVERS

administrator. A common set of information is available

to the program via the program’s environment.

e Hypertext Transport Protocol (HTTP): This is a set
of rules used to describe a request by the user to the
web server and the returned information. The request
and the reply must follow strict rules for the request
to be understood by the server and for the reply to be
understood by the user’s browser.

e Hypertext Markup Language (HTML): This code is used
to build a web page that is displayed by a browser, and
the Apache web server is used to serve the web page to
users (clients). There are several versions of this code,
but we will be using the latest version (5.0) in this book.

e Cascading Style Sheets (CSS): These sheets define the
styles to be used by one or more web pages. These
styles are used to define fonts, colors, and the size of a
section of text within a defined area of the HTML page.

These terms should give you a good starting point for discussing how
a web server works. All of these terms will receive wider attention and
definition throughout this book.

The Apache Web Server

The Apache web server (today this is known formally as the HTTP Server)
dates back to the mid-1990s when it started gaining widespread use. The
web server is a project of the Apache Software Foundation, which manages
several projects. There are currently more than 200 million lines of code
managed by the foundation for the Apache web server. The current release
as of this writing is 2.4.41.

CHAPTER 1 INTRODUCTION TO WEB SERVERS

Starting with Apache version 2.0, Apache uses a hook architecture to
define new functionality via modules. We will study this in a subsequent
chapter.

When you first look at hooks, they will seem a little complicated, but in
reality, they are not since most of the time you are only modifying Apache
alittle. This will reduce the code you need to write to implement a hook to
a minimum.

The Apache web server uses a config file to define everything the
server needs to know about all the hooks you want to include in Apache.
It also defines the main server and any virtual servers you want to include.
In addition, it defines the name of the server, the home directory for the
server, the CGI directory to be used, any aliases needed by the server, the
server name, any specific handlers used by that server, the port to be used
by the server, the error log to be used, and several other factors.

Once configuration is complete, the Apache server is now ready to
supply files to a client browser. This is called the request-response cycle.
For each request sent by the browser to the server, the request must travel
through the request-response cycle to produce a response that is sent
back to the browser. While this looks simple on the surface, the request-
response cycle is both powerful and flexible. It can allow programs you
create, called modules, to modify both the request and the response in
many flexible ways. A module can also create the response from scratch
and can include inputs from resources outside of Apache, such as a
database or other external data repository.

Figure 1-1 shows the request-response loop of Apache plus the startup
and shutdown phases of the server.

CHAPTER 1 INTRODUCTION TO WEB SERVERS

?

Create child pool,

Establish access to resources:
+ scoreboard

+ accept mutex

running as root?

clear transient pool

max_requests_per_chid

 — |

re-initialize modules: hook

child_init status := ready

allocate bucket

Wait for TCP request

wait for status
changes on any
socket: select ()

determine
requested port

Read HTTP Request

Configure input / output
filterchain
wait for request at port and hook pre_connection
establish connection: status := busy read
accept ()

Set up a new request record
& request pool

Read request line

Release accept mutex

e Request- &é
Response-
Loop Read headers

hook

create_connection

hook
received CoD from post_read_request
Pipe of Death

or
new generation

status := busy write

Process HTTE Request

. Get configuration corres-
Keep-Alive ponding to Request URI
time-out or Loop

connection lost or
N0 keep_alive or

graceful restart signalled

process module callbacks

select & run content handler

keep_alive

destroy request
pool

status =
busy keepalive

close connection

Figure 1-1. The Apache request-response loop

CHAPTER 1 INTRODUCTION TO WEB SERVERS

Modules not only can be used in the request-response cycle but in
other portions of Apache such as during configuration, shutdown/cleanup,
processing security requests, and other valuable functions. As you can see,
modules allow flexible and powerful methods to be created by the server
administrator to help with providing a great experience for their users.

Modules are not the only way to create dynamic web pages. Another
way is by invoking available Apache services that can call an external
program to create the page. The CGI process is usually invoked to supply
this service, but there are other ways as well. Each of these ways will be
examined in this book. It will be up to you to decide the best methodology
for use in your environment.

The shaded request/response loop can have several forms. One such
form is as a loop inside one of several processes under Apache. Another is
running the loop as a thread inside a single process under Apache. All of
these forms are designed to make the most efficient process of responding
to arequest that an operating system may provide.

The Keep-Alive loop is for HTTP 2.0 requests if supported by the web
server. It allows the connection to stay open to the client until all requests
have been processed. The loop here describes how a single request is
processed by Apache. If the web server is not running HTTP 2.0 requests,
then each request/response will close the connection once the response
has been sent.

Nginx Web Server

The Nginx server was designed as a low-cost (in terms of system
requirements) alternative to the Apache server. Probably the biggest
difference between Nginx and Apache is that Nginx has an asynchronous
event-driven architecture rather than using multiple threads to process
each request. While this can provide predictable performance under high
loads, it does come with some downsides. For instance, a request can end

CHAPTER 1 INTRODUCTION TO WEB SERVERS

up waiting in the queue longer than the request attempt will survive on the
network; i.e., the requester can give up before the request is ever processed
if there are too few processing routines. While this problem is not exclusive
to this server, it does still exist.

Recently the Nginx server has become popular within the community
because of its smaller footprint and flexible design. However, since many
of the principles that we will use to describe the Apache server also apply
to the Nginx server, I will not delve deeply into Nginx and will discuss it
only when differences between the two servers are important, especially in
regard to dynamic web page design.

Apache Tomcat Server

The Apache Tomcat server is written in Java, which makes it difficult

to compare to the more standard web servers. While some principles

of dynamic web page design are similar, there are many differences.
Therefore, and because it’s less commonly used than Apache and Nginx, I
will not attempt to cover it in this book.

Configuring the Apache Web Server

The Apache web server has a single main configuration file and a number
of optional configuration files. The main file is named httpd.conf, and it
controls which optional files are loaded as well as the location where they
can be found. It also specifies the global features used by the server.

Listing 1-1 shows an unedited version of the httpd. conf file. Following
the listing, I will describe the sections that need to be modified to give you
a usable configuration file.

CHAPTER 1 INTRODUCTION TO WEB SERVERS

Listing 1-1. The Unedited httpd.conf File

HOoH = OH =

This is the main Apache HTTP server configuration file.

It contains the

configuration directives that give the server its
instructions.

See <URL:http://httpd.apache.org/docs/2.4/> for detailed
information.

In particular, see
<URL:http://httpd.apache.org/docs/2.4/mod/directives.html>
for a discussion of each configuration directive.

See the httpd.conf(5) man page for more information on this
configuration,
and httpd.service(8) on using and configuring the httpd service.

Do NOT simply read the instructions in here without
understanding

what they do. They're here only as hints or reminders.
If you are unsure

consult the online docs. You have been warned.

Configuration and logfile names: If the filenames you specify
for many

of the server's control files begin with "/" (or "drive:/"
for Win32), the

server will use that explicit path. If the filenames do
not begin

with "/", the value of ServerRoot is prepended -- so
'log/access_log'

CHAPTER 1 INTRODUCTION TO WEB SERVERS

with ServerRoot set to '/www' will be interpreted by the
server as '/www/log/access_log', where as '/log/access_log'
will be

interpreted as '/log/access log'.

ServerRoot: The top of the directory tree under which the

H* OB O OB

#
#

server's
configuration, error, and log files are kept.

Do not add a slash at the end of the directory path. If you point
ServerRoot at a non-local disk, be sure to specify a local
disk on the

Mutex directive, if file-based mutexes are used. If you wish
to share the

same ServerRoot for multiple httpd daemons, you will need to
change at

least PidFile.

ServerRoot "/etc/httpd"

H+ R

Listen: Allows you to bind Apache to specific IP addresses
and/or

ports, instead of the default. See also the <VirtualHost>
directive.

Change this to Listen on specific IP addresses as shown below to
prevent Apache from glomming onto all bound IP addresses.

#listen 12.34.56.78:80
Listen 80

