Ul Design
for i0S App
Development

Using SwiftUl
Bear Cahill

ApPress’

Ul Design for iOS App
Development

Bear Cahill

Apress’

Ul Design for iOS App Development: Using SwiftUI

Bear Cahill
Denton, TX, USA

ISBN-13 (pbk): 978-1-4842-6448-5 ISBN-13 (electronic): 978-1-4842-6449-2
https://doi.org/10.1007/978-1-4842-6449-2

Copyright © 2021 by Bear Cahill

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,

1 NY Plazar, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
978-1-4842-6448-5. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6449-2

Table of Contents

About the AUhOFcccmminmmmmsessmsssss s xi
About the Technical REVIEWETcccccssssemsmssansssssnsssssssssssnsssssasssssnnss xiii
Chapter 1: Introducing SWiftUlccccovremmnnnsssnnnsmnmssssnnmsssssssssssssnens 1
(] (o1 2
CONCEPIS .. ———————— 2
SOUICE O TrULN....cecceccce e 3
O1d FIHENS.....cooriirieriiri s 3
NEW FHENAS ...t 3
0] 0101 TP 3
IS All GOOMcoeeeeeeceseescesss s se e pnp e e 4
(0] 11T 5
Let’s GEt 10 COUIN’ovceverererece s 5
Chapter 2: Take It EQSyccuccemmmmssmmnmmssssnnnsssssssnnssssssssnssssssssnsssssssnssnsss 7
00 L3 7
HEO SWIfLUL ... sees 9
L0y =] S 10
SWITtUL INSPECION......cceicircrerrcr s 1
ARributes INSPECLONcocevcerere 16
STACKS O STACKS ...vcveveerrnerencserre s s se s e 19
Here’s the POINt..........cccn s 21
(1 1o G T T T 25

iii

TABLE OF CONTENTS

Chapter 3: SwiftUl Building BIOCKS.........ccccnmmssnnnnmmssssnsnmsssssssssssssnnnnes 27
Old Friends @and NEW..........cccoceerererneneseseressssesese s sssssssesesssssssssssessssens 27
5111 0] 27
BULtON Parameters........cccoveenenerenerecrenese e 31
42T TSRS 31

SF SYMDOIS.....ceiriirerriserrnmsrsese s sr s s sr e nsanis 31
IMAJE Creationcceccerveerrrererese s e e 33
TOQUI. e ——————— 33
53 T0 L3 OO 34
@State Property WIapPErccevvverereererseressesessessessessssessessessessssessessessessssensesaes 34
TOggle LaADEL ..o e e 35
COdE @S OF NOW ... s 38
L= (1= o TR 40
Chapter SUMMANY ... s 47

Chapter 4: Binding Source of Truth...........c.cccrnmsmnmsssnnmsssnssssssnssssnnsssnns 49
Data Drives the Ul ... 49
101 (=T 13O 50
SHIARADIE.......ceere e —————————— 54
Property WIapPer ... s s s sas s ssesnens 55

@BINING ...ciiiiirirer e e 55
Chapter SUMMANY ... s 61

Chapter 5: ObservableObjectsousmsmsmsmsmsmsmsmsmssssssssssssssssssssnsnsnans 63
TYPICAI MOUELeevreeerreerree s nne e 63
53 T0 3T RS 68
Observing Reference ODJECTS......ccveverrrerierenesserseresse s s s s e sessessesessessesees 68
ObservableObject PrOtOCOL........cccccvrevnirernre s 69

iv

TABLE OF CONTENTS

Publishing UPAatescccriinirininin e s 69
@PUDIISNE........o e 71
Chapter SUMMANYccoeerrererere e s 73
Chapter 6: Environment Valuescccceemmmrrmssssssssssssnnsmssssssssssssssnssnnes 75
ENVironment VAIUESovcevvererenernscsessse s sessssessssessssesessesenns 75
Settings Per VIEWccvvevirisircse e s 77
APP ENVIFONMENL.......coicrcrr e e 85
EnvironmentObject Property Wrapper........cceveverrrserenessessesessesessessessessssessessens 86
Preview EnVironment ... 91
USAQE ...ttt e e e bR e p e e ne s 92
Custom Environment VAIUESccovererenmrreserenesesese s ses e s nenns 93
Chapter SUMMANY ... e 95
Chapter 7: List of ltemscccccemnsmmnsmmnsmmmsmms s s 97
R T 97
NOLEROW VIBW ...t 100
Model LiStiNg......cccvceiiniirinere s s 105
Chapter SUMMANY ... 109
Chapter 8: SwiftUl Canvas Previewccccumsssssssssssssesssssssssssssssnnas 111
L0 9] o111 o SR 111
PrevieWw PrOVILENccovceiiesiree s s ssnis 112
PrevieW DEVICE ... 113
ENVIFONMENT........oiir s 116
Preview LayouL........ccccoircinnsnere s s s 118
PiN PIEVIBW ...t 124
Chapter SUMMANY ..o e 125

TABLE OF CONTENTS

Chapter 9: Design for PrevieWsccceuressssssssmsssssssssssssssssssssssssssssssnns 127
Preview CONTENL..........cceecerrreccre e 127
PrevieW JSON ... s 129
11100 ST 130
VIEW MOGEI ..o e 132
VIBW et 135
PIEVIBW ... 136
PreviEW ASSELS.......cocoeriecrereeree s 138
LIVE MOGE.......ceeeeceeeree s 144
Chapter SUMMANY ..o e 145

Chapter 10: SwiftUl Navigation.........cccccenmmmmnmmsssssssssnnnnmsssssssssssssssnnns 147
ONTaP GESIUMEeeeece e e e e s 147
Modal Navigationcccverrevnnininiene s s s s ses e s sneees 149
NaVIgation VIEWccceeverirerie e s 152
NaVIgation LiNKcccceveririerreeserieres e sses s ssessee e s se s s snesaessesssesnesnenneas 154
Chapter SUMMArY ... e 157

Chapter 11: UIKit in SWiftUl........cooonrmmmmmmninnnnsssssssssnnssessssssssssssnnnns 159
UlViewRepresentable.........cccoovvvnninnnninn s e 159
NOTEVIBW ...cveeetccerree e e 160
EXTracting @ VIBWccucvvecercereresersere et se s se e sse e snesnsses e s s 163
UIVIEW iN SWITEUL......cocieeeeisesssie s sssssssssssssesenes 166
Chapter SUMMANY ... e e e 168

Chapter 12: Data from UIKit with Coordinatorcccenrrssnnnnnrsssnnns 169
UlViewPresentable ProtoCol........c.ccorerrenrnscnneserese e 169
{10 (0 1T 1 o] SR 170

TABLE OF CONTENTS

Binding Property Wrapper.......cocccvvirnneniennsnsesesses e sse e sessssssessessesssssaesaessens 171
Coordinator as Delegate.........cccccvvvevrenrnsrnserre e e 172
AREINALE SYNTAX......covreereereeerere e 173
Updating the LiSt.........cccvreererinernnessesesese s seenes 177
Chapter SUMMANYcccvuiniisernsesesessssse s s se e s sssessssessanes 178
Chapter 13: Target/Action in SWiftUlccccinmsmmmmssmnmsssnsssssnnssssnnnnns 181
Target/ACHON.....ccue e s 182
BULLONVIBW......coviiecctrcc s 182
UIVIEW iN SWIfLUL......cocieeresssnnsissssesese e sssssssssssssenenes 184
Adding the Coordinator ... 186
Chapter SUMMANY ..o s 194
Chapter 14: SwiftUl in UIKit........coonnmmmmmmmnmmmmmmssssssssnnmsssssssssssssnnns 195
UIHOSTINGCONTIOIIEYvceeerecirce e 195
o LY] T T 4 (0] (= R 201
Adding SWITtULcooveeieeeresesesesesesesee s sssanas 202
Passing ObservableOhject ... 207
Chapter SUMMArY ... e 210
Chapter 15: Introduction to Combineccccuunnmemmmmnmnnesnsssssssssssnnns 213
CommON CONCEPLScecrererircirrer e 213
Publisher and SUDSCHDENccccvieriesnesers s 214
REfiNEMENTS.......cccciirricir s 219
SiNK SUDSCIIDE ...t 219
ASSIgN SUDSCHDET ..o 221
(0] 0TST £ L0 £ SO SSTRSR 222
Chapter SUMMANY ..o e 224

vii

TABLE OF CONTENTS

Chapter 16: URLSession PUblIiShErccocccmmmmsssmnnsmssssnnnsssssssssnsssssnns 225
URLSESSION PUDIISHETcovevricceerer e 225
Status Tracker Project ... sessesnens 226
1 E LR [T (g R 228
MOdel MANAGET ..o 230
DebUg Datacccovveerrerresere e s 235
Chapter SUMMANY ... e 242

Chapter 17: Transitions and Animationccuuneeeennnnnnnmnnsssssssnnnns 245
TraNSItiONS. ... —————— 245
ASymmEtric TranSitioNS.......ccocevvvrverennsrre e enes 249
ANIMALIONS ...t 251
ViewModifier ProtoCol..........ccvrinerinenncsine s 254
(€T o 1T TR 257
ROTALION. ... s 260
DrawingGroUPcccvcereriircre st e e s e s 264
Chapter SUMMANYccoverrerree s 267

Chapter 18: App Including WatchKit...........cccunnmmmmmmmmnnnnnssssssssssnnnnns 269
PrOPEITIES.....ccvitr e s 270
08 D] [OSSOSO 271
WaLCHKIL......ccoeeeeeriese e 274
Chapter SUMMAIY ... s nnens 276

Chapter 19: User Input Formcccccmmmmmmnnmmmmmssssssssnssssssssssssssssnns 277
FOIML e s 278
RS T= T [0 3 R 279
APP REQUIFEMENTES.....cveciicercree e 279
L L £ SR 288
Chapter SUMMANY ... s 288

viii

TABLE OF CONTENTS

Chapter 20: Presenting POPUPSccccmrrnsssnnnsmsssssnsssssssssssssssssnsssssssnns 291
ALt MOTIfIENcoveeeeeceeree e 291
Action Sheet MOIfier..........coveerererercrrrerere e 297
ACHION SREEL...... o 298
Sheet MOUIfier.......ccoveeerererrse e e 300
POPOVEr MOGIfIEF ...ueivererirererie s s s e 302
Chapter SUMMAIY ..o s s e sse e e s e sae s s e snesnens 304

Appendix A: Cheat Sheets.......c.uccumrmnsnnmnmnnssssnnmmnsssnmmssssnsssssm. 307
Chapter 2: TaKe IE EQSY......cccoveeverererrcrirserireses st s se s e sesseseens 307
Chapter 3: SwiftUl Building BIOCKS.........ccccocerinnnrieneninsneness s sensesnens 308
Chapter 4: Binding Source of Truth ... 308
Chapter 5: 0bservableObjeCtS........cucucrvrrnesrres s 309
Chapter 6: ENvironment ValUEScocvverevnninsenienesensessesessssessessessesessessessens 310
Chapter 7: List 0f HEMScocvvierieriererirrerere s sessese e sessessessesessessessessessssessessens 310
Chapter 8: SWiftUl Canvas PrevieW........c.ccvevererrerieresessersesessssessessessessssessessens 311
Chapter 9: Design for PrevieWs.........cocvvninnnnene s e sessessens 311
Chapter 10: SWiftUl Navigationccecevenrenrnsesnesese s senesenns 311
Chapter 11: UIKit in SWiftUL........ccocriviininirnrnrnn s 312
Chapter 12: Data from UIKit with Coordinator...........c.cuceevrvsernsesnsenesesesensenenns 313
Chapter 14: SWIftUl in UIKIL........ccocvivvnrnieniennnensenesesessessesesssssssessessessssessessens 313
Chapter 15: Introduction 10 COMDINEccocevvvririerenerserere e 314
Chapter 16: URLSeSSion PUDIISHETcovevereierncerrc et 314
Chapter 17: Transitions and AniMation...........ccccvvriennnnnnn s 314
Chapter 20: Presenting POP-UpPS......cccoivrnrnininnnnnnsinsesese s ses s 315

INA@X..ueeeiiienrsisnnssssnnsssssnsssssnsnsssnsssssnsssssnnasssnnsnssnnnnssnnsnssnnsnssnnnnssnnnnnnns 317

ix

About the Author

Bear Cahill has been a developer since he was 12. After getting his B.S.

in Computer Science, he worked at several companies before going
freelance as an iOS developer. Bear has written multiple books on software
development, teaches for several corporate education companies, and
develops online courses for Lynda.com/LinkedIn Learning. Ultimately,
however, Bear loves to code.

About the Technical Reviewer

Felipe Laso is a Senior Systems Engineer working at Lextech Global
Services. He’s also an aspiring game designer/programmer. You can
follow him on Twitter @iFeliLM or on his blog.

xiii

CHAPTER 1

Introducing SwiftUl

First, thank you for reading at least this much of the first chapter. It's
tempting to skip it. However, I'm the type of person that reads the
foreword, the preface, and so on. Someone thought it important enough to
write and include it; maybe it’s worth it.

When learning a new IDE, language, or user interface design tool, it
can be hard to know where to start. I'll say this: if you don’t know Swift,
learning SwiftUI will be very tough. In fact, if you don’t know about Xcode,
iOS development, and the various frameworks related to it, learning
SwiftUI isn’t the best place to start (see Figure 1-1).

Notes

I'm note O
HT
- ®» O

I'm note 1

® ® O

Figure 1-1. SwiftUI Interface Example

This isn’t a book on Swift, Xcode, iOS frameworks, or UIKit. Being
familiar with those is important if not required.

© Bear Cahill 2021 1
B. Cahill, UI Design for iOS App Development,
https://doi.org/10.1007/978-1-4842-6449-2_1

https://doi.org/10.1007/978-1-4842-6449-2_1#DOI

CHAPTER 1 INTRODUCING SWIFTUI

Exercises

I've included one or more exercises per chapter. Some are shorter and
some are longer. In each case, there is also one or more End of Chapter
(EOC) zip file of the code for you to review.

Many chapters build on the same code throughout the chapter. So
there’s only one EOC file with the full result.

The point of each exercise is practice. I want you to go through
the process of employing what you're learning. I highly recommend
experimenting with variations of the exercises as your curiosity prompts
you.

I also strongly encourage repetition. If you repeat an exercise a handful
of times to the point that you can just knock it out with familiarity, you'll be
better off when you're done with this book.

Concepts

Much of SwiftUI will feel like Swift. That’s good if you know Swift. You'll
feel somewhat comfortable passing closures, chaining calls, handling
optionals, and so on.

However, SwiftUI has a very state-driven concept to the Ul The user
interface is a display of the state. If a value (the state) changes, the UI
should reflect that so it needs to render again.

If the value displayed in a TextField is updated, the interface should
display the new value. This is done automatically in SwiftUI with binding.
We'll use property wrappers (similar to how Optional is a type with a
wrapped value) to pass these values into controls like the TextField.

The TextField will be updated if the value changes. But also changes
in the TextField will be stored in the same place as the item passed in. No
more getting the text property and storing - SwiftUI cuts out the middle
step and just changes the property!

CHAPTER 1 INTRODUCING SWIFTUI

Source of Truth

The concept of these property wrappers is tied to the idea of the “source of
truth.” If we have the username or email address stored in a property, that
can be the source of truth. If the property changes, the Ul is updated. If the
user types in a new value, it’s stored in that same property.

There are different ways of using this concept on value types (e.g.,
structs) vs. reference types (e.g., classes). We'll explore these in detail in
this book.

Old Friends

We'll also look at how to use an existing Ul in a SwiftUI-based app. You
may have some existing code that works great, and you want to reuse it. No
sense in throwing it away if it’s still good.

Or you may just not have time to re-create the whole Ul in one effort.

New Friends

Of course, we’ll look at developing interface designs in SwiftUI. But we'll
also look at how to use SwiftUI in Storyboard projects. You may want to
migrate to SwiftUI starting in your current UIKit app.

However you decide or need to start using SwiftUI, I hope this book
helps get you there.

Combine

If you haven’t used the Combine framework yet, you will in this book. This
is not a book on Combine, but parts of it are tightly integrated in things we
need to do in SwiftUI.

CHAPTER 1 INTRODUCING SWIFTUI

There are Combine aspects sprinkled throughout this book. There’s
also a chapter specifically intended to go a little deeper into Combine. That
framework probably deserves its own book, but we'll dig a bit deeper at
times to understand what we’re doing and using.

It’s All Good

As mentioned, the code is the UL It doesn’t get stored as XML or
something, for the Ul to get generated from.

But also, the Canvas is the simulator. When you go into Live mode, it’s
effectively the same as the simulator. It’s not perfect, but you can be sure
it's close. Also, it’s much more than just viewing a rendering of how it’s
designed without the underlying code (like the Storyboard Preview).

You can even design your preview to display for various color schemes,
devices, and so on (see Figure 1-2).

E prreview O [
I'm note 1
® ® O

Figure 1-2. Multiple Previews of One Element

The key thing for me here is that we need to rethink how we think
of the user interface. Instead of creating items with attributes, we call
modifiers on those items. They in turn return items, and we repeat as we
chain the calls together.

Our Ul is tied to our state, and they stay in sync. Changes to the state
update the UI. Changes in the Ul update the state.

CHAPTER 1 INTRODUCING SWIFTUI

If you're not careful, that may mean everything is tightly coupled. But
we're going to break things down and use a lot of functionality built into
SwiftUI. In the end, we’ll see that many aspects of the interface work the
same. So in the past, what took several building blocks can now be done
with one or two.

Platforms

We'll be focusing on i0S development with SwiftUI. However, in many
cases, the code is the same for the Apple Watch, macQOS, iPadOS, Apple TV,
and who knows what’s coming.

We'll look at a couple examples of the UI from iOS copied into a watch
project. The changes will be minimal to get it to work. SwiftUI is a bit more
abstracted. Tell it to render a Picker, and it will figure out what that means
given the platform.

Let’s Get to Codin’

Hazzah!

CHAPTER 2

Take It Easy

In this chapter, we'll ease into SwiftUI by seeing it in action. If it feels slow,
good! The beginning is the only time to lay a foundation and that needs to
be solid. Rock solid. Like math, a spoken language, or many other skills, if
we don't get this down now, we'll be lost later.

Code + Ul

If you've done Ul development in Xcode in the past, you know that
combining the UI design and code is possible. However, they aren’t hot
swappable. You don’t change a background color to red in the code and
then open Interface Builder and see that change. At least, now without
some special coding.

With SwiftUI, you can think of the code and the UI as one thing.
Effectively, it is. In the past, the Ul was translated into XML. That wasn't
very readable nor easy to edit correctly. Now the Ul is generated from the
SwiftUI code. As you make changes to the code, the preview is updated to
show the changes.

Moreover, if you modify the Ul in the preview canvas, it updates the
code. Let’s look at an example starting with a new project.

© Bear Cahill 2021
B. Cahill, UI Design for iOS App Development,
https://doi.org/10.1007/978-1-4842-6449-2_2

https://doi.org/10.1007/978-1-4842-6449-2_2#DOI

CHAPTER 2 TAKE IT EASY

YOUR FIRST SWIFTUI APP

We’re going to start by creating a project from a template, analyzing what’s
created, and changing the Ul for our purposes.

1. Open Xcode and start a new project (Figure 2-1).

Create a new Xcode project

Create an app for iPhone, iPad, Mac, Apple Watch, or Apple TV.

Figure 2-1. Create New Project Option in Xcode

If Xcode is already running, select File » New... » Project ({+38N).
2. Select the i0S App template and click Next (Figure 2-2).

Figure 2-2. iOS App Template

3. Set your product name and other details including the
Language (Swift), User Interface (SwiftUl), and Life Cycle
(SwiftUl App) (Figure 2-3).

CHAPTER 2 TAKE IT EASY

Product Name: = SUINotes]|

Team: Brainwash Inc.
Organization Identifier: com.example

Bundle Identifier:

Interface:
Life Cycle:

Language:

Include Tests

Figure 2-3. Project Options

4. When your project is created, preview updating may be paused.
If 0, click the Resume button (Figure 2-4).

Automatic preview updating paused Resume

Figure 2-4. Resume Automatic Preview

Once the preview updates, ytou’ll see your first SwiftUl. Congrats. No one is
more proud of you than me.

Hello SwiftUl

Of course, this is the typical “Hello World” example. Let’s look just briefly
at what we have line by line.

We're importing SwiftUI on line 9. That’s new. That’s where the various
SwiftUI items are defined obviously.

CHAPTER 2 TAKE IT EASY

On line 11 is the first line of code for our new app. We have a struct
called ContentView which implements a protocol named View. We can see
the definition of view with * 38 + click “View.

So anything implementing View needs to have a property called
“body.” That property must have a getter that returns the type specified by
the associatedtype of the Body: something that implements View.

Back in our code, we see that ContentView implements View. The
return type is “some View,” and the body of that computed body property
is a Text.

Note We’ll get into the “some View” and opaque types later. For
now, just know that whatever is returned from our body computed
property must implement View.

You've probably already guessed that Text is like a label. We create it
with a String, and there it is on the UL

Modifiers

As with other methods of UI development, SwiftUI elements can be
modified. Text has modifiers like font, color, alignment, and so on.

We can add a modifier to our Text element to make the font red like
this (Figure 2-5):

Text("Hello, World!")
.foregroundColor(.red)

Hello, World!
Figure 2-5. Text with Red Foreground

And you'll notice the UI updates in the preview.

10

CHAPTER 2 TAKE IT EASY

Similarly, we can bold our text by chaining another modifier. We may
want to split these onto multiple lines for the sake of cleanliness (Figure 2-6).

Text("Hello, World!")
.foregroundColor(.red)
.bold()

Hello, World}

Figure 2-6. Text with Bold, Red Foreground

As you can imagine, there are many visual variations you can have on
a given Ul item. That translates to a lot of modifiers with many parameters.
It’s alot to learn and remember.

SwiftUl Inspector

Fortunately, you don’t have to remember all of the modifiers. Xcode is here
to help!

If you 38 + click the Text item, you'll see a pop-up menu. From that,
select “Show SwiftUI Inspector...” (Figure 2-7).

struct ContentView: View {
var body: some View {
Text("Hello, World!
FranrniindCnlgr (Co
Q
Jump to Definition
Show Quick Help

Z7 Callers...
.7 Edit All in Scope
® Show SwiftUl Inspector...

Figure 2-7. SwiftUI Inspector Menu Item

11

CHAPTER 2 TAKE IT EASY

Note You can alternatively * ~- + click the Text and go right to the
SwiftUl Inspector.

Once the SwiftUI Inspector is displayed, we see that there are a variety

of attributes we can set with modifiers.
Not only that, but we can add modifiers with the drop-down at the

bottom (Figure 2-8).

Text("Hello

Hello, World!

Inherited

Inherited

Padding

Add Modifier

Figure 2-8. SwiftUlI Inspector

12

CHAPTER 2 TAKE IT EASY

As you make selections on these controls for the modifiers, your code
is updated to reflect the choices you make.

Note the empty section titled Bold. That’s there because we manually
put in that modifier, but there are no settings for it.

The better way to bold the text would be through modifiers in the Font
section of the inspector.

Exercise time!

MODIFY WITH MODIFIERS

In this exercise, | want you to use modifiers in the SwiftUl Inspector to get
your “Hello World” text to match the following example. Give it a shot on your
own before reviewing the steps. Also, remove the .bold() line of code to have a
better starting place.

Text("Hello, World!")
.foregroundColor(Color.red)

Here’s what | want your text to look like by only using the SwiftUl Inspector
(Figure 2-9).

13

CHAPTER 2 TAKE IT EASY

Figure 2-9. Updated Ul Preview

You can easily see several things have changed:
1. Text (“Hello, SwiftUl!”)

Font color

Font size

Font weight

SR

Spacing of the words

14

CHAPTER 2 TAKE IT EASY

6. Size of the Text
7. Background color
8. Corner radius

Feel free to play around with the various modifiers and settings of their values.
Practice with these types of things will make you more comfortable and
natural in making these changes.

Ideally, you’ll get to where you don’t have to stop, think, wonder, and search
for the right settings.

Here’s the resulting settings in the SwiftUl Inspector | used to get the Text item
the way | wanted it:

| made three changes in the Font area: the font itself, the weight, and the color.
| changed the padding to 30 (you can edit the number directly by clicking it).

| also changed the frame’s width and height manually to 200 and 400,
respectively.

| used the Add Modifier drop-down list to add two other modifiers: Background
and Corner Radius. Once added, | was able to set their values.

Here’s what the code looks like after these changes:

Text("Hello, SwiftUI!")
.font(.largeTitle)
.fontWeight(.bold)
.foregroundColor(Color.purple)
.padding(30.0)

.frame(width: 200.0, height: 400.0)
.background(Color.orange)
.cornerRadius(40.0)

Again, please get comfortable using these controls and associating the changes
with the code and Ul. Next, we’ll look at some other ways to do these tasks.

15

CHAPTER 2 TAKE IT EASY

Attributes Inspector

You can "~ + click the Ul item like you can on the Text in the code.
However, the SwiftUI Inspector may not look the same.

Notice, in this case, there’s only a couple of options available in the
pop-up (Figure 2-10).

To see all of the same modifiers you saw before, the Attributes

Inspector is a reliable option.

Hello, SwiftUl!

Color.orange |

Modifiers

Large Title

Padding

Background

Corner Radius

Figure 2-10. Pop-up Menu in the Canvas

16

CHAPTER 2 TAKE IT EASY

ATTRIBUTES INSPECTOR

In this exercise, we’ll see that the same modifiers can be accessed via the
visual Ul design in the Canvas. However, there’s no need to shift your mind
from “working in code” to “working in the UL.” They are the same. The code is

the UL.

1. Open the Inspector Pane (on the right) with this button on the
top right of the Xcode window (Figure 2-11).

Figure 2-11. Inspector Pane Button

2. Select the Attributes Inspector at the top of the Inspector Pane

(Figure 2-12).

Figure 2-12. Attributes Inspector Tab

3. Click the “Hello, Swiftul!” Text item in the Ul or in the code
to have the attributes show up in the Attributes Inspector
(Figure 2-13).

17

CHAPTER 2 TAKE IT EASY

Hello, world!

Modifiers

Font | Inherited
Weight | Inherited
Color | Inherited

Alignment =

Line Limit

Padding

Padding

Figure 2-13. Attributes Inspector

If not all of the modifiers show up, click the item in the code.

Notice that the values are the same as before. Also, the Add Modifier drop-
down list is available.

From here, you can make the same choice and changes.

4. Change the background color, text, and other settings and verify
the changes in the Ul and code.

18

CHAPTER 2 TAKE IT EASY

You probably see that there are various ways to do the same things. You
can edit code, make changes in the SwiftUl Inspector and in the Attributes
Inspector.

And hopefully you’re thinking of the code and the Ul as one thing: ideally that
the code /s the Ul.

Stacks of Stacks

A screen in an app with only one element isn’t much of a user interface.
Nor is it common. But there’s only one element returned from the
computed body property. What are we to do?

Most of the time, the one item we return will contain many other items.
So it’s a container of other items. And as we’ll see, it’s often a container of
containers of items and so on.

Two common containers we'll see are horizontal stacks (HStack) and
vertical stacks (VStack).

Horizontal stacks stack horizontally. You can probably guess that
vertical stacks stack vertically. If you're familiar with the stack view from
Interface Builder, you're probably already where I'm going.

One easy way to embed an item into a stack is via the pop-up menu
from 38 + click (see Figure 2-14).

19

