AR and V'R
Using the
WebXR API

Learn to Create Immersive Content
with WebGL, Three,js, and A-Frame

Rakesh Baruah

ApreSS®

AR and VR Using the
WebXR API

Learn to Create Immersive
Content with WebGL, Three.js,
and A-Frame

Rakesh Baruah

Apress’

AR and VR Using the WebXR API

Rakesh Baruah
Brookfield, WI, USA

ISBN-13 (pbk): 978-1-4842-6317-4 ISBN-13 (electronic): 978-1-4842-6318-1
https://doi.org/10.1007/978-1-4842-6318-1

Copyright © 2021 by Rakesh Baruah

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: James Markham

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar
Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6317-4. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6318-1

To Mom & Dad for boundless patience, love, and support

Table of Contents

About the AUthOr ... ———————— XV
About the Technical REVIEWETccusssesssssnsssssnsssssnsssssnsssssnsssssasssssnnss Xvii
Acknowledgments.......cccccruumssmmsnnmmmmmmsssssssssnsssesssssssssssssnnssssssssssnnnnnns Xix
INtroduction.........couccemnmmnemmsnmmsmen s —————— Xxi
Chapter 1: Getting Started..........coorrmmmmmmmmnnnnnnnssssssnnn s ——————— 1
LT TSN 2
THE BrOWSETeveecrerseerreseresesessesesse e sessesessssessssesessssessssssssssssssssssssnssssssssnssnnns 3

The Render ENGINGcccvveerenenerenernesssese s sessssesssse s sessssssssssssssssssssnens 5
21T £ OSSOSO 6
The Graphics Processing UNit..........ccovevvvninennnnsne s sessesesessssessessessssessessens 6
The Present FUTUFE........cccverccrnc s 8
TOONNG UP vt p e e s e 8
A COUE EQILOFcvecereeereecrerereree e 8
T 1 9
P20 1S 9

Local Web Server for Development...........ccovvnvnininnnnsnens e ssssesennens 10
Live Server VS Extension by RitwWiCk DeYc.ccovrerrnsrnnenerescrnsenesenenennes 10
NodeJS http-server Package from NPM..........ccccccovenmnenerienernscrensesesenesennes 11
Python HTTP server modulecccoeecrrecenererecrscseeese s 11
Servez— A Simple Web Server for Local Web Developmentccc.c..... 11

TABLE OF CONTENTS

A Web Browser Compatible with the WEbXR APIcccvvrrrrernrnsenernnensenenns 12
XB DBVICE ...veierreerinesesee st s s snsne 13
WEDXR EMUIALOT ..ot 13

SUMMAIY.... it e ne e e et 14

Chapter 2: Up and Running with WebGL............ccccvssemmnmnssnnnnessssnnnns 17

The Form and Function of HTML...........correieeereeree e 18

THE CANVAS......erreerrreesreerrnse s sessese s e sse e s s sesss e e e sasssssssssesssssssnssssssnnes 20

Exercise 1: Your First WebGL Application..........cccoccvvninnvnvnennsnsenienesessensennens 20

A Reference 10 @ CanVas.........c.covrmrnrnmsesssssnsssese s ssssesens 21

The WEDGL CONTEXE.......ccccvrrrrriecreririss s 24
Drawing on the WebGL CONtEXL.........cccveerrerrrrerrerieresenserseressesessessesaesesessesaes 25
ReSIziNG the CANVASccccvvververererirserere s s e e s e sessessesesessesaesesesaesaes 26

B3] 1210 [28
B30 11 (TP 28
0] 1 11011 T 30
I 14 oS 31

21Ty £ SR 32
Setting Vertex POSITIONS.......ccccccorevrnccrrcsre s 32
Connecting Shaders With BUFfErS........cccccvvvvnienninncrn e 34

DIAWING.....cieieiecire e s nne 36
RESOIULION. ... s 38
Modes Of Drawingc.cccceverninienennsnes s s s 39

SUMMANY....eiiieeesere s r e se e e nr e e 42

Chapter 3: Toward the Third Dimension in WebGL..........cccussseemnennnnnas 43

THE ABCS Of XYZ.....oeeireressssss st s s ssnasnas 44

Exercise 2, Part 1: Painting in the Third Dimensioncccccevvnininnnneniensennn 45
The WEDGL PIPEIINE.cccveervereererereriesessesessessssesessessssessessesssssssessessessssensessens 46

TABLE OF CONTENTS

LT] S 48

A Separation 0f CONCEINS.......ccuvrierererrerieressssersesesss s ssesessessessessssessessens 50

An Array of POSSIDIlITIES......ccccerieririinr e 51
Literally SPeaKINg.......ccvevererreriererersersesesesessesessessssessessessesessessessesssssssessees 53
Move the POINTEN ... 54
Calling the Drawing MOGEcceeverrervereresensersessesss s ssessesessessessesssssssessenes 55
Exercise 2, Part 2: SQUAres SQUAred..........ccocevrererrersererersersersessssessessessessssessessens 58
A)1 o 59

A SECONU COIOFcueueererrsreeeseressseesese e e se e s e s e sessssssssesens 62
Exercise 2, Part 3: Three Sides for Three DIimensions.........ccvvvvieniiensiensenseninns 69
More Shapes, More Vertices, More Coordinates...........cveerrereererrersereesenserserees 70
Math MagIC.......cccoeviirrrrrr s 72
SUMIMANY....eiei e e s s e se e e e s re e nre e 72
Chapter 4: Matrices, Transformations, and Perspective in WebGL75
A BOX Of MAPS ..vveeriresinresersse e 76
What You May Have Missed in AIgEhra 2..........ccevverenernensesiessesensessessessssessessenes 80
TraNSIAtON ..o —————————— 80

T 11 o RS 82
ROTALION ... s 84
From Many into ONE.......ccucvverererrerienesesersenesssessessessessssessessessesessessessessssessessens 91
GPUs and Matrices Sitting IN @Tree . . . cvcveevererrerrereressersere e ssssessessessesesessenees 92
Exercise 3, Part 1: Matrix Revolutionccceeevervrcennenircerressee s s 93
IMPOrt GLMALIIX.JSvverecesir e 94
UNIiforms in SHAAEIS ..o s 96
The Order of FIOperations...........ccccovevnnniniennsns s sessesnens 97
Making Memories 0f MatriCes........c.ccovvrrnnnnnnine s 99
Order in the IMPOrt ... s 101

vii

TABLE OF CONTENTS

WHO AM I? s 101
Making Moves With MatriCescccvvrvnnirininsn e 102
ANIMALION ... ——————— 103
ANIMAtioN LOOP......cvverreerereriensie s s s sse s e s se e s saesessnesnesaesnens 108
oL I T o S 111
Orthographic and Perspective Matrix Projections..........ccccvvrievvrnserierensensenenns 112
The VIEW FruStUM........ccocre s 113
Exercise 3, Part 2: A Change in Perspectivecovvvverrererenserseresessensensens 114
oL T o 119
SUMMANY....citiiiire e e s e e s r e e s ae s r e e e nne s 120
Chapter 5: Diving into THree.jS «cuuuussmeesmmmrrssssssssssssnnnssessssssssssssnnnnnas 123
What IS THFEE.JS?....eeereeceerreerrese s e 124
A Synthesizer for SNAPESccovveererrrnresrre s 124
WEDGL but SIMPIEF ... enens 125
Exercise 4, Part 1: Remix the MatriX.........ccceevvevirininneniensessee e ssessesseessesensens 125
Download the Three.js Source Code..........ccuvvernneneresesnsessnsesesesesssesesseens 126

A Detour into ES MOUIES.......ccceeerreeerrnennnesessse e ssssesens 126
Making @ CONEEXL.........ccrrrererenerrnseresese e s sseens 129
MaKing @ CAMEIAcccvverrrrenerrese s e s snsnenens 129
MaKING @ SCENE......ccerreerrreirrese et 131

LC LT 13 (SRS 131
=] g TSRS 132
MESNES ..o 133
Rendering ANIMationccoveeernnrnsesenese s s sessenens 134
PaINtEd BIACK........cccoerreerereereneriese s 135
Let Var Be Light ..o 135
PiX@I PEITECTceeeeereecrereere e 136
Part 1 RECAPDcoceieriiciriene sttt s e 138

viii

TABLE OF CONTENTS

Exercise 4, Part 2: Materials, TEXTUIEScccvveviemvimniensisnsssnssss s sssssssesssessnens 139
SPNEIE GEOMEBLIYcverrerrereriere s rer s s ss e s sr e e e a e e nae s 139
Lambert Material ... 140
L) (LT 142
Three.js TeXTUrELOAUETcoccvvererierierrer e 144
The Lighting MOEl........ccoveerierenrrerierere s e sessese s ssssessessessessssessessens 146
L o | o S 153

Exercise 4, Part 3: Fog, Backgrounds, Ambient Lights, and Normal Maps........ 153
SCENE BACKGIrOUNGcoveerereerererrerere s sese s e sessesse s saesessessesnessesessesaees 154
0o 154
Applying @ NOrmal Mapcccvverenininninne s s se s ssessssssessessenns 156
11 T o] 011 oSS 160
Y111 (0] o) SR 161
Normal Mapping the PIane...........ccccocvvrvnnerininsn s 163
AmDbient LIght ..o 165
Animation with Parametric EQUationsccccvvevvvrvnieriennsnsensese s senennens 166
Part 3 RECADcovveviririe et e 168

SUMMAIY . veitetrrereresessereressesessessessessesessessessesessesaesaessssessesassasssssesassasssssensessens 168

Chapter 6: Entering VR Through WebXRccccunmmmmmmnnnnmssssssssssnnnnns 171

Setting Up the Debug Environment............coccovenrnnnnensnssesnsesesesesesesessesenns 172
Debugging WebXR on an Oculus QUESLccovvererrenernsesensenesesesensesesseens 172

Running a Demo from the Immersive Web ..., 176

Preparing Our Scene for IMmersive VR.........ccovvvvrernnensnsene s sessessesessessessens 178
Life Cycle of a WebXR Applicationccccovvrirenninienennsensese s sessenens 178

Exercise 5, Part 1: Creating an XR Session Through the WebXR API................. 180
Stage 1: 1S WebXR SUpported?cccvvevvrerrrierenessensesessssessesessessssessessees 180
Stage 2: Advertise XR Functionality to the USErc.ccevivvrvririennsensennenn 185

ix

TABLE OF CONTENTS

Stage 3: Enable a User Activation EVent...........cocovvvvnievnnenrenseniensssensenaenns 186
Stage 4: Request an XR SESSI0N......cccvvevererrerrerensssessesessssessessessessssessessees 187
oL I T o S 191
Exercise 5, Part 2: Scope, Closure, a Module, and a Singleton............ccceu... 192
WebXRManager in TRIEE.JS.....c.ccvverirverrienererrirsse s e s s sse e 192
ST+ o= 193
010 E] 1] - T 201
L L ToT | SO S 208
Exercise 5, Part 3: The HOmeSIretCh ... 208
Enable Port Forwarding from a Local Development Server
10 @VR DBVICE......cerercerree e 211
Part 3 RECADcovvireririr et s 213
310111117 S 214
Chapter 7: Creating an Augmented Reality Website with
Three.js and the WebXR APccccunnmmmnmsnnnnmsmmsmssssssssssnsssssssssnnnnns 217
Exercise 6, Part 1: The Floating CUDE.......c.ccocevvververiernnensere e 218
Spatial Tracking in WEbXR.........covvvrvriernrrrerene e sesesessssessesne s 219
Install Three.js Through Node and the Node Package Manager 220
Outline the Life Cycle of the Application..........cccocvvrvririennsnsenienesenseniennns 222
Load the Scene COMPONENTS.........ccccvveriererensenieseses s e s ssesessessesnes 224
Write the Body of the Initialize Function.........cccocvvovvrininnincninenniniennens 226
Write the Body of the Button’s Event LiStenerccccvvevvvnienieninnenseniennens 228
Start the AR SESSION.........covcrnr s 230
Change the Button Element’s State..........cccoveerinsennnenennesennse e 231
Save a Reference t0 the XR SeSSIi0Ncccererernsesnnennesessse e 232
Set the XR Session’s XR WebGL Layer Property to Three.js Rendering
CONTEXE .. 232
Set the XR Session’s Reference Space for AR.........couceevevernsesensesenesennnnes 234

TABLE OF CONTENTS

Set the Three.js XR Manager’s XR Session Property

to the Current XR SESSION......ccoiicenerirrnnsssese e 235
Call the animate() FUNCLIONcccvvrivrereneserre s s e ses e sneenes 235
Call Three.js’ SetAnimationLoop() with the render() Function Set
AS IS CalIDACKovovrvieeeririss s 236
Create an Event Handling Function for the End of a Sessionc.c..... 237
Create a Function to Reset the State of the Application.............c.cocvrrrneee 237
o L A I < o S 238
Exercise 6, Part 2: The Hit TEST ..o sssesssesnens 239
Controllers and EVENTS..........cccovrmneeneseresnsssesesesss e s sesesssssnsas 240
Create the RetiCle ..o 243
Move XR Query FUNCHIONccvvverncrirccr st se s 244
WebXR Spatial ANChors MOQUIEcccceveverrerierereeserseressesessesessessesessessessens 247
RUNNING the SCENEcvcererecerere e sr e nnens 249
oL o | o S 250
SUMMAIY ...ttt e s e e bbb e 251
Chapter 8: Building VR for the Web with A-Frame............coccemennnnnnns 253
A RBVIEW SO Far ... s sessssesnnsens 253
What IS A-Frame? ... e s 255
Exercise 7, Part 1: The Bare Bones of A-Frame........c.ccovvvnnrnnnsnsssnenesssenes 255
INSTAALION......ccoviicccr e ——————— 256
ADSEraction FTW! ..o s 256
Abstraction Takes SOME LScccccnrmnnnnmnnnsssssssssssss e 257
The Entity Component SYStemcccvvvrvniniennsnnne e sessessessens 257
A-Frame: An Entity Component System-Based Framework for Three.js259
THE ENHLY.vvvvvesnceeseeessessssessssesssssesssssessssssssssssssssssssssssssssssssssssessssssssssesess 260
The COMPONENTccecereerrre e 261
PHIMITIVES... et 262

TABLE OF CONTENTS

R3] (=] 111 263
oL I ST o S 264
Using Three.js in A-Frame.........ccccvcrennsnicness s 265
Exercise 7, Part 2: Three.js and A-Frame Entitiesc.cccecvivnincninninicnnen, 265
Through the Window..........ccocrinrinininnrrrn e 266
Three.js Properties in A-Frame..........ccoovvninnnsnnnnnnesnsnsesese s sessennens 266
ACCESS the DOM API ... 267
Three.js Groups and getObject3D() ... 268
RUN ThE SCENE ... 269
Part 2 RECADcccverrriricre st n e 269
Custom Components in A-Frame ..o sesessens 270
Exercise 7, Part 3: Build a Custom A-Frame Componentccocvverveereriennens 270
SBIUD et ———————— 271
registerCoOmMPONENT()voevreeererserereserrssesese e s seenes 271
Referencing Component Data From Inside the Component............cccvceenens 273
Add Custom Component 10 Entity...........ccovrererenrnsesenenesesesenesesese s 274
Three.js Properties Through Custom Componentsc.ccevveererenerencnenns 275
BNIS.BI .t 276
RUN ThE SCENE ... 277
Part 3 RECADcoccvivriririre sttt 278
Two Birds, One COMPONENL.........ccocevvininernninre e 278
Exercise 7, Part 4: Greener PaStUres.........ccuvvveriersenieesesiessesseessessessessssssessensnes 279
Add the Custom Component to a Plane Entity..........c.coccerrvvrnicnenesennsennnne 280
Add a Custom Component Attribute ... 280
Component Diversity Through LOGIC.......c.curevrenernsesensesesssesssesesesesesessnnes 281
The Lighting Model Persistsccouermrrnesninsnnsesssesesssesssss s ssssesenns 284

xii

TABLE OF CONTENTS

FOQ s COMPONENT.......ccvrevirierierererersere s s e se e sse e sessesaesassessessessesensessens 284
oL o o S 285
11T 1117 S 286
Chapter 9: Physics and User Interaction in A-Frameccccuvvinnnes 289
Where’s the Game ENGINE?ccoveerererrrcrresese s sessesesnenens 290
Exercise 8, Part 1: Importing a Ready-Made Physics System into A-Frame......291
Install A-Frame and SyStEMS..........cccvvrrnrenerenesnse s seenes 291
A-Frame Developer ECOSYSIEMccovvvvenerescrnsssesesese e 292
A-Frame PhySiCS SYSIEM......ccccocecererrrrcrrese s 292
Load a System t0 a Scene Entity.......c.ccccovvevrenrnsnnncnseserse s 292
Add Physics Properties t0 Entities..........ccovrerrenrnsenennenesesessesesesesesenens 293
HTTP VS. HTTPS ...ttt se e 294
Part 1 RECADcvcererricirsire sttt n e r s 295
Exercise 8, Part 2: HANAS ON........ccvcevveririerienneversersee e sessee e ssessessssssesnennees 296
SUPEr HANAS ..o e 296
Touch-Controller COMPONENESccocevvvrinieniennsnene e 297
A-Frame Physics Extra SyStemccovvvmiennnnnnssnsse e 298
RUN ThE SCENE ... 300
Part 2 RECADcocererirciriere sttt et e 301
SUMMANY....ceiiicerrresrsese e e e np e 301
Chapter 10: Deploying 3D Animated Models in AR with
A-Frame and GitHub Pages.......c.cccruusmmmmssmmmsssnsssssssssssssssssssssssssssssanss 303
HTTPS and XB TESHNGcovveerereerererereeree e 304
€1] 305
Exercise 9, Part 1: Upload a GLTF Model to A-Frame and
Publish to GitHub Pages.........ccccvvirninnsscrnessess e 306
SELUP GItHUD ... 306
GLTF ASSELS ...uecrrerrrrcserrese s se e s ss s s 308

TABLE OF CONTENTS

GLTF-Model Entity COMPONENtccveerievvierrereresensessesesessesessesessessessesees 309
RUN the SCENEcoveccirirrcsrer s 310
oL I T o S 311
Exercise 9, Part 2: Animating GLTF Models in A-Frame...........cccooeeviniernieccrnnne. 311
A-Frame EXIras......c.ccornrncnnse s 312
Animation-Mixer COmMPONENT........cccrrerererrrierreressersere e sss s ssesessessessens 313
Relative TransSforms.........cccorenrnnrncnree e 313
RUN the SCENEcvecceirecece s 314
oL T o 314
Chapter SUMMArY ... e 315
L] 0 e 11 o S 317
1T - 319

Xiv

About the Author

55 P A e

= oot 2l Ml

-

Rakesh Baruabh is a writer and creator with 15

aipc
NSuEs

6,

years of experience in new media, film, and
television in New York City. After completing
an MFA in screenwriting and directing for film
from Columbia University, Rakesh joined the
writers’ room of a hit, primetime, network
drama as an assistant. The experience opened
his eyes to the limits of television and the
opportunities promised by 3D, immersive
content. In 2016 he began a self-guided
journey toward mixed reality design that has
taken him through startups, boot camps, the Microsoft offices, and many,
many hours in front of a computer. He is the author of one previous book
on virtual reality and the Unity Game Engine and has received an Nvidia-
certified nanodegree in Computer Vision. He currently teaches high school
computer science in Milwaukee, WI. He shares what he’s learned with
you in a style and format designed specifically for the person who, in high
school, preferred English class to Trigonometry.

About the Technical Reviewer

Yogendra Sharma is a developer with
experience in architecture, design, and
development of scalable and distributed
applications, with a core interest in
Microservices and DevOps. He is currently
working as an IoT and Cloud Architect at
Intelizign Engineering Services Pvt Pune. He
also has hands-on experience in technologies
such as AR/VR, CAD CAM, Simulation,

AWS, 10T, Python, J2SE, J2EE, NodeJS, Vue]Js,
Angular, MongoDB, and Docker. He constantly

explores technical novelties, and he is open-
minded and eager to learn about new technologies and frameworks. He
has reviewed several books and video courses published by Packt and
Apress.

xvii

Acknowledgments

Deep thanks to the members of the Immersive Web Working Group for
their support of the WebXR API. To Brandon Jones, Nell, Manish, and
others whom I only know through Twitter, thank you for the attention you
put into the documentation for the WebXR API and all of its features. Mr.
Doob, thanks go to you and your compatriots for creating and maintaining
Three.js. To the team at Google Chrome Labs, thank you for evangelizing
the promise of augmented reality on the Web. To Mozilla and all who have
called it an employer, thank you for everything you have done to help
make the Web a more inclusive, democratic space. Thank you to the team
members at Mozilla Mixed Reality, Mozilla Hubs, MDN, and A-Frame for
creating, supporting, and maintaining the tools to make mobile mixed
reality an opportunity for everyone in the world. An incredibly special
thank you to my team at Apress for their tireless devotion to my project.
Spandana Chatterjee, thank you for your support and concern for all
things book related and not. James Markham, thank you for the guidance
you have provided for each chapter. To Yogendra Sharma, my technical
editor, thank you for keen eyes and a sharp mind that kept me honest. And
finally, thank you to my primary editor, Divya Modi, for whom this is my
second book. Divya, thank you for the prompt responses, clarifications,
follow-ups, and forwards that made collaborating remotely a smooth,
fruitful experience.

Xix

Introduction

This book is a resource to help you become familiar with the tools to create
mobile mixed reality for the Web. On July 24, 2020 the World Wide Web
Consortium, the international standards organization for the World Wide
Web, published its most recent version, as of this writing, of the WebXR
API specification. The specification describes how Web browsers can
implement support for virtual and augmented reality devices, including
headsets and sensors, on the Web. The first iteration of the specification
appeared in 2017 as the WebVR API. However, in 2018 the expansion of use
cases for VR and AR on the Web prompted the Immersive Web Working
Group—made up of contributors from Google, Microsoft, Mozilla, and
elsewhere—to overhaul WebVR in favor of an API designed to embrace
what the future of mixed reality may offer. By June of 2020, at least four

of the leading Web browsers, including Google Chrome, Microsoft Edge,
Mozilla Firefox, and Oculus Browser, provided support for the WebXR API.

As WebXR is a new, evolving specification, resources for its
development are sparse. In this book I have created a pathway to help you
prepare for the future of mobile, mixed reality development. By the book’s
end you will be familiar with the most common tools used for WebXR
development today. These tools include Visual Studio Code, WebGL,
Three.js, and A-Frame. Familiarity with HTML, CSS, and JavaScript is not
required to benefit from the lessons in this book.

What follows is a road map for the rest of the course. Chapter 1
introduces the concepts behind the WebXR API as well as the tools you
may need to begin developing mobile, immersive applications. Chapter 2
places us at the point of origin for 3D graphics on the Web, WebGL. By
creating simple projects with WebGL, HTML, and JavaScript, you will

INTRODUCTION

quickly learn the fundamentals of how the WebXR API works inside a
browser. In Chapter 3 we remain with WebGL, as its bare-bones syntax
makes clear the ins and outs of the graphics rendering pipeline that
connects server, client, and GPU. Chapter 4 builds on the preceding two
chapters, culminating with an explanation of linear algebra through
WebGL. The simple, yet important, principles of linear algebra covered
in Chapter 4 provide the suggested groundwork for a deep dive into
immersive Web development with the 3D JavaScript library, Three.js, in
Chapter 5. With a thorough understanding of the WebGL pipeline and
the convenience created by the Three.js library, you will create a virtual
reality project on your local machine and load it into a VR-capable device
through the Internet via the WebXR API in Chapter 6. Chapter 7 moves the
focus from virtual reality to augmented reality programming with Three.
js. Using the features of the WebXR API's Augmented Reality module,
Chapter 7 provides steps toward creating mobile AR experiences that
include animation and user interaction. Chapter 8 returns to the topic of
virtual reality to introduce the use of A-Frame, a framework for creating
mobile XR experiences using Three.js. Both Chapters 9 and 10 remain with
A-Frame, as Chapter 9 explains how to implement real-world physics and
user interaction in a VR scene through the WebXR API’s implementation
of the Gamepad AP]I, also built into many browsers. Finally, Chapter 10
provides instruction on how to import 3D models into A-Frame, animate
them, and view them in augmented reality through GitHub Pages.

The WebXR API is poised to become a useful tool for XR and Web
developers alike. As the lines between mobile and native, augmented
and virtual blur, applications that make use of both 2D and immersive
technologies will become more common. I have created the lessons
inside this book with the intent to help you join the growing community
of developers designing experiences for the immersive Web. No prior
experience with Web development or 3D programming is assumed. As
the WebXR API is such a new technology, more seasoned developers
may also benefit from the instruction contained within. As the future of

xxii

INTRODUCTION

Web development moves into a third dimension and the principles of
game development move on to the Web, more opportunities will open up
for creative minds to forge the language of the new Internet. I hope you,

empowered with the lessons in this course, will be among those leading
the charge.

xxiii

CHAPTER 1

Getting Started

WebXR is not a programming language; it’s not even a library of code we
can access to create our apps. WebXR is a specification developed by the
World Wide Web Consortium, W3C, a nonprofit group of industry experts
who collaborate to create standard protocols across the Web. The W3C
has left the implementation of the WebXR guidelines to the developers

of browsers. WebXR, therefore, is nothing more than a set of rules agreed
upon by industry.

Not to be confused with the WebXR specification, the WebXR API is
an implementation of the WebXR feature set. The WebXR API serves as
an interface between XR Web content and the devices on which they run.
For example, the WebXR API collects data regarding the orientation of a
headset and a user’s pose. The WebXR API provides developers access to
user data through its library of commands.

Yet, the WebXR Device API does have important limitations: it can’t
manage 3D data or draw anything to a screen. The WebXR APl is not a
rendering engine. It cannot load models, wrap them in textures, and paint
them to pixels—a process known as rasterization. To rasterize 3D content
in a browser, the WebXR API extends another API called WebGL.

Following an introduction to the components integral to the use of the
WebXR API, we will discuss the tools we need to create XR applications of
our own. The tools required for creating WebXR applications are a code
editor, alocal development server, a Web browser, and an XR device.
Developers without access to an XR device may use the WebXR Emulator
provided by browser creators like Mozilla. All of these are discussed in a
later section of this chapter.

© Rakesh Baruah 2021
R. Baruah, AR and VR Using the WebXR API,
https://doi.org/10.1007/978-1-4842-6318-1_1

https://doi.org/10.1007/978-1-4842-6318-1_1#DOI

CHAPTER 1 GETTING STARTED

A thorough understanding of how the WebXR API builds upon the
fundamental features of the Web browser will make understanding the
tools we will use later in the course, such as the Three.js JavaScript library
and the A-Frame framework, an easier process. By preparing ourselves
with an understanding of the WebXR API from the ground up and a
knowledge of how the tools we will use will impact the development of our
WebXR apps, we will guarantee that we are best prepared to meet whatever
advancements the WebXR API may release in the future.

In this chapter you will:

e Learn the origin and purpose of WebGL

o Briefly cover the role of JavaScript in the history of the
Web browser

e Learn the purpose of the browser’s rendering engine
o Learn the role played by buffers in XR applications

o Learn the value that graphics processing units (GPUs)
offer to creating and running XR apps

e Survey the tools needed to create WebXR applications
o Cover the system requirements for the use of these tools

e Come to understand the suite of technologies used
throughout this course

WebGL

WebGL is a Web graphics library available through a JavaScript API in all
contemporary Web browsers. Like the WebXR API, the WebGL API also
conforms to a specification. The specification for WebGL, however, is
not maintained by the W3C, but by a different consortium known as the
Kronos Group. Comprising over 150 leading technology companies, the

CHAPTER 1 GETTING STARTED

Kronos group promotes advanced Web standards for graphics, mixed
reality, and machine learning applications. One among their many visual
computing APIs is the OpenGL graphics standard.

The OpenGL graphics standard specifies a protocol for communication
between an application and the drivers of a GPU, such as those made by
Nvidia and AMD. While OpenGL is compatible across machines, platform-
specific APIs like Microsoft’s DirectX and Apple’s Metal also exist. However,
OpenGLss cross-platform applicability has made its younger cousin, OpenGL
ES, a popular graphics API to implement on mobile devices. The ES in
OpenGL ES stands for “embedded systems,” which means the API targets
small, low-power devices. As these devices cannot avail themselves of the
big GPUs you can find in a desktop gaming computer, for example, they
require a graphics API dedicated to their specific needs.

OpenGL ES’ ability to operate on mobile devices allows WebGL to
create 2D and 3D graphics in Web browsers running on stand-alone
headsets and smartphones. It is the Kronos Group’s specification for
OpenGL ES that informs the implementation of the WebGL API. While the
communication between applications and GPUs still requires the use of
GLSL, the language of OpenGL's rendering and drawing commands, the
WebGL API enables Web developers to blend GLSL with a language they
are much more comfortable with, JavaScript. After all, JavaScript is the
language of the Web, and the Web is the domain of the browser.

The Browser

The Web browser as we know it today really came of age in 1995 with the
release of Netscape Navigator. Though Netscape eventually succumbed to
the industry leviathan of Microsoft’s Internet Explorer, its legacy continues
to inform the nature of the Web. But Netscape wasn’t even the first publicly
used Web browser. That distinction belongs to an earlier iteration of
Navigator called Mosaic. In fact, Navigator and its predecessor had been
around since 1993. What, then, happened in 1995 to mark the year as a
watershed moment in the browser wars?

CHAPTER 1 GETTING STARTED

JavaScript happened. While developing Navigator, Netscape sought
a scripting language to use inside its browser. Originally, developers at
Netscape wanted a programming language that embraced the object-
oriented paradigm (OOP) of Java. However, the OOP nature of Java proved
ill-fitting for the needs of the browser. Looking for outside help, Netscape
recruited software engineer Brendan Eich to implement a version of the
Scheme programming language for the browser. For better or worse, the
minimalist dialect of Scheme didn’t appeal to the larger community of
developers who preferred Java’s OOP approach to software design. Looking
for a compromise, Netscape brass asked Eich to strike a balance between
the structure of Java and the flexibility of Scheme. As the apocryphal story
goes, Eich developed what came to be known as JavaScript over the course
of just 10 days.

Eich'’s intent with JavaScript was to “touch the page.” By any measure
Eich succeeded, as JavaScript is one of the most popular programming
languages used worldwide. Web developers have used JavaScript and
members of its family like AJAX and JQuery for decades to create Web
applications increasingly more responsive to user feedback. With the
arrival of Node.js, JavaScript leapt from the front end to the server-side back
end of Web development, an arena once exclusively dominated by more
established languages like C and C++. JavaScript’s flexibility has made it a
go-to language for many developers interested in designing for the full stack.
But its efficacy may not be more apparent than in the Web browser, where its
extensibility allows for the creation of streaming XR content.

The browser is literally our window into the World Wide Web. One
need not do more than execute the function window.onLoad() in a
JavaScript file to understand what I mean. Really, though, the Web browser
is less a window than a wall. It doesn’t allow us to peer into the Web.
Rather, it brings the Web into our homes, onto our tablets and our phones,
by painting the contents of the Web onto the screens of our devices. About
60 times a second a Web browser repaints itself to create the illusion of a
world that we surf with keyboard strokes and mouse clicks. The core of a

CHAPTER 1 GETTING STARTED

Web browser’s functionality is its ability to render remote content to our
screens. The source of this power is the product of one of its two main
engines.

The Render Engine

Two engines make up the modern Web browser application. One is

the JavaScript engine, such as Chrome’s V8 engine, which manages

the compilation of JavaScript code. The other is the engine of primary
importance to us, at this point in our journey. That engine is the one
responsible for rendering content delivered from a server to our screens.

When information arrives at our Internet-connected devices, it passes
through the many protocol layers of the network specification before
appearing inside our browsing window. Data leaves a server wrapped in
layers of instructions that communicate to each node on the network how
to route data to its target. Layer by layer is stripped away by network nodes
until the data packet reaches the machine of the client who requested it.

If the header of the data packet matches what the browser expects,
then the browser gets to work refitting the data to appear on our screen as
it began at its source. Employing its ability to parse the packet’s content,
the browser builds a page from the syntax of its HTML document. While
the JavaScript engine attends to the demands of the website’s JavaScript
modules, the browser’s rendering engine digs into the layout and
compositing instructions described through HTML and CSS. When the
rendering engine is through laying out the elements of a page and painting
them in the order they appear on the screen, we, the user of the client
browser, will have barely noticed that any time has passed at all.

But how exactly does a browser understand where on our screens it
should draw certain shapes or tint certain pixels? Sure, a designer has
included the instruction set for a page’s appearance in HTML and CSS,
but what if a user scrolls? Enters a character into a form? Or presses play
on a video? A browser requires a place to store in memory the content it

CHAPTER 1 GETTING STARTED

receives from a server to repaint to the page in case of update. The server
too needs memory to hold data in queue as it waits to stream to the
browser. What are these objects of memory called?

Buffers

If you've ever tapped your foot impatiently waiting for a Web page to load,
then you're already familiar with the concept behind a buffer. Buffers
are slots of memory included in hardware to hold information in bits.
Buffers include addresses that inform pointers in software programs of
the location of important data. Programs retrieve data from buffers before
passing it through a thread on a processing unit to undergo operations.
If the amount of data to move is greater than the volume, or capacity, of
a thread, then a program’s execution will lag. If the data are the bits of a
YouTube video, then you're going to tap your foot as you wait for it to load.
Buffers are registers for memory allocation. They exist on processors,
on hard drives, in RAM, and even virtually in the browser as cache. Much
of creating XR for the Web relies on the efficient storing and retrieving of
data from buffers; they are an important part of the WebGL specification.
Transferring data to and from buffers can be costly and can destroy the
believability of an immersive experience if causing lag. Fortunately, the
rapid filling and emptying of buffers has been significantly improved by
the increasing availability of desktop and mobile GPUs.

The Graphics Processing Unit

GPUs are computer chips that specialize in parallel processing. CPUs,
central processing units, are the brain of computing devices. Their
embedded logic gates and internal clocks are the essence of digital
computing. Over time, CPUs have increased their productivity through the

CHAPTER 1 GETTING STARTED

inclusion of more cores. Broadly speaking, cores on a CPU align with the
number of processes a chip can run at the same time. More cores mean
more threads, which mean a greater capacity of the computer to execute
tasks concurrently. The number of cores serves as a benchmark for the
speed of a processor. Whereas higher-end CPUs can have somewhere
around eight cores, consumer-grade GPUs can have anywhere from the
hundreds to the thousands.

Today GPUs power much of the intensive computing required by Al
applications in industries as far and wide as self-driving cars to protein
synthesis. Their popularity, however, grew because of the breakthroughs
made by designers of video games. Like the Web browser, video game
applications paint and repaint a screen up to hundreds of times a
second. Each frame update requires calculations of character positions,
environment, lighting, cameras, materials, textures, and more. The
faster and more detailed a game, the higher the demand on a machine’s
rendering power. Applications implementing the specifications of
OpenGL, such as Microsoft’s DirectX, leveraged the parallel processing
of GPUs and their many, many cores to create video games that could
compute and render complex character geometry at rates and volumes
never before seen.

As the prevalence of GPUs in consumer machines has grown, so
too have the availability and demand for virtual reality content. The
speed at which GPUs can calculate the shape, color, position, and
orientation of objects to a screen has supported the beginning of a new
era in 3D graphics. Contemporary techniques for rendering through
GPU computation, such as raytracing, have blurred the line between the
real and virtual in ways that are equally exciting and unsettling. But the
evolution of GPU tech isn’t limited to beefy consoles and gaming PCs.
Advancements in engineering and chip design have shrunk the power of
GPUs to the nanometer scale, bringing the wonder of 3D to mobile and
handheld devices.

CHAPTER 1 GETTING STARTED

The Present Future

Chipsets in modern mobile VR headsets and smartphones are pushing
the envelope of what has been possible to achieve through computing.

As the parallel execution of GPUs and newer system architectures arrive
on more and smaller devices, the demands placed on machines to render
XR content in real time will become less daunting. The WebXR API, by
extending the WebGL API (which is itself based on the specifications of
OpenGL ES), allows us as XR content creators to leverage the power of
GPUs to bring virtual and augmented experiences to hundreds of millions
of people through the Internet.

In designing JavaScript, Brendan Eich may have aimed to give
designers the ability to touch the page of a website. Twenty-five years later
JavaScript endures, and through the WebXR API in the browser, provides
us, designers, with the ability to touch reality itself. In the remainder of
the chapter you will learn the tools required to build XR content with the
WebXR APIL.

Tooling Up

The tools described in the following sections have proved helpful to me
during my development of WebXR content. Some are required; others are
not. Each has been vetted by reputable parties if not directly by me. As
always should be the case when creating with a bleeding edge technology
like WebXR, refer to the most recent, published documentation for up-to-
date compatibility and requirements.

A Code Editor

Like a text editor, a code editor allows you to type the syntax of a
program into a document. Features built into a code editor create an

CHAPTER 1 GETTING STARTED

environment convenient to writing, deploying, testing, and correcting
code. Throughout this book I use Microsoft’s Visual Studio Code editor
(VS Code). It is cross-platform, popular, powerful, and free.

We will use it to write the HTML, JavaScript, and CSS required
to create XR applications for the Web. As VS Code also includes a
marketplace for convenient developer extensions and integration with
GitHub’s version control platform, it enjoys widespread popularity
among developers of all stripes.

Visual Studio Code download requirements from Microsoft’s
documentation are as follows.

Hardware

Visual Studio Code is a small download (<100 MB) and has a disk footprint
of 200 MB. VS Code is lightweight and should easily run on today’s
hardware.

We recommend:

e 1.6 GHz or faster processor

e 1GBofRAM

Platforms

VS Code has been tested on the following platforms:
o OSXYosemite

e Windows 7 (with .NET Framework 4.5.2), 8.0, 8.1, and
10 (32-bit and 64-bit)

e Linux (Debian): Ubuntu Desktop 14.04, Debian 7

e Linux (Red Hat): Red Hat Enterprise Linux 7, CentOS 7,
Fedora 23

CHAPTER 1 GETTING STARTED

Additional Windows Requirements

Microsoft .NET Framework 4.5.2 is required for VS Code. If you are using
Windows 7, please make sure .NET Framework 4.5.2 is installed.

Additional Linux requirements

¢ GLIBCXX version 3.4.15 or later
e GLIBC version 2.15 or later

For a list of the most recent requirements, visit: https://code.
visualstudio.com/Docs/supporting/requirements#_platforms.

Local Web Server for Development

To test and debug Web applications written into a code editor, developers
require the creation of a local Web server. Mimicking the behavior of a
remote server that stores and delivers Web pages and their resources to
client browsers, a local Web server allows developers to launch and view
Web applications from their local machines. For the exercises in this book,
Iuse the Live Server extension created by Ritwick Dey, available for free in
the VS Code Extension Store.

Live Server VS Extension by Ritwick Dey

See https://marketplace.visualstudio.com/items?itemName=ritwick
dey.LiveServer.

Other popular options to create a local Web server are modules
available through Node.js and Python. Both Node and Python require
installation on your machine before providing access to their local server

resources.

10

https://www.microsoft.com/download/details.aspx?id=42643
https://code.visualstudio.com/Docs/supporting/requirements#_platforms
https://code.visualstudio.com/Docs/supporting/requirements#_platforms
https://marketplace.visualstudio.com/items?itemName=ritwickdey.LiveServer
https://marketplace.visualstudio.com/items?itemName=ritwickdey.LiveServer

