
  

New Results from the Beginning 
of the 21st Century

Frontiers in Mathematics

         Polynomial   
     Automorphisms 
  and the Jacobian 
               Conjecture

Arno van den Essen
Shigeru Kuroda
Anthony J. Crachiola





Frontiers inMathematics

Advisory Editors

William Y. C. Chen, Nankai University, Tianjin, China
Laurent Saloff-Coste, Cornell University, Ithaca, NY, USA
Igor Shparlinski, The University of New South Wales, Sydney, NSW, Australia
Wolfgang Sprößig, TU Bergakademie Freiberg, Freiberg, Germany

This series is designed to be a repository for up-to-date research results which have been
prepared for a wider audience. Graduates and postgraduates as well as scientists will
benefit from the latest developments at the research frontiers in mathematics and at the
“frontiers” between mathematics and other fields like computer science, physics, biology,
economics, finance, etc. All volumes are online available at SpringerLink.

More information about this series at http://www.springer.com/series/5388

http://www.springer.com/series/5388


Arno van den Essen • Shigeru Kuroda •
Anthony J. Crachiola

Polynomial Automorphisms
and the Jacobian Conjecture
New Results from the Beginning
of the 21st Century



Arno van den Essen
Department of Mathematics
Radboud University Nijmegen
Nijmegen, The Netherlands

Shigeru Kuroda
Department of Mathematical Sciences
Tokyo Metropolitan University
Hachioji-shi, Tokyo, Japan

Anthony J. Crachiola
College of Science, Engineering & Technology
Saginaw Valley State University
Saginaw, MI, USA

ISSN 1660-8046 ISSN 1660-8054 (electronic)
Frontiers in Mathematics
ISBN 978-3-030-60533-9 ISBN 978-3-030-60535-3 (eBook)
https://doi.org/10.1007/978-3-030-60535-3

Mathematics Subject Classification: 14R10, 14R15, 14L24

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the
whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions
that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

This book is published under the imprint Birkhäuser, www.birkhauser-science.com, by the registered company
Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-60535-3
http://www.birkhauser-science.com


For Toshio Kuroda and Michiko Kuroda

For Jennifer, Joseph, and Renee

For Sandra and Raïssa



Preface

In March 2015, I received an email from Clemens Heine, Executive Editor for Birkhäuser,
asking me if I was interested in preparing an updated new edition of my book Polynomial
Automorphisms and the Jacobian Conjecture, which appeared in 2000. Having thought
some minutes about this proposal, I realized that many new exciting results have been
obtained since the publication of that book some twenty years ago. To mention a few, the
solution of Nagata’s conjecture by Shestakov–Umirbaev, the complete solution of Hilbert’s
fourteenth problem by Kuroda, the equivalence of the Jacobian Conjecture and the
Dixmier Conjecture by Tsuchimoto and independently by Belov-Kanel and Kontsevich,
the symmetric reduction by de Bondt and myself, the theory of Mathieu–Zhao spaces by
Wenhua Zhao, and finally the counterexamples to the Cancellation Problem in positive
characteristic by Neena Gupta.

In order to give a good account of all these new developments, I asked the help of two
experts, both excellent expository writers, Anthony J. Crachiola and Shigeru Kuroda. I
asked Tony to cover the new results related to the Cancellation Problem and Shigeru to
expose his results on Hilbert’s fourteenth problem and the Shestakov–Umirbaev theory.
During the writing of my own contributions, it became clear that together we would have
enough material to write a new book.

The contents of this book are arranged as follows. In the first chapter, written by Shigeru
Kuroda, the author extends the results obtained by Shestakov and Umirbaev and gives a
useful criterion to decide if a given polynomial automorphism in dimension three is tame.
His exposition is completely self-contained. As an application, it is shown that Nagata’s
famous automorphism is indeed wild, as originally conjectured by Nagata in 1972.

The second chapter, which is also written by Kuroda, gives a complete solution of
Hilbert’s fourteenth problem due to the author and includes his latest results.

The third chapter, written by Anthony J. Crachiola, discusses methods used to study
problems related to polynomials in positive characteristic, including the Makar-Limanov
and Derksen invariants, higher derivations, gradings, etcetera. These methods are used to
explain the counterexamples to the Cancellation Problem in positive characteristic due to
Neena Gupta.
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viii Preface

The last two chapters form my own contribution. In Chap. 4, it is shown that the
Jacobian Conjecture is equivalent to the Dixmier Conjecture, the Poisson Conjecture, and
the Unimodular Conjecture. Furthermore, a p-adic formulation of the Jacobian Conjecture
is given, due to Lipton and the author. At the end of the chapter, a false “proof” of the
Jacobian Conjecture is constructed. It is left to the reader to find the error!

In Chap. 5, the theory of Mathieu–Zhao spaces, mainly due to Wenhua Zhao, is
developed and various conjectures, all implying the Jacobian Conjecture, are discussed:
the Vanishing Conjecture, the Generalized Vanishing Conjecture, the Image Conjecture,
and the Gaussian Moment Conjecture.

After the last chapter, a list of corrections to my book [117] is given. At the time
that book was published, it was the only one covering a large part of the young field
of polynomial automorphisms, which belongs to the larger field of Affine Algebraic
Geometry. During the last 20 years, several books in the field of Affine Algebraic
Geometry were published. Two of them in the series Encyclopaedia of Mathematical
Sciences, namely Computational Invariant Theory by Harm Derksen and Gregor Kemper
[29] and Algebraic Theory of Locally Nilpotent Derivations by Gene Freudenburg [48].
A second enlarged edition of this monograph appeared in 2017. In 2016, the book The
Asymptotic Variety of Polynomial Maps was published by Ronen Peretz [99], describing
his approach to the two-dimensional Jacobian Conjecture.

Also, several survey papers covering a more geometric approach to polynomial maps
appeared on arXiv, such as Masayoshi Miyanishi’s Lectures on Geometry and Topology
of Polynomials - Surrounding the Jacobian Conjecture [87] and the recent paper On the
Geometry of the Automorphism Groups of Affine Varieties by Jean-Philippe Furter and
Hanspeter Kraft [52]. Finally, we like to mention the very interesting recent paper The
Jacobian Conjecture Fails for Pseudo-Planes by Adrien Dubouloz and Karol Palka [37].

Nijmegen, The Netherlands Arno van den Essen
July 2019
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1The Shestakov–Umirbaev Theory and Nagata’s
Conjecture

1.1 The Shestakov–Umirbaev Theory

As discussed in the introduction of [117], Nagata [94] conjectured that there exist wild
polynomial automorphisms in three variables (Conjecture 1.1.1). In 2004, after [117]
was published, Shestakov–Umirbaev [109, 110] showed that the conjecture is true if
the coefficient field is of characteristic zero. The purpose of this chapter is to give an
introduction to the Shestakov–Umirbaev theory. We give a self-contained proof of a
wildness criterion of polynomial automorphisms in three variables (Sect. 1.1.4). Using
this criterion, we can easily check the wildness of Nagata’s famous automorphism
(Exercise 11).

We emphasize that the Shestakov–Umirbaev theory is not a theory of wild automor-
phisms, but a theory of tame automorphisms. This may sound strange. However, if one
would like to say that an automorphism is wild, i.e., not tame, one first needs to know
what the tame automorphisms are. Shestakov and Umirbaev obtained a condition which
every tame automorphism satisfies. It is not difficult to check that Nagata’s automorphism
does not satisfy the condition.

We note that the “Shestakov–Umirbaev theory” we present here is the one modified by
the author [73, 74]. The main differences from the original theory are as follows:

• One of the most important tools in the Shestakov–Umirbaev theory is a certain
inequality for estimating degrees of polynomials (cf. [109], Theorem 3). The author
improved this result in [73], which makes the argument more simple and precise.

• Shestakov and Umirbaev considered total degrees, while the author considered more
generally weighted degrees. This generalization is of great help in applications. Also,
the proof of Nagata’s conjecture becomes slightly simpler by using an “independent”
weight (cf. Sect. 1.1.2).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. van den Essen et al., Polynomial Automorphisms and the Jacobian Conjecture,
Frontiers in Mathematics, https://doi.org/10.1007/978-3-030-60535-3_1
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2 1 The Shestakov–Umirbaev Theory and Nagata’s Conjecture

Notation and Convention Throughout this chapter, let k be a field of characteristic zero
except for Sect. 1.1.1, and let k[x] = k[x1, . . . , xn] be the polynomial ring in n variables
over k. We often use the letters F and G to denote the elements of k[x]r for r ≥ 1, and
write F = (f1, . . . , fr ) and G = (g1, . . . , gr ) without mentioning it. We write Sl :=
{f1, . . . , ̂fl, . . . , fr } for 1 ≤ l ≤ r . For each permutation σ ∈ Sr , we define Fσ :=
(fσ(1), . . . , fσ(r)). We denote by T the set of F ∈ k[x]3 such that f1, f2, and f3 are
algebraically independent over k. We identify each F ∈ k[x]r with the substitution map
k[x1, . . . , xr ] → k[x] defined by xi �→ fi for each i. Then, for F ∈ k[x]n and G ∈ k[x]r ,
the composite

k[x1, . . . , xr ] G→ k[x] F→ k[x]

is written as FG = (g1(f1, . . . , fn), . . . , gr (f1, . . . , fn)).

1.1.1 Nagata’s Conjecture

In this section, let k be any field. Denote by Autk k[x] the automorphism group of
the k-algebra k[x]. We remark that F ∈ k[x]n belongs to Autk k[x] if and only if
k[f1, . . . , fn] = k[x], i.e., F : k[x] → k[x] is surjective, since tr.degk(k[x]/ ker F) = n

implies ker F = (0). For example, we have

(x1, . . . , xn)A+ (b1, . . . , bn) ∈ Autk k[x] (1.1.1)

for each A ∈ GL(n, k) and b1, . . . , bn ∈ k, and

(x1, . . . , xl−1, xl + f, xl+1, . . . , xn) ∈ Autk k[x] (1.1.2)

for each 1 ≤ l ≤ n and f ∈ k[x1, . . . , x̂l , . . . , xn]. Automorphisms of k[x] as in
(1.1.1) and (1.1.2) are called affine automorphisms and elementary automorphisms,
respectively. The tame subgroup T (n, k) is the subgroup of Autk k[x] generated by all
the affine automorphisms and elementary automorphisms. We say that F ∈ Autk k[x] is
tame if F belongs to T (n, k), and wild otherwise.

Clearly, we have Autk k[x1] = T (1, k). Due to Jung [63] and van der Kulk [129],
Autk k[x1, x2] = T (2, k) also holds true. Nagata conjectured that Autk k[x1, x2, x3] �=
T (3, k) and gave the following candidate example of a wild automorphism (see [94], Part
2, Conjecture 3.1).

Conjecture 1.1.1 (Nagata) (f1, f2, f3) �∈ T (3, k), where
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f1 = x1 − 2(x1x3 + x2
2)x2 − (x1x3 + x2

2)2x3

f2 = x2 + (x1x3 + x2
2 )x3

f3 = x3.

(1.1.3)

Exercise 1 Show that k[f1, f2, f3] = k[x1, x2, x3] for f1, f2, and f3 in (1.1.3).
[Note that x1x3 + x2

2 = f1f3 + f 2
2 ∈ k[f1, f2, f3].]

About 30 years after Nagata’s book [94] was published, Shestakov–Umirbaev [109,
110] finally settled this conjecture when k is of characteristic zero.

Theorem 1.1.2 (Shestakov–Umirbaev) Conjecture 1.1.1 is true if k is of characteristic
zero.

At present, however, it is not known whether Autk k[x] = T (n, k) holds when n = 3
and k is of positive characteristic, or when n ≥ 4.

Exercise 2

(1) Show that T (n, k) is generated by the automorphisms of the form

(x1, . . . , xl−1, αxl + f, xl+1, . . . , xn),

where 1 ≤ l ≤ n, α ∈ k∗ and f ∈ k[x1, . . . , x̂l , . . . , xn].
[By linear algebra, every element of GL(n, k) is changed to the identity matrix by an
iteration of column operations.]

(2) Let E(n, k) be the subgroup of Autk k[x] generated by all the elementary automor-
phisms, and let

D(n, k) := {(α1x1, . . . , αnxn) | α1, . . . , αn ∈ k∗}.

Show that T (n, k) = D(n, k)E(n, k).

1.1.2 Weighted Grading

Let � be a totally ordered Q-vector space, i.e., a Q-vector space equipped with a total
ordering such that

α ≤ β implies α + γ ≤ β + γ for each α, β, γ ∈ �. (1.1.4)
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For example, R is a Q-vector space and satisfies (1.1.4) for the standard ordering. The
Q-vector space Qn satisfies (1.1.4) for the lexicographic order.

We fix a weight w = (w1, . . . , wn) ∈ �n with w1, . . . , wn > 0 and consider the w-
weighted grading k[x] = ⊕γ∈� k[x]γ , where k[x]γ is the k-vector space generated by

monomials x
i1
1 · · · xin

n ∈ k[x]with i1w1+· · ·+inwn = γ . Note that k[x]αk[x]β ⊂ k[x]α+β

for each α, β ∈ �.

Exercise 3 Assume that h ∈ k[x]δ, h1 ∈ k[x]δ1, . . . , hr ∈ k[x]δr are nonzero, where
δ, δ1, . . . , δr ∈ �. Show that h ∈ k[h1, . . . , hr ] implies

δ ∈ Z≥0δ1 + · · · + Z≥0δr := {a1δ1 + · · · + arδr | a1, . . . , ar ∈ Z≥0}.

Now, take any f = ∑γ∈� fγ ∈ k[x], where fγ ∈ k[x]γ . If f �= 0, we define the
w-degree of f by

degw f := max{γ ∈ � | fγ �= 0}

and set f w := fdegw f . If f = 0, we define deg f := −∞ and f w := 0. Then, for each
f, g ∈ k[x], we have

degw fg = degw f + degw g and (fg)w = f wgw. (1.1.5)

Example 1.1.3

(1) If w = (1, . . . , 1) ∈ Rn, then degw f is the same as the total degree of f .
(2) Let � = Q3 with the lexicographic order, and let w = (e1, e2, e3), where e1, e2, and

e3 are the coordinate unit vectors of Q3. Then, for f1, f2, and f3 in (1.1.3), we have
f w

1 = −x2
1x3

3 , f w
2 = x1x

2
3 , and f w

3 = x3, and

degw f1 = (2, 0, 3), degw f2 = (1, 0, 2), and degw f3 = (0, 0, 1).

Exercise 4 Show the following:

(1) L := {f/g | f, g ∈ k[x]γ , g �= 0, γ ∈ �} is a subfield of the rational function field
k(x1, . . . , xn).

(2) Every element h of k[x] \ k is transcendental over L. [For any γ ∈ �, l ≥ 0 and
c0, . . . , cl ∈ k[x]γ with cl �= 0, we have (

∑l
i=0 cih

i)w = cw
l (hw)l �= 0.]

We say that w is independent if w1, . . . , wn are linearly independent over Q.
For example, w = (1,

√
2,
√

3) ∈ R3 is independent. If w is independent, then
degw x

i1
1 · · · xin

n = ∑n
l=1 ilwl’s are different for different (i1, . . . , in)’s. Hence, f w is
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always a monomial. Moreover, we have

degw f = degw g ⇐⇒ f w ≈ gw for f, g ∈ k[x]. (1.1.6)

Here, we write f ≈ g (resp., f �≈ g) if f and g are linearly dependent (resp., linearly
independent) over k.

Exercise 5 Consider the following conditions for f1, . . . , fr ∈ k[x] \ {0}:

(a) degw f1, . . . , degw fr are linearly independent over Q.
(b) f w

1 , . . . , f w
r are algebraically independent over k.

(1) Show that (a) implies (b).
[degw(f w

1 )i1 · · · (f w
r )ir ’s are different for different (i1, . . . , ir )’s.]

(2) Show that (b) implies (a) when w is independent.
[If (a) is false, then degw f

i1
1 · · · f ir

r = degw f
j1
1 · · · f jr

r for some distinct

(i1, . . . , ir ), (j1, . . . , jr ) ∈ (Z≥0)
r . This implies (f

i1
1 · · · f ir

r )w ≈ (f
j1
1 · · ·f jr

r )w

by (1.1.6).]

Proposition 1.1.4 Let f ∈ k[x]α \ k and g ∈ k[x]β \ k, where α, β ∈ �. If f and g are
algebraically dependent over k, then f q ≈ gp holds for some p, q ≥ 1 with gcd(p, q) =
1.

Proof Note that f w = f and gw = g. Hence, by Exercise 5 (1), we can find p, q ≥
1 such that q deg f = p deg g and gcd(p, q) = 1. Then, f q/gp lies in the field L of
Exercise 4. Hence, g is transcendental over k(f q/gp). Since tr.degk k(f q/gp, g) = 1, it
follows that f q/gp ∈ k. ��

We study tuples of elements of k[x] by means of w-weighted gradings. For each F ∈
k[x]r with r ≥ 1, we define

degw F := degw f1 + · · · + degw fr and F w := (f w
1 , . . . , f w

r ).

Now, let F ∈ Autk k[x]. Then, the Jacobian of F is nonzero. Hence, we have
∏n

l=1(∂fl/∂xσ(l)) �= 0 for some σ ∈ Sn. Then, fl depends on xσ(l) for each l, and so
degw fl ≥ wσ(l) for each l. Thus, we obtain

degw F ≥ w1 + · · · +wn =: |w|. (1.1.7)
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Proposition 1.1.5 If the equality holds in (1.1.7), then F,F w ∈ T (n, k).

Proof We only prove the case n = 3. The general case is left to the reader. Without loss
of generality, we may assume that degw fi = wi for each i, and w satisfies one of the
following:

(1) w1 = w2 = w3. (2) w1 < w2 < w3. (3) w1 = w2 < w3. (4) w3 < w1 = w2.
Then, F and F w are tame automorphisms of the following types, where Aff(2, k) denotes
the set of affine automorphisms of k[x1, x2]:
(1) affine automorphism.
(2) (g1, g2, g3), where gi ∈ k∗xi + k[x1, . . . , xi−1] for i = 1, 2, 3.
(3) (G′, g), where G′ ∈ Aff(2, k) and g ∈ k∗x3 + k[x1, x2].
(4) (G′ +G′′, g), where G′ ∈ Aff(2, k), G′′ ∈ k[x3]2, and g ∈ k∗x3 + k. ��

1.1.3 Initial Algebras and Elementary Reductions

For each k-subalgebra A of k[x], we define Aw to be the k-vector space generated by f w

for f ∈ A. Then, Aw is a k-subalgebra of k[x] by (1.1.5), which we call the initial algebra
of A.

For h ∈ k[x] \ {0}, we have hw ∈ Aw if there exists φ ∈ A such that hw = φw, i.e.,
degw(h− φ) < deg h. The converse is also true.

Exercise 6 Show that hw ∈ Aw implies hw = φw for some φ ∈ A.

For each f1, . . . , fr ∈ k[x], we have k[f1, . . . , fr ]w ⊃ k[f w
1 , . . . , f w

r ]. The equality
holds if r = 1. In general, however, it is difficult to determine the generators of the k-
algebra k[f1, . . . , fr ]w.

Exercise 7 (Robbiano–Sweedler [103]) Let A = k[x1 + x2, x1x2, x1x
2
2 ].

(1) Show that x1x
l
2 ∈ A for all l ≥ 1. [x1x

l
2 = x1x

l−1
2 (x1 + x2)− x1x

l−2
2 · x1x2]

(2) Show that A ∩ k[x2] = k and Aw = k + x1k[x1, x2] for w = (1, 0).

Note: The k-algebra Aw = k + x1k[x1, x2] is not finitely generated.

Now, write φ ∈ k[f1, . . . , fr ] \ {0} as φ =∑i1,...,ir
ui1,...,ir f

i1
1 · · · f ir

r , where ui1,...,ir ∈
k. Then, degw φ is at most

δ := max{degw f
i1
1 · · · f ir

r | ui1,...,ir �= 0}, the apparent w-degree of φ.



1.1 The Shestakov–Umirbaev Theory 7

We define φ′ :=∑′
ui1,...,ir (f

w
1 )i1 · · · (f w

r )ir , where the sum
∑′ is taken over i1, . . . , ir ≥

0 with degw f
i1
1 · · · f ir

r = δ.

Remark 1.1.6

(i) φ′ �= 0 if and only if degw φ = δ.
(ii) If φ′ �= 0, then φw = φ′, so φw belongs to k[f w

1 , . . . , f w
r ].

If f w
1 , . . . , f w

r are algebraically independent over k, then φ′ is always nonzero. Hence,
the following lemma holds.

Lemma 1.1.7 Let f1, . . . , fr ∈ k[x] be such that f w
1 , . . . , f w

r are algebraically indepen-
dent over k. Then, we have k[f1, . . . , fr ]w = k[f w

1 , . . . , f w
r ].

The following notion is important in studying the elements of Autk k[x].

Definition 1.1.8 We say that F ∈ (k[x] \ {0})r admits an elementary reduction if there
exists 1 ≤ l ≤ r such that f w

l ∈ k[f1, . . . , ̂fl, . . . , fr ]w, i.e., degw(fl − φ) < degw fl for
some φ ∈ k[f1, . . . , ̂fl, . . . , fr ] (cf. Exercise 6). We call

F ′ := (f1, . . . , fl−1, fl − φ, fl+1, . . . , fr )

an elementary reduction of F .

Note that degw F ′ < degw F , and F ′ = FE holds for

E := (x1, . . . , xl−1, xl − ψ, xl+1, . . . , xr),

where ψ ∈ k[x1, . . . , x̂l , . . . , xr ] is such that φ = F(ψ).

Remark 1.1.9 F ∈ (k[x] \ {0})r admits an elementary reduction if and only if there exists
an elementary automorphism E of k[x1, . . . , xr ] such that degw FE < degw F . Hence, by
(1.1.7), F ∈ Autk k[x] admits no elementary reduction if degw F = |w|.

Proposition 1.1.10 If F ∈ Autk k[x] satisfies the following conditions, then we have
degw F > |w|, and F admits no elementary reduction:

(e1) f w
1 , . . . , f w

n are algebraically dependent over k, but any n − 1 of them are
algebraically independent over k.

(e2) f w
i �∈ k[f w

1 , . . . , ̂f w
i , . . . , f w

n ] for i = 1, . . . , n.
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Proof By (e1), we have F w �∈ Autk k[x]. This implies degw F > |w| by Proposi-
tion 1.1.5. By Lemma 1.1.7, the last part of (e1) implies

k[f1, . . . , ̂fi, . . . , fn]w = k[f w
1 , . . . , ̂f w

i , . . . , f w
n ]

for i = 1, . . . , n. Hence, F admits no elementary reduction by (e2). ��

Corollary 1.1.11 Assume that w is independent. If F ∈ Autk k[x] satisfies the following
conditions, then we have degw F > |w|, and F admits no elementary reduction:
(E1) degw f1, . . . , degw fn are linearly dependent over Q, but any n − 1 of them are

linearly independent over Q.
(E2) degw fi �∈∑j �=i Z≥0 degw fj for i = 1, . . . , n.

Proof Since w is independent, (E1) is equivalent to (e1) by Exercise 5. By Exercise 3,
(E2) implies (e2). ��

Finally, we discuss well-orderedness property of w-degrees. The following exercise is
essential.

Exercise 8

(1) Show that every infinite sequence of elements of Z≥0 has an infinite, non-decreasing
subsequence.

(2) Show that every infinite sequence (ai)i of elements of (Z≥0)
n has an infinite

subsequence (ail )l such that ail+1 − ail ∈ (Z≥0)
n for all l.

Lemma 1.1.12
∑n

i=1 Z≥0wi is a well-ordered subset of �.

Proof Suppose that the lemma is false. Then,
∑n

i=1 Z≥0wi contains an infinite, strictly
decreasing sequence a = (ai,1w1 + · · · + ai,nwn)

∞
i=1, where ai,j ∈ Z≥0. Since

w1, . . . , wn > 0, we know by Exercise 8 (2) that a has an infinite, non-decreasing
subsequence, which is absurd. ��

Remark 1.1.13 Let A be a k-subalgebra of k[x], and h ∈ k[x] \ A. Then, {degw f | f ∈
h + A} has a least element by Lemma 1.1.12. Hence, there exists f ∈ h + A such that
f w �∈ Aw in view of Exercise 6.

Exercise 9 In the situation of Remark 1.1.13, let g ∈ h + A be such that degw g >

min{degw f | f ∈ h+A}. Show that gw belongs to Aw. [Take f ∈ h+A with degw f <

degw g. Then, gw = (g − f )w and g − f ∈ A.]
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By Remark 1.1.13 and Exercise 9, the following holds for each g ∈ h+ A:

degw g = min{degw f | f ∈ h+ A} ⇐⇒ gw �∈ Aw. (1.1.8)

1.1.4 Wildness Criterion

Assume that n ≥ 3. Recall that T is the set of F ∈ k[x]3 such that f1, f2, and f3 are
algebraically independent over k.

Definition 1.1.14 (Kuroda) We say that the pair (F,G) ∈ T 2 satisfies the Shestakov–
Umirbaev condition if the following conditions hold:

(SU1) g1 ∈ f1 + kf 2
3 + kf3, g2 ∈ f2 + kf3 and g3 ∈ f3 + k[g1, g2].

(SU2) degw f1 ≤ degw g1 and degw f2 = degw g2.
(SU3) (gw

1 )2 ≈ (gw
2 )s for some odd number s ≥ 3.

(SU4) degw f3 ≤ degw g1 and f w
3 �∈ k[gw

1 , gw
2 ].

(SU5) degw g3 < degw f3.
(SU6) degw g3 < degw g1 − degw g2 + degw dg1 ∧ dg2.

Here, degw dg1 ∧ dg2 denotes the maximum among

degw

∣

∣

∣

∣

∂(g1, g2)

∂(xi, xj )

∣

∣

∣

∣

xixj for 1 ≤ i < j ≤ n. (1.1.9)

Exercise 10 In the situation of Definition 1.1.14, show the following:

(1) If degw f1 = degw g1, then 2 degw f1 = s degw f2.
(2) If degw f1 < degw g1, then s degw f2 = 4 degw f3. [We have gw

1 ≈ (f w
3 )2 or gw

1 ≈ f w
3

by (SU1), but gw
1 �≈ f w

3 by (SU4).]

For i = 1, 2, 3, let Ei denote the set of elementary automorphisms E of k[x1, x2, x3]
such that E(xj ) = xj for each j �= i. We set E :=⋃3

i=1 Ei .

Remark 1.1.15 If (F,G) ∈ T 2 satisfies the Shestakov–Umirbaev condition, then we have
the following:

(i) G = FE1E2E3 for some Ei ∈ Ei by (SU1).
(ii) G is an elementary reduction of F ′ := (g1, g2, f3) by (SU1) and (SU5).

(iii) We have degw F ′ ≥ degw F by (SU2), but degw G < degw F as shown later
(Lemma 1.2.2 (i)).


