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FOREWORD

If you are like me (and the fact that you are holding a Processing book in your hands indi-
cates there’s a fair chance that you are), then a quick flip through the pages of this book,
glancing at the many illustrations, should be enough to set your heart beating just a little bit
faster, and start seeds of ideas sprouting in your head.

Processing is a richly visual language, which is pretty obvious if you've performed the afore-
mentioned page flipping. It has its roots in a language called Design by Numbers, developed
by Professor John Maeda at MIT, and was in fact created by two of Maeda’s students, Ben Fry
and Casey Reas. Whereas most languages are built to create serious applications, Processing
almost seems to have been created to just have fun with. The language has been used to cre-
ate various data visualization and installation art pieces, but most often you just see people
playing with it, creating complex and beautiful pictures and animations. As a matter of fact,
you don’t even make Processing applications; you make sketches—which go in your sketch-
book. This aspect of the language has drawn many creative coders who blur the boundaries
between programming and art.

Many like to draw a comparison between Processing and Adobe (née Macromedia) Flash, a
commercial program often used to create graphically rich, often purely experimental anima-
tions using ActionScript, an easy-to-learn programming language. Indeed, many of the peo-
ple using Processing started out programming in Flash, and switched to take advantage of
the superior speed and performance, additional commands, and flexibility of Processing.
Although Flash has gained a lot over the years in terms of performance and capabilities,
Processing remains the tool of choice for many artist-coders.

Processing has grown quite a bit over the years. It’s an evolving language, added onto by var-
ious plug-ins and contributions from a dedicated community. It’s deceivingly simple, allowing
you to get started quickly, but it provides an incredible amount of depth for those who care
to peek beneath the surface.

Although there are various online resources, Processing has lacked a printed book of any
sort. This book fills that gap, and then some. In the tradition of the language, this book cov-
ers both the artistic and the programming aspects of Processing. And if you are stronger on
the art side than the code side, fear not. The author leads you into it gently, giving you just



FOREWORD
the bits you need to get started. On the other hand, when you are ready to dive in deep,
there’s more than enough material to keep you up late at night coding.

So take another flip through the book for inspiration, take a deep breath, get comfortable,
and dive in, just like I'll be doing as soon as | finish writing this!

Keith Peters, April 2007
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INTRODUCTION

Welcome to Processing: Creative Coding and Computational Art. You’re well on your way to
becoming a Processing guru! All right, maybe it will take a bit more reading, but with
Processing, you’ll be cranking out creative code sooner than you think. Best of all, you’ll be
creating as you learn. Processing is the first full-featured programming language and envi-
ronment to be created by artists for artists. It grew out of the legendary MIT Media Lab, led
by two grad students, Casey Reas and Ben Fry, who wanted to find a better way to write code
that supported and even inspired the creative process. They also wanted to develop an
accessible, affordable, and powerful open source tool; so they decided to make the software
available for free.

Casey and Ben began developing Processing in the fall of 2001, releasing early alpha versions
of the software soon after. In April 2005, they released the beta version for Processing 1.0. To
date, over 125,000 people have had downloaded the Processing software, and Ben and Casey
had been awarded a Prix Ars Electronica Golden Nica, the electronic/cyber-arts version of an
Oscar. In addition, many leading universities around the world have begun including
Processing in their digital arts curriculum, including Parsons School of Design; Bandung
Institute of Technology, Indonesia; UCLA; Yale; NYU; Helsinki University; Royal Danish
Academy of Fine Arts, Copenhagen; School of the Art Institute of Chicago; Miami University
of Ohio; University of Washington; and Elisava School of Design, Barcelona (and many, many
others).

Yet, in spite of all of Processing’s phenomenal success, its story is really just beginning. As of
this writing, version 1.0 of the software is on the brink of being released, as are the first few
books on the subject. There are even people (as shocking as this sounds) who still haven’t
heard of Processing. So rest assured, it’s still not too late to claim Processing pioneer status.
Processing has a very bright future, and I'm excited to be able to introduce you to creative
coding with this amazing language.

Impetus for writing the book

If you’re anything like me (and | suspect you are since you’re reading this book), you are a
creatively driven individual—meaning that you do give a damn about how things look,
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sound, feel, and so on, besides just how they function. | suspect you also learn best in a
nontraditional way. Well, if this describes you at all, you've picked up the right book. If, on
the other hand, you pride yourself on your robotic ability to tune out sensory data and fol-
low linear directions, then (1) keep reading, (2) make art, and (3) buy multiple copies of
this book.

My own interest in writing code evolved organically out of my work as a painter and
designer over a long period (a well-timed, nonserious illness also contributed). | graduated
with my MFA in painting in 1992, and got a teaching job right out of grad school. However,
| soon realized that | wasn’t ready to teach (or hold a job for that matter), and landed up
quitting within a couple of months (my folks weren’t too pleased at the time). Fortunately,
an uncle of mine (the previous black sheep in the family) stepped in and suggested | look
into computer graphics. With nothing to lose, | rented a Mac 2ci, borrowed some software,
and locked myself away for a couple of months.

| eventually developed some basic skills in digital imaging, page layout, and vector-based
drawing. | also began studying graphic design, which, despite my two overpriced degrees
in painting, | knew next to nothing about. Equipped with my new (very shaky) skills, | put
together some samples and went looking for work. Over the next few years, | got involved
in a number of startups (most quickly imploded), as well as my own freelance design busi-
ness. The work included print, CD-ROM/kiosks, 2D and 3D animation, video, broadcast,
and eventually web design. Throughout this period, | also continued to paint and show my
work, and began teaching again as well.

My paintings at the time were perceptually-based—which means | looked at stuff as |
painted. | worked originally from the landscape, which eventually became just trees, and
then a single tree, and finally branches and leaves. The paintings ultimately became purely
abstract fields of color and marks. This transformation in the painting took a couple of
years, and throughout this period | worked as a designer and multimedia developer. | was
dealing with a fair amount of code in my multimedia work, but | still didn’t really know
how to program, although | had gotten really adept at hacking existing code. | suspect this
may sound familiar to some readers.

Then | got ill and was laid up, which turned out to be the perfect opportunity to learn how
to program. I'll never forget the first program | hacked out, based on the pattern structure
in one of my field paintings. The program wasn’t pretty, but | was able to translate the
color field pattern in the painting to code and generate a screen-based approximation of
the painting. But the really exciting thing (or disturbing thing, depending upon your per-
spective) happened when | was able to generate hundreds of painting variations by simply
changing some of the values in the program. | remember excitedly showing what | had
done to some of my more purist artist friends—who’ve since stopped calling.

It wasn’t long before | was completely hooked on programming and was using it as a pri-
mary creative medium. | also began covering it more and more in my design courses,
eventually developing a semester-long class on creative coding for artists. This book grows
directly out of this experience of teaching programming to art students.
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Intended audience

This book presents an introduction to programming using the Processing language and is
intended as an entry-level programming book—no prior programming experience is
required. | do assume, though, that you have some experience working with graphics
application software (such as Adobe Photoshop) and of course some design, art, or visual-
ization interests—which although not necessary to read the book, makes life more inter-
esting. | don’t expect you to “be good at” or even like math, but I'd like you to at least be
open to the remote possibility that math doesn’t have to suck—more on this shortly.

Coding as an organic, creative, and cathartic
process

When [ tell people | write code as my main artistic medium, they smile politely and quickly
change the subject, or they tell me about their job-seeking cousin who makes videos using
iMovie. For nonprogrammers, code is a mysterious and intimidating construct that gets
grouped into the category of things too complicated, geeky, or time-consuming to be
worth learning. At the other extreme, for some professional programmers, code is seen
only as a tool to solve a technical problem—certainly not a creative medium.

There is another path—a path perhaps harder to maneuver, but ultimately more reward-
ing than either the path of avoidance or detachment—a holistic “middle” way. This is the
path the book promotes; it presents the practice of coding as an art form/art practice,
rather than simply a means to an end. Although there are times when a project is scoped
out, and we are simply trying to implement it, most of the time as artists, we are trying to
find our way in the process of creating a project. This approach of finding and searching is
one of the things that makes the artist’s journey distinctive and allows new unexpected
solutions to be found. It is possible to do this in coding as well, and the Processing lan-
guage facilitates and encourages such a “creative coding” approach.

“Pm an artist—| don’t do math”

xxi

Early on in school we’re put into little camps: the good spellers/readers, the mathletes, the
artsy crowd, the jocks, and so on. These labels stick to us throughout our lives, most often
limiting us rather than providing any positive guidance. Of course, the other less positive
labels (poor speller, bad at math, tone deaf, etc.) also stick, and maybe with even more
force. From a purely utilitarian standpoint, these labels are efficient, allowing administra-
tors and computers to schedule and route us through the system. From a humanistic
standpoint, these labels greatly reduce our true capabilities and complexity down to a few
keywords. And worst of all, people start believing these limited views about themselves.

A favorite lecture | give to my art students is on trigonometry. Just saying the word
trigonometry makes many of the art students squirm in their seats, thinking “is he
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serious?” When | was an art student, | would have reacted the same way. And | remember
studying trig in high school and not getting its relevance at all. Also, lacking discipline, |
wasn’t very capable of just taking my trig medicine like a good patient. So basically, I've
had to teach myself trigonometry again. However, what | got this time was how absolutely
fascinating and relevant trig (and math in general) is, especially for visually modeling
organic motion and other natural phenomena—from the gentle rolling waves of the
ocean, to a complex swarm, to the curvilinear structure of a seashell. Math really can be an
expressive and creative medium (but perhaps not in high school). Finally, and likely most
reassuring to some readers, playing with math in Processing is pretty darn easy—no proofs
or cramming required.

Toward a left/right brain integration

| once had a teacher who said something to the effect that there is significance in the
things that bore us, and ultimately these are the things that we should study. | thought at
the time that he was being annoyingly pretentious. However, I've come to recognize some-
thing important in his suggestion. | don’t necessarily think we need to study all the things
that bore us. But | do think that at times, the feeling of boredom may be as much a
defense mechanism as it is a real indicator of how we truly feel about something. I've
become aware of the feeling of boredom in my own process, and notice it usually occur-
ring when there is fear or anxiety about the work I’'m doing (or the pressure I’'m putting on
myself). However, when | push through the boredom and get into a flow, I'm usually fine.
I've heard many artists talk about the difficulty they have in getting started in their studios,
spending too much time procrastinating. | think procrastination also relates to this notion
of boredom as defense mechanism. My (unproven) hypothesis is that we sometimes feel
boredom when we’re stretching our brains, almost like a muscular reflex. The boredom is
the brain’s attempt to maintain the status quo. However, making art is never about the
status quo.

Dealing with subjects like programming and math also seems to generate the sensation of
boredom in people. Some people find it uncomfortable to think too intensely about ana-
lytical abstractions. | don’t think this phenomenon has anything to do with one’s innate
intelligence; it just seems we each develop cognitive patterns that are hard to change,
especially as we get older. As I've learned programming over the years, I've experienced a
lot of these boredom sensations. At times, I've even (theatrically) wondered how far can |
stretch my brain without going bonkers. | think it is especially scary for some of us to
develop the less-dominant sides of our minds (or personalities). As artists, that is often
(but certainly not always) the left side of our brain (the analytical side). However, | firmly
believe that we will be more self-actualized if we can achieve a left/right brain integration.
| even conjecture that the world would be a better place if more people perceived their
reality through an integrated mind—so make code art and save the world!

Well, enough of my blathering. Let’s start Processing!

XX
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Setting up Processing

If you haven’t already downloaded Processing, you should do so now. You'll (obviously)
need a working copy of the software/language to follow the tutorials throughout the
book. To download the latest version, go to http://processing.org/download/index.
html.

If you’re not sure which version to download, keep reading.

As of this writing, the latest downloadable version of the software is 0124 BETA,
released February 4, 2007. It’s possible, by the time you’re reading this, that the
release number has changed, as the developers are in the process of stabilizing the
current beta release as version 1.0. Any changes made to the language between beta
release 0124 and version 1.0 should be very minor and primarily focused on debug-
ging existing functionality. For more information about the different releases, check
out http://processing.org/download/revisions.txt.

Since Processing is a Java application, any platform that can run Java can theoretically run
Processing. However, Processing is only officially released for Windows, Mac OS X, and
Linux, and the software is only extensively tested on Windows and OS X. Linux users are
somewhat on their own. Here’s what the Processing site says in regard to Linux users:

For the Linux version, you guys can support yourselves. If you’re enough of a hacker
weenie to get a Linux box set up, you oughta know what’s going on. For lack of time,
we won’t be testing extensively under Linux, but would be really happy to hear about
any bugs or issues you might run into . . . so we can fix them.

For more details about platform support, please check out http://processing.org/
reference/environment/platforms.html#supported.

In selecting a version to download, Mac and Linux users have only one choice; Windows
users have two choices: Processing with or without Java. The recommendation is to down-
load Processing with Java. However, the without-Java version is available if download size is
an issue and you know you have Java installed. If you're not sure whether you have
Java installed, and/or the idea of changing your PATH variable gives you the willies,
please download Processing with Java. If you still want to download them separately, here’s
a link (but remember, you’ve been warned): http://java.sun.com/javase/downloads/
index. jsp.

OS X users already have Java installed, thanks to the good people at Apple.

Regarding Java, the most current version available on Windows is Java SE 6 (the SE stands
for Standard Edition). On OS X, Java releases typically lag behind, and the most current
version is J2SE 5 (the names are also annoyingly a little different). The most current version
on Linux is also J2SE 5. If all this isn’t confusing enough, Processing only supports J2SE 1.4
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and earlier (yes, J2SE 5 and Java SE 6 come after J2SE 1.4). Version 1.4 is the version that
comes bundled with Processing’s Windows installer, and it is also the default installation in
OS X. The reason Java versioning numbers go from 1.4 to 5 is because Sun, in their wis-
dom, decided to drop the “1.” from the names—if you really care why, you can read about
it here: http://java.sun.com/j2se/1.5.0/docs/relnotes/version-5.0.html.

What all this means to Processing users is that you can’t use any new Java syntax specified
in releases after 1.4 within the Processing development environment. (Syntax is essentially
the grammar you use when you write code—which you’ll learn all about in Chapter 3.) For
the latest information on the tempestuous love affair between Processing and Java, please
see http://processing.org/faq.html#java.

Web capability

Java’s capabilities also extend to the browser environment, allowing Java programs
(applets) to be run in Java-enabled browsers, similar to the way Flash programs run within
the browser. Processing takes advantage of this capability, allowing Processing sketches
that you create within the Processing development environment to be exported as stan-
dard Java applets that run within the browser.

One of the factors in Processing’s quickly spreading popularity is its web presence.
Processing’s online home, http://processing.org/, has single-handedly put Processing
on the map; the many awards and accolades bestowed upon its creators, Casey Reas and
Ben Fry, haven’t hurt either. One of the main reasons people continue to go to the
Processing site is to visit the Processing Exhibition space (http://processing.org/
exhibition/index.html), which has a simple “Add a link” feature, allowing Processors to
add a link to their own Processing work. The fact that Processing sketches can be exported
as Java applets is the reason this online gallery is possible.

Because Processing has been a web-based initiative, its documentation was also written in
HTML and designed to take advantage of the browser environment. The Java API (applica-
tion programming interface) is also HTML-based. HTML allows both Processing and Java’s
documentation to have embedded hyperlinks throughout, providing easy linking between
related structures and concepts. The Processing API is the main language documentation
for the Processing language, and can be found online at http://processing.org/
reference/index.html. The Java APl most useful with regard to Processing (there are a
couple different ones) can be found at http://java.sun.com/j2se/1.4.2/docs/api/
index.html.

Aside from the Processing API, there are two other helpful areas on the Processing site
worth noting: Learning/Examples (http://processing.org/learning/index.html) and
Discourse (http://processing.org/discourse/yabb_beta/YaBB.cgi). The Learning/
Examples section includes numerous examples of simple Processing sketches, covering a
wide variety of graphics programming topics. This section, like most of the Processing site,
is an evolving archive and a great place to study well-written snippets of code as you begin
learning. The Discourse section of the site includes message boards on a wide range of
subjects, covering all things Processing. You'll even get replies from Casey and Ben, as well
as other master Processing coders—a number of whom are well-known code artists and
Processing teachers.
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Hopefully by now you’ve successfully downloaded the Processing software. Now, let’s
install it and fire it up.

Launching the application

® OS X: After downloading the software, launch the Stuffit X archive (.sitx), which
will create a Processing 0124 folder. Within the folder you'll see the Processing
program icon.

@ Windows: After downloading the software, extract the ZIP archive (.zip), which will
create a Processing 0124 folder. Within the folder you'll see the Processing pro-
gram icon.

To test that Processing is working, double-click the Processing program icon to launch the
application. A window similar to the one shown in Figure 1 should open.

866 Processing - 0124 Beta

®@ [OlE[EE

sketch_070425a

Figure 1. The Processing application interface



INTRODUCTION

Processing comes with a bunch of cool code examples. Next, let’s load the BrownianMotion
example into the Processing application. You can access the example, and many others,
through Processing’s File menu, as follows:

Select File » Sketchbook » Examples » Motion » BrownianMotion from the top menu bar.

You should see a bunch of code fill the text-editor section of the Processing window, as
shown in Figure 2.

8066 Processing - 0124 Beta

EE Run

BrownianMotion

= ~
* Brownion motion. 1
#

* Recording random movement as o continuous line.
*

* Updated 21 August 2062

X

int num = 2668;

int range = 4;

float[] ax = new float[num];

float[] ay = new float [num]s

void setup()

=ize(208, 200); o/
fordint i=8; iaum; i) {
ox[i] = 58;
av[i] = height/2;

}
fromeRate (387

void draw()
background(51);

J¢ Shift all elements 1 place to the left 4
fordint i=1; iaum; i+s) { v

10

Figure 2. The Processing application interface with a loaded sketch

To launch the sketch, click the right-facing run arrow (on the left of the brown toolbar at
the top of the Processing window—it looks like a VCR play button), or press Cmd+R (OS X)
or Ctrl+R (Windows).

If you were successful, a 200-pixel-by-200-pixel display window with a dark gray back-
ground should have popped open, showing a white scribbly line meandering around the
window (see Figure 3). Congratulations! You’ve just run your first Processing sketch. | rec-
ommend trying some of the other examples to get a taste of what Processing can do and
to familiarize yourself a little with Processing’s simple yet elegant interface.

XXVii
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Figure 3. Screenshot of BrownianMotion sketch

How to use this book

| created this book with a couple of objectives in mind. Based on my own creative experi-
ences working with code and application software, | wanted to present a conceptual intro-
duction to code as a primary creative medium, including some history and theory on the
subject. Based on my experiences in the digital art classroom, | wanted to provide an artist-
friendly, introductory text on general programming theory and basic graphics program-
ming. Lastly, based on my experience of working with a number of programming languages
(especially ActionScript and Java), | wanted to introduce readers to an exciting new
approach to creative coding with the Processing language and environment. Accomplish-
ing all this required a fairly ambitious table of contents, which this book has.

In addition to the 800+ pages within the book, there are an additional 142 pages of
“bonus” material online, at waw.friendsofed.com/book.html?isbn=159059617X.

The bonus material is divided into Chapter 14 and Appendix C. Chapter 14 covers
Processing’s Java mode, as well as some advanced 3D topics. Appendix C provides a
tutorial on how to use the Processing core library in “pure” Java projects—outside of
the Processing environment.

Xxviii
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In navigating all this material, | offer some suggestions to readers:

® Don’t feel that you have to approach the book linearly, progressing consecutively
through each chapter, or even finishing individual chapters before moving ahead. |
don’t think people naturally operate this way, especially not creative people. | tend
to read about 20 books at a time, moving through them in some crazy fractal pattern.
Perhaps my approach is too extreme, but beginning on page one of a book like this
and progressing until the last page seems even more extreme. | suggest taking a
grazing approach, searching for that choice patch of info to sink your brain into.

® Read stuff over and over until it sticks. | do this all the time. | often get multiple
books on the same subject and read the same material presented in different ways
to help me understand the material. | don’t do this to memorize, but to grasp the
concept.

® Don’t worry about memorizing stuff you can look up. Eventually the stuff that you
use a lot will get lodged in your brain naturally.

® Try to break/twist/improve my code examples. Then e-mail me your improved
examples—maybe I'll use one in another book; of course I'd give you credit.

® Always keep a copy of the book in the bathroom—it’s the best place to read guilt-
free when the sun’s still out.

Give us some feedback!

We’d love to hear from you, even if it’s just to request future books, ask about friends of
ED, or tell us how much you loved Processing: Creative Coding and Computational Art.

If you have questions about issues not directly related to the book, the best place for these
inquiries is the friends of ED support forums, at http://friendsofed.infopop.net/2/
OpenTopic. Here you'll find a wide variety of fellow readers, plus dedicated forum moder-
ators from friends of ED.

Please direct all questions about this book to support@friendsofed.com, and include the
last four digits of this book’s ISBN (617x) in the subject of your e-mail. If the dedicated
support team can’t solve your problem, your question will be forwarded to the book’s
editors and author. You can also e-mail Ira Greenberg directly at processing@
iragreenberg.com.

Layout conventions

To keep this book as clear and easy to follow as possible, the following text conventions
are used throughout:

® Important words or concepts are normally highlighted on their first appearance in
bold type.

® Code is presented in fixed-width font.
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New or changed code is normally presented in bold fixed-width font.
Pseudocode and variable input are written in italic fixed-width font.
Menu commands are written in the form Menu » Submenu » Submenu.

When | want to draw your attention to something, | highlight it like this:

~

( Ahem, don’t say | didn’t warn you.

.

Sometimes code won't fit on a single line in a book. Where this happens, | use an
arrow like this: =

This is a very, very long section of code that should be written =
all on the same line without a break.



