Processing

Creative Coding and
Computational Art

Ira Greenberg

et @

EEEEEEEEEEEEEEEEEEEE

Processing: Creative Coding and
Computational Art

Copyright © 2007 by Ira Greenberg

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-617-3

ISBN-10: 1-59059-617-X

Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit www. springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or
visit www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the
Downloads section.

Credits

Lead Editor
Chris Mills

Technical Editor
Charles E. Brown

Technical Reviewers
Carole Katz, Mark Napier

Editorial Board

Steve Anglin, Ewan Buckingham, Gary Cornell,
Jason Gilmore, Jonathan Gennick, Jonathan Hassell,
James Huddleston, Chris Mills, Matthew Moodie,
Jeff Pepper, Dominic Shakeshaft, Matt Wade

Project Manager
Sofia Marchant

Copy Edit Manager
Nicole Flores

Copy Editor
Damon Larson

Assistant Production Director
Kari Brooks-Copony

Production Editor
Ellie Fountain

Compositor
Dina Quan

Artist
Milne Design Services, LLC

Proofreaders
Linda Seifert and Nancy Sixsmith

Indexer
John Collin

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

To Robin, lan, and Sophie.

CONTENTS AT A GLANCE

Foreword XV
About the Author. xvii
About the Tech Reviewers xviii
Acknowledgments. Xix
Introduction. XX

PART ONE: THEORY OF PROCESSING AND COMPUTATIONAL ART. . . . 1

Chapter 1: Code Art. 3
Chapter 2: CreativeCoding 27
Chapter 3: Code Grammar 101. 57
Chapter 4: Computer Graphics, the Fun, EasyWay 107

Chapter 5: The Processing Environment 143

PART TWO: PUTTING THEORY INTO PRACTICE. 171

Chapter 6:Lines. 173
Chapter 7: Curves. 241
Chapter 8: Object-Oriented Programming 301
Chapter 9:Shapes 339
Chapter 10: Color and Imaging. 399
Chapter 11: Motion 481
Chapter 12: Interactivity. 563
Chapter 13:3D. 615
PART THREE: REFERENCE 673
Appendix A: Processing Language APl 675
Appendix B: Math Reference 747

CONTENTS

Foreword XV
About the Author. Xvii
About the Tech Reviewers xviii
Acknowledgments. Xix
Introduction. XX

PART ONE: THEORY OF PROCESSING AND COMPUTATIONAL ART. . . . 1

Chapter 1: Code Art. 3
Aesthetics + Computation 5
Computerart history 8
Code artists. 14

Ben Laposky, 1914-2000 e 14
John Whitney Sr.,, 1918-1995. e 15
Herbert W. Franke, b.1927 15
Lillian Schwartz, b. 1927 e 15
Harold Cohen, b. 1928 16
Roman Verostko, b. 1929. 17
George Legrady, b. 1950 18
Mark Napier, b. 1961 e 18
John F.Simon Jr., b. 1963 e 19
John Maeda, b. 1966 19
Mary Flanagan, b. 1969. L 20
Casey Reas, b. 1970 21
Jared Tarbell, b. 1973 21
Ben Fry, b. 1975 e 22
And Many MOre o o e e e e e 23

SUMMANY . . o oo o e e e e e e e e 24

CONTEN

Chapter 2: CreativeCoding 27
The origin of Processing 30
Programming language comparisons 31
Function-based (procedural) vs. object-oriented structure 32
Java . . e e e 36
Procedural OOP (“poop”) approach. 39
Algorithms aren’t as scary astheysound L L. 40
Happy coding mistakes 44
Algorithmictree e 45
SUMMANY . . o o o e 54
Chapter 3: Code Grammar 101. 57
Structure and abstraction. 58
Your first program. e 59
Curlybraces e 61
Dotsyntax e 62
Naming conventions 63
Literals o 64
Variables L e 65
Strict typing 66
Operators. e 72
Relational operators 73
Conditional operators. 74
Assignment operators. 75
Conditionals 76
switch statement 81
Ternary operator 83

Arrays and lOOPS. L e 83
ATTAYS o o e e e 83
LoOpS. . e 85
while. . . . e 85
do...while. e 86

for . 87
Processing efficiency 89
Functions. 96
SUMMANY . . o e 104
Chapter 4: Computer Graphics, the Fun, EasyWay 107
Coordinate systems 109
Anatomy ofanimage 111
The pixel e 113
Graphic formats e 115
Raster graphics. e 115
Vector graphics e 116
Animation. 117

TS

vii

CONTENTS

Thejoyofmath 119
Elementaryalgebra 120
Operation order (a.k.a. operator precedence) 121
Associative property 121
Non-associative property. 122
Distributive property 122
Geometry. . . . 123
Points. 123

Lines e 123

CUIVES © o o 124
Trigonometry. e 131
Interactivity e 139
Event detection 139
Eventhandling 140
SUMMAANY . . . ot e e e e e 141
Chapter 5: The Processing Environment 143
How it works o 144
Tour de Processing. e e e 146
Filemenu. 150
Editmenu. L 152
Sketchmenu L 153
Toolsmenu. 155
Helpmenu 157
Programming modes. 158
Basicmode. 158
Continuous mode 159
Javamode e e 162
Rendering modes. 162
JAVA2D mode e 162
P3D mode 164
OPENGL mMode e 166
SUMMANY . . . o e e e e e 170
PART TWO: PUTTING THEORY INTO PRACTICE. 171
Chapter 6: Lines. 173
Itsall about points. L 174
Streamlining the sketch with awhileloop. 177
Streamlining the sketch further withaforloop. 178
Creating organic form through randomization 179
Codingagrid. o 185
Creating space through fades. 191
Creating lineswith pixels 195
Processing’s line functions. 196
Joining lines. 200

viii

CONTENTS

Creating atable structure 202
Vertex functions L 209
Anti-aliasing using the smooth function 214
Applying the vertex function 219
Creating line strips e e 220
Line loops. o e e 226
Polygons and patterns.. 229
Poly Pattern | (table structure) 231
Poly Pattern Il (spiral) 233
Poly Pattern Ill (polystar) 235
SUMMANY . . . o e e e e e e e e e 237
Chapter 7: Curves. 241
Making the transition from linestocurves 242
Creating your firstcurve 246
Creating curves Using trig e 255
Creating curves using polynomials 262
Using Processing’s curve functions 267
arcO . . o 268
curve() and bezier() 273
More curve and Bézier variations Lo L 284
SUMMANY . . o o e e e 299
Chapter 8: Object-Oriented Programming 301
A new way of programming? 302
BurritoRecipe class. e 303
Class declaration. e 308
Properties declaration. L 308
Constructors e e e e e e e e e 309
Methods e 311
Advanced OOP concepts o i i e 319
Encapsulation and data hiding 319
Inheritance 320
Applying inheritance L 321
Composition 323
Interfaces. 326
Polymorphism e 329
Polymorphism with interfaces 331
SUMMANY . . . e e e e e 336
Chapter 9:Shapes 339
Patterns and principles (some encouragement). 340
Processing’s shape functions 340
Transforming shapes. 350
Plotting shapes. e 358
Creating hybrid shapes 365
The other shapemodes. 368
Tessellation. L 374

CONTENTS

Applying OOP to shape creation 378
Creating a neighborhood 381
Doorclass 382
Window class. 386
Roof class. o e 389
House class. o 391
SUMMANY . . . e e e e e e e e e e 397
Chapter 10: Color and Imaging. 399
The importance of color. 400
Colortheory 401
Controlling alpha transparency. 406

A quick review of creating transformations L. 409
Pushing and poppingthematrix L 409
Setting the colormode 415
More convenient color functions 419
IMaging 423
Gradients L 424
Faster pixel functions 429
Image manipulation L 432
Display window functions 440

Plmage methods. 440
Speeding things up with bitwise operations. 443
Imaging filters e 448
blend() and filter() 452

blend() e 459

Saving afile. L 467

An object-oriented approach. 468
Inheritance. e 469
Gradientclass 469
Abstract class declaration L L 470

Class constants. 470
Instance properties 471
Abstract method 471
getters/setters. e 472
LinearGradientclass. 472
RadialGradient class. 474
Organizing classes using multipletabs. 478
SUMMANY . . . o o e e e 478
Chapter 11: Motion, 481
Animation basics 482
Simple collision detection. 487
Accessing time L e 491
Adding some simple fading. 491
Fun with physics o 492

CONTENTS

Objectinteractions. e e 500
Easing 500
SPriNGING e 505
An alternative spring approach. L 511
Soft-body dynamics 516

Advanced motion and object collisions 520
Vectors o o e 521
Normalizing avector 523
Applying vectors in collisions. L 525
The law of reflection 525
A better way to handle non-orthogonal collisions 532

Asteroid shower inthree stages 535
Stage 1:Singleorb. L 535
Stage 2: Segmented ground plane L 541
Stage 3: Asteroid shower 545

Inter-object collision. 552
Simple 1D collision 552
Less simple 1D collision 555
2D collisions 557

SUMMANY . . o o e e e e e e 561

Chapter 12: Interactivity. 563

Interactivity simplified 564

Mouse eVeNnts. e 565
Adding interface elements 579

Creating a simple drawing application 590

Keystroke events. 603

SUMMANY . . . o o e e 613

Chapter 13:3D. 615

Processing 3D basics. 616

3D transformation 618

Creatingacustomcube e 625

3Drotations L 635

Beyond box() and sphere() 647
EXtrusion 650
Cube to pyramid to conetocylinder 657
Toroids 662

SUMMANY . . . o o e e e 672

PART THREE: REFERENCE 673
Appendix A: Processing Language API 675
Introducing the Processing API. 676
Structure L 677

CONTENTS

Xii

Environment 678
Data. . . . e e e e e 678
Primitive e 679
ComMPpoSIte o e 680
CONVEISION. . . . o o e e e e 681
String Functions 682
Array FUNCtions L 682
Example 1: AjJavaapproach 683
Example 2: Using Processing’s append() function, the easyway 683
Example 3: Using Processing’s append() function on an array of objects 684
Control e 684
Relational Operators 685
Iteration 685
Example 1: Spacing rectanglesthe hardway 685
Example 2: Spacing rectangles theeasyway 686
Example 3: Creating a honeycomb gradient 687
Conditionals e 689
Logical Operators e 689
Shape e 691
2D Primitives. 692
CUIVES . o o e 693
3D Primitives. o e 696
Attributes . . . L L 698
Vertex . . e e e 698
Input . . . 702
Mouse e 702
Keyboard. e 705
Files. . . o o 706
Web. . . 707
Time &Date e 708
Output 710
Text Area. e 710
IMage. e e e e e e 710
Files. . . o 710
Transform. L 712
Lights, Camera 718
Lights o o e 719
Camera. 719
Coordinates e 719
Material Properties e 720
Color . o o e 724
Setting 725
Creating & Reading 728
IMage 731
Pixels 732
Loading & Displaying 733
Rendering. 734

CONTENTS

Typography. 737
PRONt e 737
Loading & Displaying 738
Attributes L 740
Metrics . . . o 740

Math . . 740
Bitwise Operators 741
Calculation. o e 741
Trigonometry e 742
Random 742

Constants. 743

Processing libraries 743

Appendix B: Math Reference 747
Algebra . . . 748

Adding negative numbers. L 748

Subtracting negative numbers 748

Multiplying negative numbers L 748

Dividing by zero 748

Multiplying fractions. 748

Adding fractions L 749

Dividing fractions 749

Working with negative exponents 749

Understanding the exponential-logarithm relationship (they’re inverse). 750

Understanding the relationship between radicals and fractional exponents. 750

Multiplying and dividing exponents, 750

Geometry e e e 751

Pythagorean theorem 752

Distance formula. 752

Areaofatriangle 752

Areaofarectangle 752

Area of a parallelogram. 753

Areaof atrapezoid 753

Perimeter of arectangle 754

Areaofacircle. 754

Circumference of acircle. 754

Area of any non-intersecting polygon., 754

Trigonometry 755
Bitwise Operations e 760

Semiconductors 761

Colordatastructure. 762

Bitwise operations totherescue. 763

Shifting bits. 763

Bitwise operators 767

Putting it all together L 769

Index 775

xiii

FOREWORD

If you are like me (and the fact that you are holding a Processing book in your hands indi-
cates there’s a fair chance that you are), then a quick flip through the pages of this book,
glancing at the many illustrations, should be enough to set your heart beating just a little bit
faster, and start seeds of ideas sprouting in your head.

Processing is a richly visual language, which is pretty obvious if you've performed the afore-
mentioned page flipping. It has its roots in a language called Design by Numbers, developed
by Professor John Maeda at MIT, and was in fact created by two of Maeda’s students, Ben Fry
and Casey Reas. Whereas most languages are built to create serious applications, Processing
almost seems to have been created to just have fun with. The language has been used to cre-
ate various data visualization and installation art pieces, but most often you just see people
playing with it, creating complex and beautiful pictures and animations. As a matter of fact,
you don’t even make Processing applications; you make sketches—which go in your sketch-
book. This aspect of the language has drawn many creative coders who blur the boundaries
between programming and art.

Many like to draw a comparison between Processing and Adobe (née Macromedia) Flash, a
commercial program often used to create graphically rich, often purely experimental anima-
tions using ActionScript, an easy-to-learn programming language. Indeed, many of the peo-
ple using Processing started out programming in Flash, and switched to take advantage of
the superior speed and performance, additional commands, and flexibility of Processing.
Although Flash has gained a lot over the years in terms of performance and capabilities,
Processing remains the tool of choice for many artist-coders.

Processing has grown quite a bit over the years. It’s an evolving language, added onto by var-
ious plug-ins and contributions from a dedicated community. It’s deceivingly simple, allowing
you to get started quickly, but it provides an incredible amount of depth for those who care
to peek beneath the surface.

Although there are various online resources, Processing has lacked a printed book of any
sort. This book fills that gap, and then some. In the tradition of the language, this book cov-
ers both the artistic and the programming aspects of Processing. And if you are stronger on
the art side than the code side, fear not. The author leads you into it gently, giving you just

FOREWORD
the bits you need to get started. On the other hand, when you are ready to dive in deep,
there’s more than enough material to keep you up late at night coding.

So take another flip through the book for inspiration, take a deep breath, get comfortable,
and dive in, just like I'll be doing as soon as | finish writing this!

Keith Peters, April 2007

ABOUT THE AUTHOR

With an eclectic background combining elements of painting and
programming, Ira Greenberg has been a painter, 2D and 3D anima-
tor, print designer, web and interactive designer/developer, pro-
grammer, art director, creative director, managing director, art
professor, and now author. He holds a BFA from Cornell University
and an MFA from the University of Pennsylvania.

' Nl Ira has steadily exhibited his work, consulted within industry, and
ﬁgﬂﬁ > lectured widely throughout his career. He was affiliated with the
' it Flywheel Gallery in Piermont, New York, and the Bowery Gallery in
Photo by Robin McLennan New York City. He was a managing director and creative director
for H20 Associates in New York’s Silicon Alley, where he helped
build a new media division during the golden days of the dot-com boom and then bust—
barely parachuting back to safety in the ivory tower. Since then, he has been inciting students
to create inspirational new media art; lecturing; and holding residencies at numerous institu-
tions, including Seton Hall University; Monmouth University; University of California, Santa
Barbara; Kutztown University; Moravian College; Northampton Community College’s Digital
Art Institute; Lafayette College; Lehigh University; the Art Institute of Seattle; Studio Art
Centers International (in Florence, Italy); and the City and Guilds of London Art School.

Currently, Ira is Associate Professor at Miami University (Ohio), where he has a joint appoint-
ment within the School of Fine Arts and Interactive Media Studies program. He is also an
affiliate member of the Department of Computer Science and Systems Analysis. His research
interests include aesthetics and computation, expressive programming, emergent forms, net-
based art, artificial intelligence, physical computing, and computer art pedagogy (and any-
thing else that tickles his fancy). During the last few years, he has been torturing defenseless
art students with trigonometry, algorithms, and object-oriented programming, and is excited
to spread this passion to the rest of the world.

Ira lives in charming Oxford, Ohio with his wife, Robin; his son, lan; his daughter, Sophie; their
squirrel-obsessed dog, Heidi; and their night prowler cat, Moonshadow.

ABOUT THE TECH REVIEWERS

Carole Katz holds an AB in English and American Literature from Brown University. Her
career as a graphic designer and technical communicator has spanned more than 20 years,
including stints at small nonprofits, design firms, government agencies, and multinational
corporations. Beginning with PageMaker 1 and MacDraw in the mid-1980s, Carole has used
many types of software in a variety of design disciplines, including corporate identity, techni-
cal illustration, book design, and cartography. She is currently a freelance graphic designer,
and lives with her family in Oxford, Ohio.

Mark Napier, painter turned digital artist, is one of the early pioneers of Internet art.
Through such works as The Shredder, Digital Landfill, and Feed, he explores the potential of
a new medium in a worldwide public space and as an engaging interactive experience.
Drawing on his experience as a software developer, Napier explores the software interface as
an expressive form, and invites the visitor to participate in the work. His online studio,
www.potatoland.org, is an open playground of interactive artwork. Napier has created a
wide range of projects that appropriate the data of the Web, transforming content into
abstraction, text into graphics, and information into art. His works have been included in
many leading exhibitions of digital art, including the Whitney Museum of American Art
Biennial Exhibition, the Whitney’s Data Dynamics exhibition, the San Francisco Museum of
Modern Art’s (SFMOMA) 010101: Art in Technological Times, and ZKM’s (Center for Art and
Media in Karlsruhe, Germany) net_condition exhibition. He has been a recipient of grants
from Creative Capital, NYFA, and the Greenwall Foundation, and has been commissioned to
create artwork by SFMOMA, the Whitney Museum, and the Guggenheim.

ACKNOWLEDGMENTS

| am very fortunate to know and work with so many kind, smart, and generous people. Here
are just a few who have helped make this book possible:

Advisors, colleagues, and reviewers: Fred Green, Andres Wanner, Paul Fishwick, Paul
Catanese, Mary Flanagan, Laura Mandell, Scott Crass, Mike Zmuda, and David Wicks for
showing an interest when it really, really mattered; technical reviewers Carole Katz, Mark
Napier, and Charles E. Brown for helping me simplify, clarify, and rectify—the book is far bet-
ter because of your combined wisdom; my wonderful colleagues and students at Miami
University, in the Department of Art and Interactive Media Studies program—especially Mike
McCollum, Jim Coyle, Bettina Fabos, Glenn Platt, Peg Faimon, and dele jegede—for tolerating
such a looooong journey and my perpetual “when the book is finished” response.

The wonderful people at friends of ED: Production editor Ellie Fountain for always respond-
ing kindly to my neurotic, 11th-hour requests; copy editor Damon Larson for his patience
and precision in helping me craft actual grammatical sentences; project manager Sofia
Marchant for keeping the book (and me) from slipping into the procrastinator’s abyss—I
couldn’t have pulled this off without you! Lead editor and heavy metal warrior Chris Mills for
believing in a first-time author and providing constant support and sage advice throughout
the entire process. | appreciate this opportunity more than you know, Chris!

The wonderful Processing community—especially Ben Fry and Casey Reas for giving me
something to actually write about. | know | am just one of many who owe you a world of
thanks for selflessly creating this amazing tool/medium/environment/language/revolution.

My incredible mentors, friends, and family: Petra T. D. Chu, for all your generosity and
support over the years; Tom Shillea, Bruce Wall, and Sherman Finch for helping plant the
“creative coding” seed; Bill Hudders for sticking around even after | put down the paintbrush;
Roger Braimon for keeping me from taking anything too seriously; Jim and Nancy for moving
700 miles to join us in a cornfield; Paula and Stu for giving me (and my Quadra 950) our first
shot; my uncles Ron and Ed and their respective wonderful families for fostering my early
interest in science and technology and the belief that | could do it “my way”; Bill and
Rae Ann, for lovingly supporting the west coast surf and burrito operations; Ellen, Sarah,
Danny, Ethan, Jack, Anne, Miles, Shelley, Connor, and Matthew for all your kindness and love
over so many years; my genius brother Eric, for keeping me humble and bailing me out on

ACKNOWLEDGMENTS

(way) more than one occasion—you’re a real hero; my parents for tolerating (and even
supporting) years of artistic indulgence and always, always being there for me; my delight-
fully mischievous and beautiful children, lan and Sophie, for letting daddy stare at his
laptop all day and night, while having their own screen time severely limited; and most
importantly my brilliant and infinitely kind wife, Robin, for being a constant source of
encouragement and peaceful joy in my life. | love you bel!

INTRODUCTION

Welcome to Processing: Creative Coding and Computational Art. You’re well on your way to
becoming a Processing guru! All right, maybe it will take a bit more reading, but with
Processing, you’ll be cranking out creative code sooner than you think. Best of all, you’ll be
creating as you learn. Processing is the first full-featured programming language and envi-
ronment to be created by artists for artists. It grew out of the legendary MIT Media Lab, led
by two grad students, Casey Reas and Ben Fry, who wanted to find a better way to write code
that supported and even inspired the creative process. They also wanted to develop an
accessible, affordable, and powerful open source tool; so they decided to make the software
available for free.

Casey and Ben began developing Processing in the fall of 2001, releasing early alpha versions
of the software soon after. In April 2005, they released the beta version for Processing 1.0. To
date, over 125,000 people have had downloaded the Processing software, and Ben and Casey
had been awarded a Prix Ars Electronica Golden Nica, the electronic/cyber-arts version of an
Oscar. In addition, many leading universities around the world have begun including
Processing in their digital arts curriculum, including Parsons School of Design; Bandung
Institute of Technology, Indonesia; UCLA; Yale; NYU; Helsinki University; Royal Danish
Academy of Fine Arts, Copenhagen; School of the Art Institute of Chicago; Miami University
of Ohio; University of Washington; and Elisava School of Design, Barcelona (and many, many
others).

Yet, in spite of all of Processing’s phenomenal success, its story is really just beginning. As of
this writing, version 1.0 of the software is on the brink of being released, as are the first few
books on the subject. There are even people (as shocking as this sounds) who still haven’t
heard of Processing. So rest assured, it’s still not too late to claim Processing pioneer status.
Processing has a very bright future, and I'm excited to be able to introduce you to creative
coding with this amazing language.

Impetus for writing the book

If you’re anything like me (and | suspect you are since you’re reading this book), you are a
creatively driven individual—meaning that you do give a damn about how things look,

INTRODUCTION

sound, feel, and so on, besides just how they function. | suspect you also learn best in a
nontraditional way. Well, if this describes you at all, you've picked up the right book. If, on
the other hand, you pride yourself on your robotic ability to tune out sensory data and fol-
low linear directions, then (1) keep reading, (2) make art, and (3) buy multiple copies of
this book.

My own interest in writing code evolved organically out of my work as a painter and
designer over a long period (a well-timed, nonserious illness also contributed). | graduated
with my MFA in painting in 1992, and got a teaching job right out of grad school. However,
| soon realized that | wasn’t ready to teach (or hold a job for that matter), and landed up
quitting within a couple of months (my folks weren’t too pleased at the time). Fortunately,
an uncle of mine (the previous black sheep in the family) stepped in and suggested | look
into computer graphics. With nothing to lose, | rented a Mac 2ci, borrowed some software,
and locked myself away for a couple of months.

| eventually developed some basic skills in digital imaging, page layout, and vector-based
drawing. | also began studying graphic design, which, despite my two overpriced degrees
in painting, | knew next to nothing about. Equipped with my new (very shaky) skills, | put
together some samples and went looking for work. Over the next few years, | got involved
in a number of startups (most quickly imploded), as well as my own freelance design busi-
ness. The work included print, CD-ROM/kiosks, 2D and 3D animation, video, broadcast,
and eventually web design. Throughout this period, | also continued to paint and show my
work, and began teaching again as well.

My paintings at the time were perceptually-based—which means | looked at stuff as |
painted. | worked originally from the landscape, which eventually became just trees, and
then a single tree, and finally branches and leaves. The paintings ultimately became purely
abstract fields of color and marks. This transformation in the painting took a couple of
years, and throughout this period | worked as a designer and multimedia developer. | was
dealing with a fair amount of code in my multimedia work, but | still didn’t really know
how to program, although | had gotten really adept at hacking existing code. | suspect this
may sound familiar to some readers.

Then | got ill and was laid up, which turned out to be the perfect opportunity to learn how
to program. I'll never forget the first program | hacked out, based on the pattern structure
in one of my field paintings. The program wasn’t pretty, but | was able to translate the
color field pattern in the painting to code and generate a screen-based approximation of
the painting. But the really exciting thing (or disturbing thing, depending upon your per-
spective) happened when | was able to generate hundreds of painting variations by simply
changing some of the values in the program. | remember excitedly showing what | had
done to some of my more purist artist friends—who’ve since stopped calling.

It wasn’t long before | was completely hooked on programming and was using it as a pri-
mary creative medium. | also began covering it more and more in my design courses,
eventually developing a semester-long class on creative coding for artists. This book grows
directly out of this experience of teaching programming to art students.

INTRODUCTION

Intended audience

This book presents an introduction to programming using the Processing language and is
intended as an entry-level programming book—no prior programming experience is
required. | do assume, though, that you have some experience working with graphics
application software (such as Adobe Photoshop) and of course some design, art, or visual-
ization interests—which although not necessary to read the book, makes life more inter-
esting. | don’t expect you to “be good at” or even like math, but I'd like you to at least be
open to the remote possibility that math doesn’t have to suck—more on this shortly.

Coding as an organic, creative, and cathartic
process

When [tell people | write code as my main artistic medium, they smile politely and quickly
change the subject, or they tell me about their job-seeking cousin who makes videos using
iMovie. For nonprogrammers, code is a mysterious and intimidating construct that gets
grouped into the category of things too complicated, geeky, or time-consuming to be
worth learning. At the other extreme, for some professional programmers, code is seen
only as a tool to solve a technical problem—certainly not a creative medium.

There is another path—a path perhaps harder to maneuver, but ultimately more reward-
ing than either the path of avoidance or detachment—a holistic “middle” way. This is the
path the book promotes; it presents the practice of coding as an art form/art practice,
rather than simply a means to an end. Although there are times when a project is scoped
out, and we are simply trying to implement it, most of the time as artists, we are trying to
find our way in the process of creating a project. This approach of finding and searching is
one of the things that makes the artist’s journey distinctive and allows new unexpected
solutions to be found. It is possible to do this in coding as well, and the Processing lan-
guage facilitates and encourages such a “creative coding” approach.

“Pm an artist—| don’t do math”

xxi

Early on in school we’re put into little camps: the good spellers/readers, the mathletes, the
artsy crowd, the jocks, and so on. These labels stick to us throughout our lives, most often
limiting us rather than providing any positive guidance. Of course, the other less positive
labels (poor speller, bad at math, tone deaf, etc.) also stick, and maybe with even more
force. From a purely utilitarian standpoint, these labels are efficient, allowing administra-
tors and computers to schedule and route us through the system. From a humanistic
standpoint, these labels greatly reduce our true capabilities and complexity down to a few
keywords. And worst of all, people start believing these limited views about themselves.

A favorite lecture | give to my art students is on trigonometry. Just saying the word
trigonometry makes many of the art students squirm in their seats, thinking “is he

INTRODUCTION

serious?” When | was an art student, | would have reacted the same way. And | remember
studying trig in high school and not getting its relevance at all. Also, lacking discipline, |
wasn’t very capable of just taking my trig medicine like a good patient. So basically, I've
had to teach myself trigonometry again. However, what | got this time was how absolutely
fascinating and relevant trig (and math in general) is, especially for visually modeling
organic motion and other natural phenomena—from the gentle rolling waves of the
ocean, to a complex swarm, to the curvilinear structure of a seashell. Math really can be an
expressive and creative medium (but perhaps not in high school). Finally, and likely most
reassuring to some readers, playing with math in Processing is pretty darn easy—no proofs
or cramming required.

Toward a left/right brain integration

| once had a teacher who said something to the effect that there is significance in the
things that bore us, and ultimately these are the things that we should study. | thought at
the time that he was being annoyingly pretentious. However, I've come to recognize some-
thing important in his suggestion. | don’t necessarily think we need to study all the things
that bore us. But | do think that at times, the feeling of boredom may be as much a
defense mechanism as it is a real indicator of how we truly feel about something. I've
become aware of the feeling of boredom in my own process, and notice it usually occur-
ring when there is fear or anxiety about the work I’'m doing (or the pressure I’'m putting on
myself). However, when | push through the boredom and get into a flow, I'm usually fine.
I've heard many artists talk about the difficulty they have in getting started in their studios,
spending too much time procrastinating. | think procrastination also relates to this notion
of boredom as defense mechanism. My (unproven) hypothesis is that we sometimes feel
boredom when we’re stretching our brains, almost like a muscular reflex. The boredom is
the brain’s attempt to maintain the status quo. However, making art is never about the
status quo.

Dealing with subjects like programming and math also seems to generate the sensation of
boredom in people. Some people find it uncomfortable to think too intensely about ana-
lytical abstractions. | don’t think this phenomenon has anything to do with one’s innate
intelligence; it just seems we each develop cognitive patterns that are hard to change,
especially as we get older. As I've learned programming over the years, I've experienced a
lot of these boredom sensations. At times, I've even (theatrically) wondered how far can |
stretch my brain without going bonkers. | think it is especially scary for some of us to
develop the less-dominant sides of our minds (or personalities). As artists, that is often
(but certainly not always) the left side of our brain (the analytical side). However, | firmly
believe that we will be more self-actualized if we can achieve a left/right brain integration.
| even conjecture that the world would be a better place if more people perceived their
reality through an integrated mind—so make code art and save the world!

Well, enough of my blathering. Let’s start Processing!

XX

INTRODUCTION

Setting up Processing

If you haven’t already downloaded Processing, you should do so now. You'll (obviously)
need a working copy of the software/language to follow the tutorials throughout the
book. To download the latest version, go to http://processing.org/download/index.
html.

If you’re not sure which version to download, keep reading.

As of this writing, the latest downloadable version of the software is 0124 BETA,
released February 4, 2007. It’s possible, by the time you’re reading this, that the
release number has changed, as the developers are in the process of stabilizing the
current beta release as version 1.0. Any changes made to the language between beta
release 0124 and version 1.0 should be very minor and primarily focused on debug-
ging existing functionality. For more information about the different releases, check
out http://processing.org/download/revisions.txt.

Since Processing is a Java application, any platform that can run Java can theoretically run
Processing. However, Processing is only officially released for Windows, Mac OS X, and
Linux, and the software is only extensively tested on Windows and OS X. Linux users are
somewhat on their own. Here’s what the Processing site says in regard to Linux users:

For the Linux version, you guys can support yourselves. If you’re enough of a hacker
weenie to get a Linux box set up, you oughta know what’s going on. For lack of time,
we won’t be testing extensively under Linux, but would be really happy to hear about
any bugs or issues you might run into . . . so we can fix them.

For more details about platform support, please check out http://processing.org/
reference/environment/platforms.html#supported.

In selecting a version to download, Mac and Linux users have only one choice; Windows
users have two choices: Processing with or without Java. The recommendation is to down-
load Processing with Java. However, the without-Java version is available if download size is
an issue and you know you have Java installed. If you're not sure whether you have
Java installed, and/or the idea of changing your PATH variable gives you the willies,
please download Processing with Java. If you still want to download them separately, here’s
a link (but remember, you’ve been warned): http://java.sun.com/javase/downloads/
index. jsp.

OS X users already have Java installed, thanks to the good people at Apple.

Regarding Java, the most current version available on Windows is Java SE 6 (the SE stands
for Standard Edition). On OS X, Java releases typically lag behind, and the most current
version is J2SE 5 (the names are also annoyingly a little different). The most current version
on Linux is also J2SE 5. If all this isn’t confusing enough, Processing only supports J2SE 1.4

INTRODUCTION

and earlier (yes, J2SE 5 and Java SE 6 come after J2SE 1.4). Version 1.4 is the version that
comes bundled with Processing’s Windows installer, and it is also the default installation in
OS X. The reason Java versioning numbers go from 1.4 to 5 is because Sun, in their wis-
dom, decided to drop the “1.” from the names—if you really care why, you can read about
it here: http://java.sun.com/j2se/1.5.0/docs/relnotes/version-5.0.html.

What all this means to Processing users is that you can’t use any new Java syntax specified
in releases after 1.4 within the Processing development environment. (Syntax is essentially
the grammar you use when you write code—which you’ll learn all about in Chapter 3.) For
the latest information on the tempestuous love affair between Processing and Java, please
see http://processing.org/faq.html#java.

Web capability

Java’s capabilities also extend to the browser environment, allowing Java programs
(applets) to be run in Java-enabled browsers, similar to the way Flash programs run within
the browser. Processing takes advantage of this capability, allowing Processing sketches
that you create within the Processing development environment to be exported as stan-
dard Java applets that run within the browser.

One of the factors in Processing’s quickly spreading popularity is its web presence.
Processing’s online home, http://processing.org/, has single-handedly put Processing
on the map; the many awards and accolades bestowed upon its creators, Casey Reas and
Ben Fry, haven’t hurt either. One of the main reasons people continue to go to the
Processing site is to visit the Processing Exhibition space (http://processing.org/
exhibition/index.html), which has a simple “Add a link” feature, allowing Processors to
add a link to their own Processing work. The fact that Processing sketches can be exported
as Java applets is the reason this online gallery is possible.

Because Processing has been a web-based initiative, its documentation was also written in
HTML and designed to take advantage of the browser environment. The Java API (applica-
tion programming interface) is also HTML-based. HTML allows both Processing and Java’s
documentation to have embedded hyperlinks throughout, providing easy linking between
related structures and concepts. The Processing API is the main language documentation
for the Processing language, and can be found online at http://processing.org/
reference/index.html. The Java APl most useful with regard to Processing (there are a
couple different ones) can be found at http://java.sun.com/j2se/1.4.2/docs/api/
index.html.

Aside from the Processing API, there are two other helpful areas on the Processing site
worth noting: Learning/Examples (http://processing.org/learning/index.html) and
Discourse (http://processing.org/discourse/yabb_beta/YaBB.cgi). The Learning/
Examples section includes numerous examples of simple Processing sketches, covering a
wide variety of graphics programming topics. This section, like most of the Processing site,
is an evolving archive and a great place to study well-written snippets of code as you begin
learning. The Discourse section of the site includes message boards on a wide range of
subjects, covering all things Processing. You'll even get replies from Casey and Ben, as well
as other master Processing coders—a number of whom are well-known code artists and
Processing teachers.

INTRODUCTION

Hopefully by now you’ve successfully downloaded the Processing software. Now, let’s
install it and fire it up.

Launching the application

® OS X: After downloading the software, launch the Stuffit X archive (.sitx), which
will create a Processing 0124 folder. Within the folder you'll see the Processing
program icon.

@ Windows: After downloading the software, extract the ZIP archive (.zip), which will
create a Processing 0124 folder. Within the folder you'll see the Processing pro-
gram icon.

To test that Processing is working, double-click the Processing program icon to launch the
application. A window similar to the one shown in Figure 1 should open.

866 Processing - 0124 Beta

®@ [OlE[EE

sketch_070425a

Figure 1. The Processing application interface

INTRODUCTION

Processing comes with a bunch of cool code examples. Next, let’s load the BrownianMotion
example into the Processing application. You can access the example, and many others,
through Processing’s File menu, as follows:

Select File » Sketchbook » Examples » Motion » BrownianMotion from the top menu bar.

You should see a bunch of code fill the text-editor section of the Processing window, as
shown in Figure 2.

8066 Processing - 0124 Beta

EE Run

BrownianMotion

= ~
* Brownion motion. 1
#

* Recording random movement as o continuous line.
*

* Updated 21 August 2062

X

int num = 2668;

int range = 4;

float[] ax = new float[num];

float[] ay = new float [num]s

void setup()

=ize(208, 200); o/
fordint i=8; iaum; i) {
ox[i] = 58;
av[i] = height/2;

}
fromeRate (387

void draw()
background(51);

J¢ Shift all elements 1 place to the left 4
fordint i=1; iaum; i+s) { v

10

Figure 2. The Processing application interface with a loaded sketch

To launch the sketch, click the right-facing run arrow (on the left of the brown toolbar at
the top of the Processing window—it looks like a VCR play button), or press Cmd+R (OS X)
or Ctrl+R (Windows).

If you were successful, a 200-pixel-by-200-pixel display window with a dark gray back-
ground should have popped open, showing a white scribbly line meandering around the
window (see Figure 3). Congratulations! You’ve just run your first Processing sketch. | rec-
ommend trying some of the other examples to get a taste of what Processing can do and
to familiarize yourself a little with Processing’s simple yet elegant interface.

XXVii

INTRODUCTION

Figure 3. Screenshot of BrownianMotion sketch

How to use this book

| created this book with a couple of objectives in mind. Based on my own creative experi-
ences working with code and application software, | wanted to present a conceptual intro-
duction to code as a primary creative medium, including some history and theory on the
subject. Based on my experiences in the digital art classroom, | wanted to provide an artist-
friendly, introductory text on general programming theory and basic graphics program-
ming. Lastly, based on my experience of working with a number of programming languages
(especially ActionScript and Java), | wanted to introduce readers to an exciting new
approach to creative coding with the Processing language and environment. Accomplish-
ing all this required a fairly ambitious table of contents, which this book has.

In addition to the 800+ pages within the book, there are an additional 142 pages of
“bonus” material online, at waw.friendsofed.com/book.html?isbn=159059617X.

The bonus material is divided into Chapter 14 and Appendix C. Chapter 14 covers
Processing’s Java mode, as well as some advanced 3D topics. Appendix C provides a
tutorial on how to use the Processing core library in “pure” Java projects—outside of
the Processing environment.

Xxviii

INTRODUCTION

In navigating all this material, | offer some suggestions to readers:

® Don’t feel that you have to approach the book linearly, progressing consecutively
through each chapter, or even finishing individual chapters before moving ahead. |
don’t think people naturally operate this way, especially not creative people. | tend
to read about 20 books at a time, moving through them in some crazy fractal pattern.
Perhaps my approach is too extreme, but beginning on page one of a book like this
and progressing until the last page seems even more extreme. | suggest taking a
grazing approach, searching for that choice patch of info to sink your brain into.

® Read stuff over and over until it sticks. | do this all the time. | often get multiple
books on the same subject and read the same material presented in different ways
to help me understand the material. | don’t do this to memorize, but to grasp the
concept.

® Don’t worry about memorizing stuff you can look up. Eventually the stuff that you
use a lot will get lodged in your brain naturally.

® Try to break/twist/improve my code examples. Then e-mail me your improved
examples—maybe I'll use one in another book; of course I'd give you credit.

® Always keep a copy of the book in the bathroom—it’s the best place to read guilt-
free when the sun’s still out.

Give us some feedback!

We’d love to hear from you, even if it’s just to request future books, ask about friends of
ED, or tell us how much you loved Processing: Creative Coding and Computational Art.

If you have questions about issues not directly related to the book, the best place for these
inquiries is the friends of ED support forums, at http://friendsofed.infopop.net/2/
OpenTopic. Here you'll find a wide variety of fellow readers, plus dedicated forum moder-
ators from friends of ED.

Please direct all questions about this book to support@friendsofed.com, and include the
last four digits of this book’s ISBN (617x) in the subject of your e-mail. If the dedicated
support team can’t solve your problem, your question will be forwarded to the book’s
editors and author. You can also e-mail Ira Greenberg directly at processing@
iragreenberg.com.

Layout conventions

To keep this book as clear and easy to follow as possible, the following text conventions
are used throughout:

® Important words or concepts are normally highlighted on their first appearance in
bold type.

® Code is presented in fixed-width font.

INTRODUCTION

New or changed code is normally presented in bold fixed-width font.
Pseudocode and variable input are written in italic fixed-width font.
Menu commands are written in the form Menu » Submenu » Submenu.

When | want to draw your attention to something, | highlight it like this:

~

(Ahem, don’t say | didn’t warn you.

.

Sometimes code won't fit on a single line in a book. Where this happens, | use an
arrow like this: =

This is a very, very long section of code that should be written =
all on the same line without a break.

