THE EXPERT’S VOICE® IN OPEN SOURCE

The Definitive Guide to

Everything you need to know about using
the GNU Compiler Collection and related tools

SECOND EDITION

William von Hagen

Apress:

The Definitive Guide
to GCC

Second Edition

William von Hagen

Apress’

The Definitive Guide to GCC, Second Edition
Copyright © 2006 by William von Hagen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-585-5
ISBN-10 (pbk): 1-59059-585-8
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Jason Gilmore, Keir Thomas

Technical Reviewer: Gene Sally

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Richard Dal Porto

Copy Edit Manager: Nicole LeClerc

Copy Editor: Jennifer Whipple

Assistant Production Director: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor: Susan Glinert

Proofreader: Elizabeth Berry

Indexer: Toma Mulligan

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code section.

To Dorothy Fisher, for all your love, support, and encouragement.
And for Becky Gable—what would we do without the schematics?
—Bill von Hagen

Contents at a Glance

About the AUTNOr Xvii
About the Technical ReViewer Xix
ACKNOWIEAgMENTS . ..o XXi
INtrOdUCHION xxiii
CHAPTER 1 Using GCC’s C Compilerciiiiiiii e 1
CHAPTER 2 Using GCC’s C++ Compilerci i, 41
CHAPTER 3 Using GCC’s Fortran Compilercciiiiiiiiiinnnn.. 53
CHAPTER 4 Using GCC’s Java Compiler ittt 79
CHAPTER 5 Optimizing Code withGCC it 101
CHAPTER 6 Analyzing Code Produced with GCC Compilers 119
CHAPTER 7 Using Autoconf and Automake ...t 151
CHAPTER 8 UsingLibtool 177
CHAPTER 9 Troubleshooting GCCttt 197
CHAPTER 10 Additional GCC and Related Topic Resources 215
CHAPTER 11 Compiling GCC e 227
CHAPTER 12 Building and Installing Glibc 247
CHAPTER 13 Using Alternate C Libraries i iiiiiiiiiinnnn. 281
CHAPTER 14 Building and Using C Cross-Compilersccoeven... 299
APPENDIX A Using GCC Compilers i ittt 321
APPENDIX B Machine- and Processor-Specific Options for GCC 403
APPENDIX C Using GCC’s Online Helpcco i 491

Contents

About the AUThOr ... o XVii
About the Technical ReViewer Xix
ACKNOWIEAOMENTS o XXi
INrOdUCHIONo Xxiii
CHAPTER 1 Using GCC’s C Compiler ... 1
GCC Option Refresher e 1

Compiling CDialects 3

Exploring C Warning MesSagesoveiiiiiinee it 7

GCC’s Cand EXENSIONS'i it 10

Locally Declared Labels. i 11

Labels AsValues.c i 12

Nested Functions 13

Constructing Function Calls. 14

Referring to a Type withtypeof. 15

Zero-Length Arrays 15

Arrays of Variable Lengthl 17

Macros with a Variable Number of Arguments 18

Subscripting Non-lvalue Arraysccooiiiiiiiiiiiia.... 18

Arithmetic on Void and Function Pointers 19

Nonconstant Initializers 19

Designated Initializers 19

Case RaNQES 21

Mixed Declarationsand Code i, 21

Declaring Function Attributes L. 21

Specifying Variable Attributes. oL 25

Inline Functions. 27

Function Names AS Strings. 28

#pragmas Accepted by GCC L. 29

Objective-C Support in GCC’s C Compiler 30

Compiling Objective-C Applications 32

GCC Options for Compiling Objective-C Applications................. 33

Exploring the GCC Objective-C Runtime 36

vii

viii

CONTENTS

CHAPTER 2

CHAPTER 3

Using GCC’s C++ Compiler 4
GCC Option Refresher e 41
Filename Extensions for C++ Source Files 43
Command-Line Options for GCC’s C++ Compiler 43
ABI Differences in g++ Versions ..., 46
GNU C++ Implementation Details and Extensions 47
Attribute Definitions Specifictog++ 47
C++ Template Instantiation in g++............................... 49
Function Name IdentifiersinC++and C........................... 49
Minimum and Maximum Value Operators 50
Using Java Exception Handling in C++ Applications 50
Visibility Attributes and Pragmas for GCC C++ Libraries.............. 51
Using GCC’s Fortran Compiler 53
Fortran History and GCC Support 54
Compiling Fortran Applications withgfortran 55
Common Compilation Options with Other GCC Compilers............. 55
Sample Code. 57
Compiling Fortran Code. ... 57
Modernizing the Sample FortranCode. 59
Command-Line Options for gfortran 62
Code Generation Options. i 62
Debugging Options. oo 63
Directory Search Options. 63
Fortran Dialect Options i 63
Warning Options. 64
gfortran Intrinsics and Extensions 65
Classic GNU Fortran: The g77 Compiler 74
Why USe 0772, ..o 74
Differences Between g77 and gfortran Conventions 74
Alternatives to gfortranand 977 75
The f2¢ Fortran-to-C Conversion Utility 76
The g95 Fortran Compiler 76
Intel’s Fortran Compiler.o it 76

Additional Sources of Information 77

CHAPTER 4

CHAPTER 5

CONTENTS

Using GCC’s Java Compiler 79
Javaand GCC’s Java Compiler 79
Basic gcj CompilerUsage 80
Demonstrating gcj, javac, and JVM Compatibility 83
Filename Extensions for Java Source Files 86
Command-Line Options for GCC’s Java Compiler 86
Constructing the Java Classpath 89
Creating and Using Jar Files and Shared Libraries 90
GCC Java Support and Extensionsccooiiiiiiiiiiiiaaaa.... 92
Java Language Standard ABI Conformance 93
Runtime Customization 93
Getting Information About Java Source and Bytecode Files 94
Using the GNU InterpreterforJava................................ 96
Java and C++ Integration Notes 98
Optimizing Code withGCC 101
A Whirlwind Tour of Compiler Optimization Theory 102
Code MOtion 103
Common Subexpression Elimination 103
ConstantFolding. 103
Copy Propagation Transformations 104
Dead Code Elimination. 104
F-CONVEISION. 105
INlNINg. ... 105
GCC Optimization BasiCs ... 105
What’s New in GCC 4.x Optimization 106
Architecture-Independent Optimizations 106
Level 1 GCC Optimizations i, 107
Level 2 GCC Optimizations i, 109
GCC Optimizations for Code Size 111
Level 3 GCC Optimizations i, 112
Manual GCC OptimizationFlagsii... 112
Processor-Specific Optimizations 113
Automating Optimization with Acovea 114
Building Acovea 114

Configuring and Running Acoveaccoviiiiiiiinnnnn... 115

ix

CONTENTS

CHAPTER 6 Analyzing Code Produced with GCC Compilers 119
Test Coverage Using GCCand gcov s, 120
Overview of TestCoverage ... 120
Compiling Code for Test Coverage Analysis 123
Using the gcov Test Coverage Tool 124
ASample gcov Session 126

Files Used and Produced During Coverage Analysis 133

Code Profiling Using GCC and gprof ..., 133
Obtaining and Compilinggprof...........cccoiiiiiiiiiiiiinan... 134
Compiling Code for Profile Analysis 135
Using the gprof Code Profiler 136
Symbol Specificationsingprof................. 136
ASample gprof Session. 140
Displaying Annotated Source Code for Your Applications 144
Adding Your Own Profiling Code Using GCC’s C Compiler............ 148
Mapping Addresses to Function Names. 148
Common Profiling Errors 149
CHAPTER 7 Using Autoconf and Automake 151
Introducing Unix Software Configuration, Autoconf, and Automake 151
Installing and Configuring autoconf and automake 154
Deciding Whether to Upgrade or Replace autoconf and automake 154
Building and Installing autoconf 155
Obtaining and Installing Automake. 158
Configuring Software with autoconf and automake 161
Creating Configure.ac Files.o 161
Creating Makefile.am Files and Other Files Required by automake 166
Running Autoconf and Automake 169
Running Configure Scripts 174
CHAPTER8 UsinglLibtool 177
Introduction to Libraries 177
Static Libraries 177
Shared Libraries..............co i 178
Dynamically Loaded Libraries.................. 180
WhatlIsLibtool? 181
Downloading and Installing Libtool, 182
Installing Libtool 182

Files Installed by Libtool 184

CHAPTER 9

CHAPTER 10

CONTENTS

Using Libtool 185
Using Libtool from the Command Line............................ 185
Command-Line Options for Libtool. 186
Command-Line Modes for Libtool Operation. 186
Using Libtool with Autoconf and Automake. 191

Troubleshooting Libtool Problems 194

Getting More Information About Libtool 195

Troubleshooting GCC .. 197

Coping with Known Bugs and Misfeatures 198

Using -### to See What's GoingOnoo.... 199

Resolving Common Problems i 200
Problems Executing GCC...............c i 200
Using Multiple Versions of GCC on a Single System................. 200
Problems Loading Libraries When Executing Programs. 201
‘No Such File or Directory’ Errors................ 202
Problems Executing Files Compiled with GCC Compilers 203
Running Out of Memory When Using GCC......................... 203
Moving GCC After Installation 204
General Issues in Mixing GNU and Other Toolchains 204
Specific Compatibility Problems in Mixing GCC with Other Tools.. 206
Problems When Using Optimization.............................. 208
Problems with Include Files or Libraries 208
Mysterious Warning and Error Messages 209
Incompatibilities Between GNUCand K&RC 210
Abuse of the __STDC__ Definition............................... 211

Resolving Build and Installation Problems 212

Additional GCC and Related Topic Resources 215

Usenet Resources for GCC 215
Selecting Software for Reading Usenet News. 216
Summary of GCC Newsgroups iiiaaeeannn 217

Mailing Lists for GCC 219
GCC Mailing Lists at gcc.gnu.org 219
Netiquette for the GCC Mailing Lists.t 222
Other GCC-Related Mailing Listscccoviiiiiiiiii.... 223

World Wide Web Resources for GCC and Related Topics 223
Information About GCC and Cross-Compilation 224
Information About Alternate C Libraries........................... 225

Publications About GCC and Related Topicst 225

Xi

Xii CONTENTS

CHAPTER 11

CHAPTER 12

Compiling GCCl 227
Why Build GCC from Source? i 227
Starting the Build Process ... 228
Verifying Software Requirements................................ 228
Preparing the Installation System........... 230
Downloading the Source Code oL, 231
Installing the Source Code.c i 231
Configuring the Source Codec.cciiiiiiiiiiiiannnn.. 232
WhatlIsina (System)Name? 233
Additional Configuration Options 234
NLS-Related Configuration Options 239
Building Specific Compilers.o i 239
Compiling the ComPpilerst 239
Compilation Phases i 240
Other Make Targets e 241
Testingthe Build 242
Installing GCC 245
Building and Installing Glibc 247
WhatlIsin Glibc? 247
Why Build Glibc from Source? 249
Potential Problems in Upgrading Glibc 250
Identifying Which Glibc a SystemIsUsing 251
Getting More Details About Glibc Versions 252
Glibc Add-0Nns ... 253
Previewing the Build Process i 254
Recommended Tools for Building Glibc 256
Updating GNU Utilities 257
Downloading and Installing Source Codecccoiunnn. 258
Downloading the Source Code 258
Installing Source Code Archives 258
Integrating Add-Ons into the Glibc Source Code Directory 260
Configuring the Source Codet 261
Compiling GIBG 264
Testingthe Build 265
Installing Glibe 265
Installing Glibc Asthe Primary C Libraryccoiiiiiiinnnn. 266
Installingan Alternate Glibc 268

UsingaRescue DisK 269

CHAPTER 13

CHAPTER 14

CONTENTS

Troubleshooting Glibc Installation Problems 270
Resolving Upgrade Problems Using BusyBox 271
Resolving Upgrade Problems Using a Rescue Disk 273
Backing OutofanUpgrade, 274
Problems Using Multiple Versions of Glibc 276

Getting More Information About Glibc ..., 276
Glibc Documentation 277
Other Glibc Web Sites i 277
Glibc Mailing Lists 277
Reporting Problems with Glibc 278

Movingto GIibC 2.4 278

Using Alternate C Libraries 281

Why Use a Different C Library? 281

Overview of Alternate C Libraries oiii.... 282

Overview of Using Alternate C Libraries 282

Building and Using dietlibc 283
Getting dietlibc 284
Building dietlibc 284
Using dietlibcwithgcc. ... 285

Buildingand Using Klibc 286
Getting Klibc 286
Building Klibc 287
Using Klibcwith gee. 288

Buildingand Using Newlib i 289
Getting Newlib ... 289
Building and Using Newlib. i 290

Buildingand Using uClibc i 290
Getting UCHbCo 291
BuildinguClibco 292
Using uClibcwithgee. 296

Building and Using C Cross-Compilers 299

What Is Cross-Compilation? 299

Using crosstool to Build Cross-Compilers 300
Retrieving the crosstool Package 304
Building a Default Cross-Compiler Using crosstool 304
Building a Custom Cross-Compiler Using crosstool 305

Using buildroot to Build uClibc Cross-Compilers 307
Retrieving the buildroot Package 308
Building a Cross-Compiler Using buildroot 309
Debugging and Resolving Toolchain Build Problems in buildroot 317

Building Cross-Compilers Manually 318

xiii

Xiv

CONTENTS
APPENDIX A Using GCC Compilers .. 321
Using Options with GCC Compilers ..., 321
General Information Optionso 322
Controlling GCC Compiler Outputo 324
Controlling the Preprocessort .. 331
Modifying Directory Search Paths 333
Passing Options to the Assembler i 335
Controlling the Linker e 335
Enabling and Disabling Warning Messages 338
Adding Debugging Information 343
Customizing GCC Compilers e 347
Customizing GCC Compilers Using Environment Variables 347
Customizing GCC Compilers with Spec Files and Spec Strings 349
Alphabetical GCC Option Reference 354
APPENDIX B Machine- and Processor-Specific Options for GCC 403
Alpha Options 403
AIpha/NMS Options 408
AMD x86-64 Oplions 408
AMD 29K Options 409
ARC OpLIONS ... oo 411
ARM Options 412
AVROpLiONSo 417
Blackfin Options 418
Clipper OptioNS 419
Convex OptioNS 419
CRISOPLIONS ...\t 420
CRX OptiONS ... 422
D30V OptiONS o 423
Darwin Options o 423
FR-V Optionso 425
H8/300 Options 428
HP/PA (PA/RISC) Optionst 429
i386 and AMD x86-64 Options 431
IA-64 OPLIONSot 437
INtel 960 OPtioNS i 441
M32C OptioNS 443
M32R OptioNSo 443
MB8BOX0 OplioNSt 445
MBBHCTIX Options 447
MBBK OplioNs 448
MCore OptioNs 450
MIPS Optionso 451
MMIX OptioNSo 458

MNT0200 OptioNSottt e 459

APPENDIX C

CONTENTS

MNT0300 OptioNSottt et 459
MT OptiONS 460
NS32K OplioNs 460
PDP-11 Options o 462
PowerPC (PPC) Options 463
RS/B000 OptioNSottt 474
RT Options o 474
S/390 and zSeries OptionS 475
SH OPHIONS ...t 477
SPARC OPtiONS . .. oot 479
System VOpPtions 482
TMS320C3x/C4Ax 0ptions 483
VB50 Options 485
VAX OptiONS . ..o 487
Xstormy16 Options oo 487
Xtensa OptionsS 487
Using GCC’s OnlineHelp 491
WhatIs GNU Info? 491
Getting Started, or Instructions for the Impatient 492
Getting Helpo 494
The Beginner’s GuidetoUsingGNU Info 494

AnatomyofaGNU InfoScreen 494

Moving AroundinGNU Info 496

Performing SearchesinGNUInfo................................ 498

Following Cross-References.............. ..., 499

Printing GNU InfoNodescc i 500

Invoking GNU Info. 501
Stupid Info Tricks 502

Using Command Multipliers 502

Working with Multiple Windows 503

Xv

About the Author

BILL VON HAGEN holds degrees in computer science, English writing, and
art history. Bill has worked with Unix systems since 1982, during which
time he has been a system administrator, writer, systems programmer,
development manager, drummer, operations manager, content manager,
and product manager. Bill has written a number of books including
The Ubuntu Bible, Hacking the TiVo, Linux Filesystems, Installing Red Hat
Linux, and SGML for Dummies; coauthored Linux Server Hacks, Volume 2
and Mac OS X Power User’s Guide; and contributed to several other books.
Bill has written articles and software reviews for publications including
Linux Journal, Linux Magazine, Mac Tech, Linux Format (UK), Mac Format (UK), and Mac Directory.
He has also written extensive online content for CMP Media, Linux Planet, and Linux Today. An avid
computer collector specializing in workstations, he owns more than 200 computer systems. You can
contact Bill at wh@vonhagen.org.

xvii

About the Technical Reviewer

GENE SALLY has been a Linux enthusiast for the past ten years, and for the past six he has channeled
his enthusiasm through his employer, TimeSys, creating tools for embedded Linux engineers and
helping them become more productive. Embedded development pushes the envelope of most tech-
nologies, Linux and GCCincluded, so Gene has had the opportunity to push these tools to their limits
as he creates development tools and technologies for TimeSys’ customers.

Xix

Acknowledgments

I ’d like to thank Kurt Wall for his friendship and the opportunity to work with him on the first edition
of this book, and Marta Justak, of Justak Literary Services, for her support and help with this book.I'd
also like to thank Gene Sally for making this book far better than it could have been without him, and
Richard Dal Porto, Keir Thomas, Jason Gilmore, Jennifer Whipple, Katie Stence, and others at Apress
for their patience (!) and support for this second edition. In general, I'd like to thank GCC, emacs
(the one true editor), Richard Stallman and the FSF, 50 million BSD fans (who can’t be wrong), and
Linux Torvalds and a cast of thousands for their contributions to computing as we know it today.

Without their foresight, philosophy, and hard work, this book wouldn’t even exist. I'd especially
like to thank rms for some way cool LMI hacks long ago.

XXi

Introduction

This book, The Definitive Guide to GCC, is about how to build, install, customize, use, and trouble-
shoot GCC version 4.x. GCC has long been available for most major hardware and operating system
platforms and is often the preferred family of compilers.

As a general-purpose set of compilers, GCC produces high-quality, fast code. Due to its design,
GCC is easy to port to different architectures, which contributes to its popularity. GCC, along with
GNU Emacs, the Linux operating system, the Apache Web server, the Sendmail mail server, and the
BIND DNS server, are showpieces of the free software world and proof that sometimes you can get a
free lunch.

Why a Book About GCC?

I'wrote this book, and you should read it, for a variety of reasons: it covers version 4.x; it is the only
book that covers general GCC usage; and I would argue that it is better than GCC’s own documenta-
tion. You will not find more complete coverage of GCC’s features, quirks, and usage anywhere else in
a single volume. There are no other up-to-date sources of information on GCC, excluding GCC’s own
documentation. GCC usually gets one or two chapters in programming books and only a few para-
graphs in other more general titles.

GCC’s existing documentation, although thorough and comprehensive, targets a programming-
savvy reader. There’s certainly nothing wrong with this approach, which is certainly the proper
approach for advanced users, but GCC’s own documentation leaves the great majority of its users
out in the cold. Much of The Definitive Guide to GCC s tutorial and practical in nature, explaining
why you use one option or why you should not use another one. In addition, explaining auxiliary
tools and techniques that are relevant to GCC but not explicitly part of the package helps make this
book a complete and usable guide and reference. Showing you how to use the compilers in the GCC
family and related tools, and helping you get your work done are this book’s primary goals.

Most people, including many long-time programmers, use GCC the way they learned or were
taught to use it. That is, many GCC users treat the compiler as a black box, which means that they
invoke it by using a small and familiar set of options and arguments they have memorized, shoving
source files in one end, and then receiving a compiled, functioning program from the other end.
With a powerful set of compilers such as GCC, there are indeed stranger (and more useful) things
than were dreamed of in Computer Science 101. Therefore, another goal when writing The Definitive
Guide to GCCwas to reveal cool but potentially obscure options and techniques that you may find
useful when building or using GCC and related tools and libraries.

Inveterate tweakers, incorrigible tinkerers, and the just plain adventurous among you will also
enjoy the chance to play with the latest and greatest version of GCC and the challenge of bending a
complex piece of software to your will, especially if you have instructions that show you how to do so
with no negative impact on your existing system.

xxiii

XXiv

INTRODUCTION

Why the New Edition?

I've written a new edition of this book for two main reasons: much has changed in GCC since the first
edition of this book came out, and I wanted to talk about the other GCC compilers and related tech-
nologies such as cross-compilers and alternate C libraries. The GCC 4.x family of compilers is now
available, providing a new optimization framework, many associated improvements to optimization
in general, a new Fortran compiler, significant performance improvements for the C++ compiler,
huge updates to the Java compiler, just-in-time compilation for Java, support for many new platforms,
and enough new options in general to keep you updating Makefiles for quite a while. The first edition
of this book focused on the C and C++ compilers in GCC, but enquiring minds want to know much
more. This edition substantially expands the C++ coverage and adds information about using the
Fortran, Java, and Objective-C compilers. No one has ever asked me about the Ada compiler, so I've
still skipped that one. In addition, I've added information on using alternate C libraries and building
cross-compilers that should make this book more valuable to its existing audience and (hopefully)
attractive to an even larger one.

What You Will Learn

The Definitive Guide to GCC now provides a chapter dedicated to explaining how to use each of the
C, C++, Fortran, and Java compilers. Information that is common to all of the compilers has been
moved to Appendix A, so as not to repeat it everywhere and keep you from getting started with your
favorite compiler. Similarly, information about building GCC has been moved to much later in the
book, since most readers simply want to use the compilers that they find on their Linux and *BSD
systems, not necessarily build them from scratch. However, if you want the latest and greatest version
of GCC, you will learn how to download, compile, and install GCC from scratch, a poorly understood
procedure that, until now, only the most capable and confident users have been willing to undertake.

The chapter on troubleshooting compilation problems has been expanded to make it easier
than ever to discover problems in your code or the configuration or installation of your GCC compilers.
If you're a traditional Makefile fan, the chapters on Libtool, Autoconf, and Automake will help you
produce your Makefiles automatically, making it easier to package, archive, and distribute the source
code for your projects. The chapters on code optimization, test coverage, and profiling have been
expanded and updated to discuss the latest techniques and tools, helping you debug, improve, and
test your code more extensively than ever. Finally, the book veers back to its focus for a more general
audience by providing a complete summary of the GCC’s command-line interface, a chapter on
troubleshooting GCC usage and installation, and another chapter explaining how to use GCC'’s
online documentation.

What You Need to Know

This is an end user’s book intended for anyone using almost all of the GCC compilers (sorry, Ada fans).
Whether you are a casual end user who only occasionally compiles programs, an intermediate user
using GCC frequently butlacking much understanding of how it works, or a programmer seeking to exer-
cise GCC to the full extent of its capabilities, you will find information in this book that you can use
immediately. Because Linux and Intel x86 CPUs are so popular, I've assumed that most of you are
using one version or another of the Linux operating system running on Intel x86 or compatible systems.
This isn’t critical—most of the material is GCC-specific, rather than being Linux- or Intel-specific,
because GCC is largely independent of operating systems and CPU features in terms of its usage.
What do you need to know to benefit from this book? Well, knowing how to type is a good start
because the GCC compilers are command-line compilers. (Though GCC compilers are integrated

INTRODUCTION

into many graphical integrated development environments, that is somewhat outside the scope of
this book.) You should therefore be comfortable with working in a command-line environment, such
as a terminal window or a Unix or Linux console. You need to be computer literate, and the more
experience you have with Unix or Unix-like systems, such as Linux, the better. If you have downloaded
and compiled programs from source code before, you will be familiar with the terminology and
processes discussed in the text. If, on the other hand, this is your first foray into working with source
code, the chapters on building GCC and C libraries will get you up and running quickly. You do not
need to be a programming wizard or know how to do your taxes in hexadecimal. Any experience that
you have using a compiled programming language is gravy.

You should also know how to use a text editor, such as vi, pico, or Emacs, if you intend to type
the listings and examples yourself in order to experiment with them. Because the source and binary
versions of the GCC are usually available in some sort of compressed format, you will also need to
know how to work with compressed file formats, usually gzipped tarballs, although the text will
explain how to do so.

What The Definitive Guide to GCC Does Not Cover

As an end user’s book on GCC, a number of topics are outside this book’s scope. In particular, it is not
aprimer on C, C++, Fortran, or Java, although each chapter provides a consistent set of programming
examples that I've used throughout the book. As discussed throughout this book, GCC s a collection
of front-end, language-specific interfaces to a common back-end compilation engine. The list of
compilers includes C, C++, Objective C, Fortran, Ada, and Java, among others. Compiler theory gets
short shrift in this book, because I believe that most people are primarily interested in getting work
done with GCC, not writing it. The Free Software Foundation has some excellent documents on GCC
internals on its Web site, and it doesn’t get much more definitive than that. That said, it is difficult to
talk about using a compiler without skimming the surface of compiler theory and operation, so this
book defines key terms and concepts as necessary while describing GCC’s architecture and overall
compilation workflow.

History and Overview of GCC

This section takes a more thorough look at what GCC is and does and includes the obligatory history
of GCC. Because GCC is one of the GNU Project’s premier projects, GCC’s development model bears
a closer look, so I will also show you GCC’s development model, which should help you understand
why GCC has some features and lacks other features, and how you can participate in its development.

What exactly is GCC? The tautological answer is that GCC is an acronym for the GNU Compiler
Collection, formerly known as the GNU Compiler Suite, and also known as GNU CC and the GNU C
Compiler. As remarked earlier, GCC is a collection of compiler front ends to a common back-end
compilation engine. The list of compilers includes C, C++, Objective C, Fortran (now 95, formerly 77),
and Java. GCC also has front ends for Pascal, Modula-3, and Ada 9X. The C compiler itself speaks
several different dialects of C, including traditional and ANSI C. The C++ compiler is a true native
C++ compiler. Thatis, it does not first convert C++ code into an intermediate C representation before
compiling it, as did the early C++ compilers such as the Cfront “compiler” Bjarne Stroustrup first
used to create C++. Rather, GCC’s C++ compiler, g++, creates native executable code directly from
the C++ source code.

GCC is an optimizing and cross-platform compiler. It supports general optimizations that can
be applied regardless of the language in use or the target CPU and options specific to particular CPU
families and even specific to a particular CPU model within a family of related processors. Moreover,
the range of hardware platforms to which GCC has been ported is remarkably long. GCC supports
platform and target submodels, so that it can generate executable code that will run on all members

XXV

Xxvi INTRODUCTION

of a particular CPU family or only on a specific model of that family. Table 1 provides a partial list
of GCC’s supported architectures, many of which you might never have heard of, much less used.
Frankly, I haven’t used (or even seen) all of them. For a more definitive list, see Appendix B, which
summarizes architectures and processor-specific options for your convenience.

Considering the variety of CPUs and architectures to which GCC has been ported, it should be
no surprise that you can configure it as a cross-compiler and use GCC to compile code on one plat-
form that is intended to run on an entirely different platform. In fact, you can have multiple GCC
configurations for various platforms installed on the same system and, moreover, run multiple GCC

versions (older and newer) for the same CPU family on the same system.

Table 1. Some of the Most Popular Processor Architectures Supported by GCC

Architecture

Description

AMD29K AMD Am29000 architectures

AMDG64 64-bit AMD processors that are compatible with the Intel-32
architecture

ARM Advanced RISC Machines architectures

ARC Argonaut ARC processors

AVR Atmel AVR microcontrollers

ColdFire Motorola’s latest generation of 68000 descendents

DEC Alpha Compagq (neé Digital Equipment Corporation) Alpha processors

H8/300 Hitachi H8/300 CPUs

HP/PA Hewlett-Packard PA-RISC architectures

Intel i386 Intel 1386 (x86) family of CPUs

Intel i960 Intel i960 family of CPUs

M32R/D Mitsubishi M32R/D architectures

M68K The Motorola 68000 series of CPUs

M88K Motorola 88K architectures

MCore Motorola M*Core processors

MIPS MIPS architectures

MN10200 Matsushita MN10200 architectures

MN10300 Matsushita MN10300 architectures

NS32K National Semiconductor NS3200 CPUs

RS/6000 and PowerPC IBM RS/6000 and PowerPC architectures

S$390 IBM processors used in zSeries and System z mainframe

SPARC Sun Microsystems family of SPARC CPUs

SH3/4/5 Super Hitachi 3, 4, and 5 family of processors

TMS320C3x/C4x

Texas Instruments TMS320C3x and TMS320C4x DSPs

INTRODUCTION

GCC’s History

GCC, or rather, the idea for it, actually predates the GNU Project. In late 1983, just before he started
the GNU Project, Richard M. Stallman, president of the Free Software Foundation and originator of the
GNU Project, heard about a compiler named the Free University Compiler Kit (known as VUCK) that
was designed to compile multiple languages, including C, and to support multiple target CPUs. Stallman
realized that he needed to be able to bootstrap the GNU system and that a compiler was the first
strap he needed to boot. So he wrote to VUCK’s author asking if GNU could use it. Evidently, VUCK’s
developer was uncooperative, responding that the university was free but that the compiler was not.
As aresult, Stallman concluded that his first program for the GNU Project would be a multilanguage,
cross-platform compiler. Undeterred and in true hacker fashion, desiring to avoid writing the entire
compiler himself, Stallman eventually obtained the source code for Pastel, a multiplatform compiler
developed at Lawrence Livermore National Laboratory. He added a C front end to Pastel and began
porting it to the Motorola 68000 platform, only to encounter a significant technical obstacle: the
compiler’s design required many more megabytes of stack space than the 68000-based Unix system
supported. This situation forced him to conclude that he would have to write a new compiler, starting
from ground zero. That new compiler eventually became GCC.

Although it contains none of the Pastel source code that originally inspired it, Stallman did adapt
and use the C front end he wrote for Pastel. As a starting point for GCC’s optimizer, Stallman also
used PO, a portable peephole optimizer that performed optimizations generally done by high-level
optimizers, in addition to low-level peephole optimizers. GCC (and PO’s successor, vpo) still uses
RTL (register transfer language) as an intermediate format for the optimizer. Development of this
primordial GCC proceeded slowly through the 1980s, because, as Stallman writes in his description of the
GNU Project (http://www.gnu.org/gnu/the-gnu-project.html), “first, [he] worked on GNU Emacs.”

During the 1990s, GCC development split into two, perhaps three, branches. While the primary
GCC branch continued to be maintained by the GNU Project, a number of other developers, prima-
rily associated with Cygnus Solutions, began releasing a version of GCC known as EGCS (Experimental
[or Enhanced] GNU Compiler Suite). EGCS was intended to be a more actively developed and more
efficient compiler than GCC, but was otherwise effectively the same compiler because it closely
tracked the GCC code base and EGCS enhancements were fed back into the GCC code base maintained
by the GNU Project. Nonetheless, the two code bases were separately maintained. In April 1999, GCC'’s
maintainers, the GNU Project, and the EGCS steering committee formally merged. At the same time,
GCC’s name was changed to the GNU Compiler Collection and the separately maintained (but, as
noted, closely synchronized) code trees were formally combined, ending a long fork and incorpo-
rating the many bug fixes and enhancements made in EGCS into GCC. This is why EGCS is often
mentioned, though it is officially defunct.

Other historical variants of GCC include the Pentium Compiler Group (PCG) project’s own version
of GCC, PGCC. PGCC was a Pentium-specific version that was intended to provide the best possible
support for features found in Intel’s Pentium-class CPUs. During the period of time that EGCS was
separately maintained, PGCC closely tracked the EGCS releases. The reunification of EGCS and GCC
seems to have halted PGCC development because, at the time of this writing, the PCG project’s last
release was 2.95.2.1, dated December 27, 2000. For additional information, visit the PGCC project’s
Web site at http://www.goof.com/pcg/.

At the time that this book was written, GCC 4.2 was about to become available. The latest officially
released version of the GCC 3.x line of compilers is 3.4.5. Other significant milestone compilers are
the 2.95.x compilers, which were widely hacked to produce code for a variety of embedded systems and
which are still widely available.

Who Maintains GCC?

Formally, GCC is a GNU Project, which is directed by the FSF. The FSF holds the copyright on the
compilers, and licenses the compilers under the terms of the GPL. Either individuals or the FSF hold

Xxvii

xxvili

INTRODUCTION

the copyrights on other components, such as the runtime libraries and test suites, and these other
components are licensed under a variety of licenses for free software. For information on the licensing of
any FSF package see the file LICENSE that is provided with its source code distribution. The FSF also
handles the legal concerns of the GCC project. So much for the administrivia.

On the practical side, a cast of dozens maintains GCC. GCC’s maintainers consist of a formally
organized steering committee and a larger, more loosely organized group of hackers scattered all
over the Internet. The GCC steering committee, as of August 2001, is made up of 14 people repre-
senting various communities in GCC’s user base who have a significant stake in GCC’s continuing
and long-term survival, including kernel hackers, Fortran users, and embedded systems developers.
The steering committee’s purpose is, to quote its mission statement, “to make major decisions in the
best interests of the GCC project and to ensure that the project adheres to its fundamental principles
found in the project’s mission statement.” These “fundamental principles” include the following:

e Supporting the goals of the GNU Project

¢ Adding new languages, optimizations, and targets to GCC

* More frequent releases

* Greater responsiveness to consumers, the large user base that relies on the GCC compiler

e An open development model that accepts input and contributions based on technical merit

The group of developers that work on GCC includes members of the steering committee and,
according to the contributors list on the GCC project home page, more than 100 other individuals
across the world. Still, others not specifically identified as contributors have contributed to GCC
development by sending in patches, answering questions on the various GCC mailing lists, submitting
bug reports, writing documentation, and testing new releases.

Who Uses GCC?

GCC’s user base is large and varied. Given the nature of GCC and the loosely knit structure of the free
software community, though, no direct estimate of the total number of GCC users is possible. A direct
estimate, based on standard metrics, such as sales figures, unit shipments, or license purchases, is
virtually impossible to derive because such numbers simply do not exist. Even indirect estimates,
based, for example, on the number of downloads from the GNU Web and FTP sites, would be question-
able because the GNU software repository is mirrored all over the world.

More to the point, I submit that quantifying the number of GCC users is considerably less
important and says less about GCC users than examining the scope of GCC’s usage and the number
of processor architectures to which it has been ported. For example, GCC is the standard compiler
shipped in every major and most minor Linux distributions. GCC is also the compiler of choice for
the various BSD operating systems (FreeBSD, NetBSD, OpenBSD, and so on). Thanks initially to the
work of DJ Delorie, GCC works on most modern DOS versions, including MS-DOS from Microsoft,
PC-DOS from IBM, and DR-DOS. Indeed, Delorie’s work resulted in ports of most of the GNU tools
for DOS-like environments. Cygnus Solutions, now owned by Red Hat, Inc., created a GCC port for
Microsoft Windows users. Both the DOS and Windows ports offer complete and free development
environments for DOS and Windows users.

The academic computing community represents another large part of GCC'’s user base. Vendors
of hardware and proprietary operating systems typically provide compiler suites for their products
as a so-called value-added service, that is, for an additional, often substantial, charge. As free soft-
ware, GCC represents a compelling, attractive alternative to computer science departments faced
with tight budgets. GCC also appeals to the academic world because it is available in source code
form, giving students a chance to study compiler theory, design, and implementation. GCC is also
widely used by nonacademic customers of hardware and operating system vendors who want to

INTRODUCTION

reduce support costs by using a free, high-quality compiler. Indeed, if you consider the broad range
of hardware to which GCC has been ported, it becomes quite clear that GCC’s user base is composed
of the broadest imaginable range of computer users.

In general, my favorite response from any reader of this book to the question of who uses GCC
is “Ido.”

Are There Alternatives?

What alternatives to GCC exist? As framed, this question is somewhat difficult to answer. Remember
that GCC is the GNU Compiler Collection, a group of language-specific compiler front ends using a
common back-end compilation engine, and that GCC is free software. So if you rephrase the question
to “what free compiler suites exist as alternatives to GCC?” the answer is “very few.”

As mentioned earlier, the Pentium Compiler Group created PGCC, a version of GCC, that was
intended to extend GCC'’s ability to optimize code for Intel’s Pentium-class CPUs. Although PGCC
development seems to have stalled since the EGCS/GCC schism ended, the PGCC Web site still exists
(although it, too, has not been modified recently).

If you remove the requirement that the alternative be free, you have many more options. Many
hardware vendors and most operating system vendors will be happy to sell you compiler suites for
their respective hardware platforms or operating systems, but the cost can be prohibitive. Some
third-party vendors exist that provide stand-alone compiler suites. One such vendor is The Portland
Group (http://www.pgroup.com/), which markets a set of high-performance, parallelizing compiler
suites supporting Fortran, C, and C++. Absoft Corporation also offers a well-regarded compiler suite
supporting Fortran 77, Fortran 95, C, and C++. Visit its Web site at http://www.absoft.com/ for addi-
tional information. Similarly, Borland has a free C/C++ compiler available. Information on Borland’s
tools can be found on its Web site at http://www.borland.com/. Intel and Microsoft also sell very good
compilers. And they are not that expensive.

Conversely, if you dispense with the requirement that alternatives be collections or suites, you
can select from a rich array of options. A simple search for the word compilers at Yahoo! generates
more than 120 Web sites showcasing a variety of single-language compilers, including Ada, Basic, C
and C++, COBOL, Forth, Java, Logo, Modula-2 and Modula-3, Pascal, Prolog, and Smalltalk. If you are
looking for alternatives to GCC, a good place to start your search is the compilers.net Web page at
http://www.compilers.net/.

So much for alook at alternatives to GCC. This is a book about GCC, after all, so [hope that you’ll
forgive me for largely leaving you on your own when it comes to finding information about other
compilers. Some chapters of this book, such as the chapter on the new GCC Fortran compiler, gfortran,
discuss alternatives because of the huge number of Fortran variants out there, but by and large, GCC
is the right solution to your compilation problems.

XXix

CHAPTER 1

Using GCC’s C Compiler

This chapter’s goal is to get you comfortable with typical usage of the GNU Compiler Collection’s
C compiler, gcc. This chapter focuses on those command-line options and constructs that are specific
to GCC’s C compiler. Options that can generally be used with any GCC compiler are discussed in
Appendix A. Throughout this chapter, as throughout this book, I'll differentiate between GCC (the
GNU Compiler Collection) and gcc, the C compiler that is provided as part of GCC.

This chapter explains how to tell gcc which dialect of C it should expect to encounter in your
source files, from strict ANSI/ISO C to classic Kernighan and Ritchie (K&R) C. It also explains the
variety of special-purpose constructs that are supported by gcc and how to invoke and use them. It
concludes by discussing using gcc to compile Objective C applications and discusses specific details
of the GNU Objective C runtime environment.

GCC Option Refresher

Appendix A discusses the options that are common to all of the GCC compilers and how to customize
various portions of the compilation process. However, I'm not a big fan of making people jump
around in a book for information. For that reason, this section provides a quick refresher of basic
GCC compiler usage as it applies to the gcc C compiler. For detailed information, see Appendix A.
If you are new to gcc and just want to get started quickly, you're in the right place.

The gcc compiler accepts both single-letter options, such as -o, and multiletter options, such as
-ansi. Because it accepts both types of options you cannot group multiple single-letter options together
as you may be used to doing in many GNU and Unix/Linux programs. For example, the multiletter
option -pg is not the same as the two single-letter options -p -g. The -pg option creates extra code in
the final binary that outputs profile information for the GNU code profiler, gprof. On the other hand,
the -p -g options generate extra code in the resulting binary that produces profiling information for
use by the prof code profiler (-p) and causes gcc to generate debugging information using the oper-
ating system’s normal format (-g).

Despite its sensitivity to the grouping of multiple single-letter options, you are generally free to
mix the order of options and compiler arguments on the gcc command line. That is, invoking gcc as

gcc -pg -fno-strength-reduce -g myprog.c -o myprog
has the same result as

gcc myprog.c -o myprog -g -fno-strength-reduce -pg

CHAPTER 1 USING GCC’S C COMPILER

I say that you are generally free to mix the order of options and compiler arguments because, in
most cases, the order of options and their arguments does not matter. In some situations, order does
matter if you use several options of the same kind. For example, the -I option specifies the directory
or directories to search for include files. So if you specify - I several times, gcc searches the listed
directories in the order specified.

Compiling a single source file, myprog.c, using gcc is easy—just invoke gcc, passing the name of
the source file as the argument.

$ gcc myprog.c

$ 1s -1
-TWXY-XT-X 1 wvh users 13644 Oct 5 16:17 a.out
-IW-T--T-- 1 wvh users 220 Oct 5 16:17 myprog.c

By default, the result on Linux and Unix systems is an executable file named a.out in the current
directory, which you execute by typing ./a.out. On Cygwin systems, you will wind up with a file
named a.exe that you can execute by typing either ./a or ./a.exe.

To define the name of the output file that gcc produces, use the -0 option, as illustrated in the
following example:

$ gcc myprog.c -o runme

$ 1s -1
-IW-T--T-- 1 wvh users 220 Oct 5 16:17 myprog.c
-TWXT-XT-X 1 wvh users 13644 Oct 5 16:28 runme

If you are compiling multiple source files using gcc, you can simply specify them all on the gcc
command line, as in the following example, which leaves the compiled and linked executable in the
file named showdate:

$ gcc showdate.c helper.c -o showdate

If you want to compile these files incrementally and eventually link them into a binary, you can
use the -c option to halt compilation after producing an object file, as in the following example:

$ gcc -c showdate.c
$ gcc -c helper.c
$ gcc showdate.o helper.o -o showdate

$ 1s -1

total 124

-TW-T--T-- 1 wvh users 210 Oct 5 12:42 helper.c
-IW-Y--T-- 1 wvh users 45 Oct 5 12:29 helper.h
-IW-T--T-- 1 wvh users 1104 Oct 5 13:50 helper.o
~TWXT-XT-X 1 wvh users 13891 Oct 5 13:51 showdate
-IW-T--T-- 1 wvh users 208 Oct 5 12:44 showdate.c
-IW-T--T-- 1 wvh users 1008 Oct 5 13:50 showdate.o

CHAPTER 1 USING GCC’S C COMPILER

Note All of the GCC compilers “do the right thing” based on the extensions of the files provided on any GCC
command line. Mapping file extensions to actions (for example, understanding that files with . o extensions only
need to be linked) is done via the GCC specs file. Prior to GCC version 4, the specs file was a stand-alone text file
that could be modified using a text editor; with GCC 4 and later, the specs file is built-in and must be extracted
before it can be modified. For more information about working with the specs file, see the section “Customizing GCC
Using Spec Strings” in Appendix A.

It should be easy to see that a project consisting of more than a few source code files would
quickly become exceedingly tedious to compile from the command line, especially after you start
adding search directories, optimizations, and other gcc options. The solution to this command-line
tedium is the make utility, which is not discussed in this book due to space constraints (although it
is touched upon in Chapter 8).

Compiling C Dialects

The gcc compiler supports a variety of dialects of C via a range of command-line options that enable
both single features and ranges of features that are specific to particular variations of C. Why bother,
you ask? The most common reason to compile code for a specific dialect of C is for portability. If you
write code that might be compiled with several different tools, you can check for that code’s adher-
ence to a given standard using GCC support for various dialects and standards. Verifying adherence
to various standards is one method developers use to reduce the risk of running into compile-time
and runtime problems when code is moved from one platform to another, especially when the new
platform was not considered when the program was originally written.

What then is wrong with vanilla ISO/ANSI C? Nothing that has not been corrected by officially
ordained corrections. The original ANSI C standard, prosaically referred to as C89, is officially known
as ANSIX3.159-1989. It was ratified by ANSI in 1989 and became an ISO standard, ISO/IEC9989:1990
to be precise, in 1990. Errors and slight modifications were made to C89 in technical corrigenda
published in 1994 and 1996. A new standard, published in 1999, is known colloquially as C99 and
officially as ISO/IEC9989:1999. The freshly minted C99 standard was amended by a corrigendum
issued in 2001. This foray into the alphabet soup of standards explains why options are available for
supporting multiple dialects of C. I'll explain how to use them a little later in this section.

In addition to the subtle variations that exist in standard C, some of the gcc C dialect options
enable you to select the degree to which gcc complies with the standard. Other options enable you
to select which C features you want. There is even a switch that enables limited support for traditional
(pre-1SO, pre-ANSI) C. But enough discussion. Table 1-1 lists and briefly describes the options that
control the C dialect to which gcc adheres during compilation.

Table 1-1. C Dialect Command-Line Options

Option Description

-ansi Supports all ISO C89 features and disables GNU extensions that
conflict with the C89 standard.

-aux-info file Saves prototypes and other identifying information about functions
declared in a translation unit to the file identified by file.

-fallow-single-precision Prevents promotion of single-precision operations to
double-precision.

CHAPTER 1 USING GCC’S C COMPILER

Table 1-1. C Dialect Command-Line Options (Continued)

Option

Description

-fbuiltin

-fcond-mismatch

-ffreestanding

-fhosted

-fno-asm

-fno-builtin

-fno-signed-bitfields

-fno-signed-char

-fno-unsigned-bitfields

-fno-unsigned-char

-fshort-wchar

-fsigned-bitfields

-fsigned-char

-funsigned-bitfields

-funsigned-char

-fwritable-strings

-no-integrated-cpp

-std=value

Recognizes built-in functions that lack the builtin_prefix.

Allows mismatched types in the second and third arguments of
conditional statements.

Claims that compilation takes place in a freestanding (unhosted)
environment. Freestanding means that the environment includes
all of the library functions required to operate without loading or
referencing external code. Currently, freestanding implementations
provide all of the functions identified in <float.h>, <limits.h>,
<stdarg.h>, and <stddef.h>. Freestanding 64-bit code also requires
the functions identified in <iso0646.h>. Freestanding C99-compliant
code also requires anything referenced in <stdbool.h> and
<stdint.h>. The Linux kernel is a good example of a freestanding
environment.

Claims that compilation takes place in a hosted environment,
which means that external functions can be loaded from libraries
such as the standard C library. This is the default value for GCC
compilation. Programs that use external libraries (such as most
applications) are good examples of applications that compile and
execute in a hosted environment.

Disables use of asm, inline, and typeof as keywords, allowing their
use as identifiers.

Ignores built-in functions that lack the _ builtin_prefix.

Indicates that bit fields of undeclared type are to be
considered unsigned.

Keeps the char type from being signed, as in the type signed char.

Indicates that bit fields of undeclared type are to be
considered signed.

Keeps the char type from being unsigned, as in the type
unsigned char.

Forces the type wchar_t to be short unsigned int.

Indicates that bit fields of undeclared type are to be
considered signed.

Permits the char type to be signed, as in the type signed char.

Indicates that bit fields of undeclared type are to be
considered unsigned.

Permits the char type to be unsigned, as in the type unsigned char.

Permits strong constants to be written and stores them in the
writable data segment.

Invokes an external C preprocessor instead of the
integrated preprocessor.

Sets the language standard to value (c89, 1509899:1990,
1509989:199409, 99, c9x, 1509899:1999, 1509989:199x, gnu89, gnu99).

CHAPTER 1 USING GCC’S C COMPILER

Table 1-1. C Dialect Command-Line Options (Continued)

Option Description

-traditional Supports a limited number of traditional (K&R) C constructs
and features.

-traditional-cpp Supports a limited number of traditional (K&R) C preprocessor
constructs and features.

-trigraphs Enables support for C89 trigraphs.

Sufficiently confused? Believe it or not, it breaks down more simply than it seems. To begin
with, throw out -aux-info and -trigraphs, because you are unlikely to ever need them. Similarly,
you are advised to not use -no-integrated-cpp because its semantics are subject to change and may,
in fact, be removed from future versions of GCC. If you want to use an external preprocessor, use the
CPP environment variable discussed in Appendix A or the corresponding make variable. Likewise,
unless you are working with old code that assumes it can be scribbled into constant strings, do not
use -fwritable-strings. After all, constant strings should be constant—if you are scribbling on them,
they are variables, so just create a variable. To be fair, however, early C implementations allowed
writable strings (primarily to limit stack space consumption), so this option exists to enable you to
compile legacy code.

The various flags for signed or unsigned types exist to help you work with code that makes
assumptions of the signedness of chars and bit fields. In the case of the char flags (-fsigned-char,
-funsigned-char, and their corresponding negative forms), each machine has a default char type,
which is either signed or unsigned. That is, given the statement

char c;

you might wind up with a char type that behaves like a signed char or an unsigned char on a given
machine. If you pass gcc the -fsigned-char option, it will assume that all such unspecified declara-
tions are equivalent to the statement

signed char c;

The converse applies if you pass gcc the -funsigned-char option. The purpose of these flags
(and their negative forms) is to allow code that assumes the default machine char type is, say, like an
unsigned char (that is, it performs operations on char types that assume an unsigned char), to work
properly on a machine whose default char type is like a signed char. In this case, you would pass gcc
the -funsigned-char option. A similar situation applies to the bit field-related options. In the case of
bit fields, however, if the code does not specifically use the signed or unsigned keyword, gcc assumes
the bit field is signed.

Note Truly portable code should not make such assumptions—that is, if you know you need a specific type
of variable, say an unsigned char, you should declare it as such rather than using the generic type and making
assumptions about its signedness that might be valid on one architecture but not on another.

You will rarely ever need to worry about the -thosted and -ffreestanding options, but for
completeness’ sake, I'll explain what they mean and why they are important. In the world of C stan-
dards, an environment is either hosted or freestanding. A hosted environment refers to one in which
the complete standard library is present and in which the program startup and termination occur via

CHAPTER 1 USING GCC’S C COMPILER

amain() function that returns int. In a freestanding environment, on the other hand, the standard
library may not exist and program startup and termination are implementation-defined. The implica-
tion of the difference is just this: in a freestanding implementation (when invoked with -ffreestanding),
the gcc compiler makes very few assumptions about the meaning of function names that exist in the
standard library. So, for example, the ctime() function is meaningless to gcc in freestanding mode.
In hosted mode, which is the default, on the other hand, you can rely on the fact that the ctime()
function behaves as defined in the C89 (or C99) standard.

Note This discussion simplifies the distinction between freestanding and hosted environments and ignores the
distinction the ISO standard draws between conforming language implementations and program environments.

Now, about those options that control to which standards GCC adheres. Taking into account the
command-line options I've already discussed, you are left with -ansi, -std, -traditional, -traditional
-cpp, -fno-asm, -fbuiltin, and -fno-builtin. Here again, we can simplify matters somewhat. The
-traditional option enables you to use features of pre-ISO C, and implies -traditional-cpp. These
traditional C features include writable string constants (as with -fwritable-strings), the use of
certain C89 keywords as identifiers (inline, typeof, const, volatile, and signed), and global extern
declarations. You can see by looking at Table 1-1 that -traditional also implies -fno-asm, because
-fno-asmdisables the use of the inline and typeof keywords, such as -traditional, and also the
asm keyword. In K&R C, these keywords could be used as identifiers.

The -fno-builtin flag disables recognition of built-in functions that do not begin with the
__builtin_ prefix. What exactly is a built-in function? Built-in functions are versions of functions in
the standard C library that are implemented internally by gcc. Some built-ins are used internally by
gcc, and only by gcc. These functions are subject to change, so they should not be used by non-GCC
developers. Most of gcc’s built-ins, though, are optimized versions of functions in the standard
libraries, intended as faster and more efficient replacements of their externally defined cousins. You
normally get these benefits for free because gcc uses its own versions of, say, alloca() or memcpy()
instead of those defined in the standard C libraries. Invoking the -fno-builtin option disables this
behavior. The GCC info pages document the complete list of gcc’s built-in functions.

The -ansi and -std options, which force varying degrees of stricter adherence to published
C standards documents, imply -fno-builtin. As Table 1-1 indicates, -ansi causes gcc to support all
features of ISO C89 and turns off GNU extensions that conflict with this standard. To be clear, if you
specify -ansi, you are selecting adherence to the C89 standard, not the C99 standard. The options
-std=c89 or -std=1509899:1990 have the same effect as -ansi. However, using any of these three
options does not mean that gcc starts behaving as a strict ANSI compiler because GCC will not emit
all of the diagnostic messages required by the standard. To obtain all of the diagnostic messages,
you must also specify the options -pedantic or -pedantic-errors. If you want the diagnostics to be
considered warnings, use -pedantic. If you want the diagnostics to be considered errors and thus to
terminate compilation, use -pedantic-errors.

To select the C99 standard, use the option -std=c99 or -std-1509989:1999. Again, to see all of
the diagnostic messages required by the C99 standard, use -pedantic or -pedantic-errors as previ-
ously described. To completely confuse things, the GNU folks provide arguments to the -std option
that specify an intermediate level of standards compliance. Lacking explicit definition of a C dialect,
gcc defaults to C89 mode with some additional GNU extensions to the Clanguage. You can explicitly
request this dialect by specifying - std=gnu89. If you want C99 mode with GNU extensions, you
should specify, you guessed it, -std=gnu99. The default compiler dialect will change to -std=gnu99
after gcc’s C99 support has been completed.

What does turning on standards compliance do? Depending on whether you select C89 or C99
mode, the effects of -ansi or -std=value include

