Foundations of
Qt Development

Johan Thelin

Apress*

Foundations of Qt Development
Copyright © 2007 by Johan Thelin

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-831-3
ISBN-10 (pbk): 1-59059-831-8
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Qt, the Qt logo, Qtopia, the Qtopia logo, Trolltech, and the Trolltech logo are registered trademarks of
Trolltech ASA and/or its subsidiaries in the U.S. and other countries. All rights reserved.

Lead Editor: Jason Gilmore

Technical Reviewer: Witold Wysota

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore,
Jonathan Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Dominic Shakeshaft,
Matt Wade, Tom Welsh

Senior Project Manager: Tracy Brown Collins

Copy Edit Manager: Nicole Flores

Copy Editor: Nancy Sixsmith

Assistant Production Director: Kari Brooks-Copony

Production Editor: Kelly Winquist

Compositor: Dina Quan

Proofreader: Paulette McGee

Indexer: Brenda Miller

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code/
Download section.

Till Asa.

Contents at a Glance

FOrBWOId e XV
Aboutthe AUThor.o XVii
About the Technical Reviewer e Xix
AcKnOWledgmEentS e XXi
PART 1 Getting to Know Qt
CHAPTER1 TheQtWayof C++ i, 3
CHAPTER 2 Rapid Application DevelopmentUsing Qt 33
CHAPTER 3 Widgetsand Layouts .. 55
CHAPTER4 TheMainWindow, 95
PART 2 The Qt Building Blocks
CHAPTER 5 The Model-View Framework 123
CHAPTER 6 CreatingWidgetsoiiiiiiii.. 157
CHAPTER 7 Drawingand Printing... 183
CHAPTER 8 Files, Streams,and XML 235
CHAPTER 9 ProvidingHelp..................... 257
CHAPTER 10 Internationalization and Localization 279
CHAPTER 11 Plugins......... 303
CHAPTER 12 Doing ThingsinParallel....................................... 333
CHAPTER 13 Databases........... ... 371
CHAPTER 14 Networking............. ... 403
CHAPTER 15 Building Qt Projects................ 445
CHAPTER 16 UnitTesting i, 471
PART 3 Appendixes
APPENDIX A Third-Party Tools 501
APPENDIX B Containers, Types, and Macros................................ 507
INDEX ... 513

Contents

FOrBWOId . .o XV

Aboutthe AUthOr. . .. o XVii

About the Technical REVIEWENt e e Xix

AcKnOWledgmEeNtS o XXi
PART 1 Getting to Know Qt

CHAPTER1 TheQtWayofC++... 3

Installing a Qt Development Environment............................ 3

Installing on Unix Platforms 3

Installingon Windows. L. 5

Making C++ “Qt-er”. 6

Inheriting Qt 7

Usinga QtString ... 10

Buildinga QtProgram............... i 11

Signals, Slots, and Meta-Objects 13

Making the Connection................... L. 16

Revisiting the Build Process.cciiiat 18

Connection to SomethingNew 19

Collections and Iterators. ..., 21

lteratingthe QListl 21

Fillingthe List........... .o o 24

More ListS. ... 24

Special ListS 25

SUMMArY. 31

CHAPTER 2 Rapid Application Development Using Qt 33

TheSketcho 33

Event-Driven Applicationsl 34

Using Designer. 35

vii

viii

CONTENTS

CHAPTER 3

CHAPTER 4

From Designerto Code. i 47
The Final Touches. 53
SUMMANY. ... 54
Widgetsand Layouts 55
Creating Dialogs in Qt.............. i, 55
SiZe POlICIESo 57
Layoutso 60
CommonWidgetso i 62
QPushButton. 62
QLabel 64
QLineEdit. 65
QChECKBOXt 66
QRadioButton 67
QGroupBoxX 68
QListWidget. 69
QCOMBOBOX 71
QSPINBOX. . ..o 72
QSlider. . ..o 73
QProgressBar............... 74
Common Dialogscooi i 75
Files ..o 75
MEBSSAQESo 79
EvenMore Dialogs. i 85
Validating User Input. i 86
Validators. 87
SUMMArY. 93
The MainWindow.. 95
Windows and Documents i 95
Single Document Interface..................... 96
Multiple Document Interface 103
Comparing Single and Multiple Document Interfaces 111
Application ReSOUICESt 112
Resource File o . 112
ProjectFile ... 114
Applicationlcon 114
Dockable Widgetscoo i 115

SUMMArY ... 119

PART 2

CHAPTER 5

CHAPTER 6

CHAPTER 7

CONTENTS

The Qt Building Blocks

The Model-View Framework 123
Showing Data by Using Views.oes. 124
ProvidingHeaders i 127
Limiting Editing L. 127
Limiting Selection Behavior................................. 127
ASingle ColumnList............... 128
Creating Custom Views i, 129
ADelegate for Drawing. ..., 129
Custom Editing. ... 132
Creating Your Own Views. ...t 135
Creating CustomModelsc i 140
ARead-Only Table Model............................o oo, 141
ATreeof YourOwn........... i, 144
Editingthe Model................ i 150
Sorting and FilteringModels L 153
SUMMANY. 156
Creating Widgets.. 157
Composing Widgets ... 157
Changing and Enhancing Widgets 162
Catchingthe Events.............. il 164
Creating Custom Widgets from Scratch....................... 171
Your Widgets and Designer.................. ... il 176
Promotion ... 176
ProvidingaPlugin 177
SUMMAY. 182
Drawing and Printing 183
Drawing Widgets.............. o 183
The Drawing Operations.cooiiiiiiiiiaainn, 184
Transforming the Reality 200
PaintingWidgets 204
The Graphics View. 215
Interacting Using a Custom Item............................. 220
Printing 228
OpenGLo 232

SUMMArY ... 232

ix

CONTENTS

CHAPTER 8

CHAPTER 9

CHAPTER 10

Files, Streams,and XML................................... 235
Workingwith Paths............. 235
Workingwith Files. L 238
Working with Streams. 239
XML 243
DOM. .. 244
Reading XML Fileswith SAX 248
Files and the Main Windowo i, 250
SUMMANY. ... 255
ProvidingHelp.. 257
Creating TOOIIPSo 257
Creating HTML-Formatted Tooltips........................... 259
Inserting Images into Tooltips 260
Applying Multiple Tooltipstoa Widget........................ 260
Providing What's ThisHelp TipsS....................o oL, 263
Embedding Links into What's ThisHelp Tips 264
Taking Advantage of the StatusBar............................... 267
Creating Wizards o i, 269
Assistingthe User i 275
Creating the Help Documentation............................ 275
Putting It Together.......... L 277
SUMMANY. ... 278
Internationalization and Localization..................... 279
Translating an Application.............. 279
Extractingthe Strings 281
Linguist: A Tool for Translating 281
Set Up a Translation Object 284
QESINgS ... 285
Dealing with Other Translation Cases 287
Find the Missing Strings. ..., 291
TranslatingontheFly................... 292
Other Considerations i 295
Dealingwith Text................. i 295
IMaAgES. ... 296
Numbers ... 296
Datesand Times i, 298
Help ..o 301

CHAPTER 11

CHAPTER 12

CHAPTER 13

CONTENTS

Plugins................................. 303
Plugin BasiCso o 303
Extending Qt with Plugins 304
Creating an ASCITArt Plugin. ..., 304
Extending Your Application Using Plugins. 317
Filtering Images i 317
Merging the Plugin and the Application....................... 323
AFactory Interface. 326
Non-Qt Plugins. 329
SUMMAY. 332
Doing ThingsinParallel 333
Basic Threading............... oo 333
Building a Simple Threading Application...................... 334
Synchronizing Safely.l 336
ProtectingYourData....................................... 338
Protected Counting i, 339
Locking for Reading and Writing. 341
Sharing Resources Among Threads............................... 344
Getting Stuck 345
Producers and Consumers.cooviirininon... 347
Signaling Across the Thread Barrier. 352
Passing Strings Between Threads 353
Sending Your Own Types Between Threads................... 356
Threads, QObjects, andRules......................... ..., 359
Pitfalls when Threading 359
The User Interface Thread 360
Working with Processes. 363
Runninguic. ... 363
The Shell and Directions. 368
SUMMANY. 368
Databases 371
A Quick Introductionto SQL................ 371
WhatIsa Database? 371
Inserting, Viewing, Modifying, and Deleting Data. 372
More Tables Mean More Power 375

Countingand Calculating...........................oooi.. 377

Xi

Xii

CONTENTS

CHAPTER 14

CHAPTER 15

Qtand Databasescco 378
Making the Connection.......................... ...l 378
QueryingData. 380
Establishing Several Connections............................ 382

Putting It All Together. ... 382
The Structure of the Application 384
TheUseriInterface................... 384
The Database Class. ...t 392
Putting Everything Together. 397

Model Databases. 398
The QueryModelo i 399
TheTableModel i 399
The Relational Table Model 400

SUMMArY. 402

Networking... 403

Using the QtNetwork Module.oiiil. 403

Working with Client Protocols 403
Creatingan FTPClient, 404
Creatingan HTTPClient 417

SOCKEES . ..o 424
Reliability’s Role with UDPand TCP 424
Servers, Clients,and Peers 425
Sending Images Using TCP 425
Broadcasting PicturesUsing UDP 436

SUMMANY. 443

Building Qt Projects....................................... 445

AMaKE. ... 445
The QMake ProjectFile................ ...l 445
Working with Different Platforms 450
Building Libraries withQMake. 453
Building Complex Projects with QMake....................... 454

The CMake Build System.............. ... it 457
Managing a Simple Application with QMake 457
Working with Different Platforms 461
Building Libraries withCMake. 465
Managing Complex Projects with CMake 466

SUMMArY ... 469

CHAPTER 16

PART 3

APPENDIX A

APPENDIX B

CONTENTS

UnitTesting.. 471
UnitTestingand Qt................... i, 472
The StructureofaTest................ 472
Testing Dates. ... 474
Implementingthe Tests 475
Data-DrivenTesting i, 479
TestingWidgets. 483
TestingaSpinBox. ... 483
Driving Widgetswith Data 487
Testing Signals ... 490
TestingforReal i 491
Thelnterface.o 492
The Tests. 492
Handling Deviations. 497
SUMMANY. ... 497

Appendixes

Third-Party Tools ... 501
Qt Widgets for Technical Applications: Qwt 502
WWWiIdgetS. ... 503
QADEVEIOP. . ..o 504
BAyUK. ... 505
Containers, Types,and Macros 507
CONtaINEYS. ... 507
SEQUENCES ... i 507
Specialized Containers 508
Associative Containers ..., 509

T DB . 509
TypeshySize ... 509
TheVariant Type i 510
Macros and Functions 511
Treating Values. ... 511
RandomValuesc i 511
lterating. ... 512
.. 513

Xiii

Foreword

My very first computer, a ZX81, did not have a graphical user interface. Compared with
today’s offerings, I'd say it hardly had graphics at all. That computer never got me excited
about programming, mostly because the manuals were in English and I didn’t yet know how
to read the language.

Then I met the ABC80, a Swedish computer from Luxor. It had the same Z80 processor,

16 kilobytes of RAM, and no real graphics to talk about. It did have an introduction to BASIC in
Swedish, though, so it got me started with programming.

My next computer experience was an Atari ST. I must admit that in the beginning I used it
mostly for gaming. But as time passed I was thrilled about the possibilities of the Atari for pro-
gramming. I wrote games, utilities, and painting applications. I also ran into something that I
learned to like: an API for handling windows and drawing graphics.

Moving on, I got a PC. Ilearned C and C++, as well as how to do 3D graphics in software
(this was before 3D graphics cards). I was introduced to the Internet and learned lots of new
things from newsgroups and FAQs. I also got my first paid job as a programmer, processing
scientific data using FORTRAN.

At Chalmers University I met Tru64 UNIX and X Windows. The API for doing graphics felt
awkward, so I went looking for something better. That was when I found Qt. Back then, it just
solved my problem of the day: showing a couple of dialogs and drawing some graphics. But
the architecture got me hooked.

Over time, I used Qt more and more. I soon tried to figure out what it was that made Qt so
easy to use. The flexibility of the signals and slots concept that enabled me to connect widgets
and objects to each other was one reason. As was the up-to-date reference documentation—
nothing was left undocumented. And the naming made it easy to find the class and method I
was looking for. The name said it all.

Qt brought me to KDE and Linux. I learned to love GCC, Makefiles, and shell scripting.
The thing that thrilled me about Qt was that no matter what the task was, it fit right into its
architecture. Today, with Qt 4.0, the API covers most of the tasks that you might want to per-
form. Graphics, files, databases, networking, printing—you name it. Qt helps me solve my
problems quickly and easily.

I've recently become more and more involved in the Qt community. It all started
with my original “Independent Qt Tutorial” that introduced Qt 3.0 (you can still find it at
www.thelins.se/qt). I'm also a part of the administration team at QtCentre, which is where
I met the technical reviewer of this book, Witold Wysota. QtCentre (www.qtcentre.org) is
a community-driven forum, a wiki, and a news site—the natural meeting place for Qt
developers. Just over a year ago, Apress posted this question in the jobs section: Is there
anyone who wants to write a book about Qt? That was the starting point of the book that
you are reading right now.

Johan Thelin
M.Sc.E.E.

Xv

About the Author

JOHAN THELIN has worked with software development since 1995 and has
experience ranging from embedded systems to server-side enterprise
software. He started using Qt in 2000 and has loved using it ever since.
Since 2002 Johan has provided the Qt community with tutorials, articles,
and help (most notably, he wrote the “Independent Qt Tutorial”). He
currently works as a consultant focusing on embedded systems, FPGA
design, and software development.

Xvii

About the Technical Reviewer

WITOLD WYSOTA, Institute of Computer Science, Warsaw University of Technology, was born
in Wroclaw, Poland. He has a Master of Science degree in Computer Science from the Warsaw
University of Technology (WUT), where he is currently a PhD candidate. As such, he gives
lectures about Qt and conducts exercises using Qt for programming interactive applications.
Witold has been a Qt user since 2004 and was an active contributor to QtForum.org commu-
nity forum before January 2006—when he established QtCentre.org with Axel Jager, Daniel
Kish, Jacek Piotrowski, and Johan Thelin. It has since become the biggest actively maintained,
community-based Qt-related site and forum.

Witold has been practicing the traditional Seven Star Praying Mantis Kung-Fu style since
1989 and has achieved success in domestic tournaments. He is interested in IT, sports, martial
arts, astrophysics, and history. He lives in Warsaw.

Xix

Acknowledgments

There are so many people I want to thank—everybody involved in the project has been help-
ful, positive, and supportive. It has been a great time working with all of you.

First, many thanks go to Witold Wysota, who has provided me with feedback, technical
input, and kind words. Without his support I could not have completed this project. I would
also like to thank Jason Gilmore from Apress for his excellent feedback and writing tips.
Thanks to him, the text is far more enjoyable to read.

Jasmin Blanchette of Trolltech helped me by producing screenshots from the Mac. The
excellent support team at Trolltech also clarified unclear issues and fixed bugs. Everyone at
Trolltech has been very positive and supportive.

I want to thank all the people at Apress: Matt Wade, who gave me the chance to do this;
Elizabeth Seymour, Grace Wong, and Tracy Brown Collins for managing the project. An extra
thanks to Tracy who pushed me the last mile to get the project done on time.

Without the help of Nancy Sixsmith’s language skills, the text would not have been as easy
to read. Thanks to her attention to detail and excellent writing abilities, the text reads as well
as it does today.

There are so many people involved in this project that I have not worked with so closely.
I'm still very grateful to their efforts and appreciate their skills. Many thanks go to Kelly
Winquist, Dina Quan, Brenda Miller, April Milne, and Paulette McGee.

XXi

PART 1

Getting to Know Qt

In the first few chapters of this book, you will get acquainted with the Qt way of doing
things—including using available classes as well as creating your own classes that inter-
act with the existing ones. You will also learn about the build system and some of the tools
available to help make the lives of Qt developers easier.

CHAPTER 1

The Qt Way of C++

Qt is a cross-platform, graphical, application development toolkit that enables you to com-
pile and run your applications on Windows, Mac OS X, Linux, and different brands of Unix.
Alarge part of Qt is devoted to providing a platform-neutral interface to everything, ranging
from representing characters in memory to creating a multithreaded graphical application.

Note Even though Qt was originally developed to help C++ programmers, bindings are available for a
number of languages. Trolltech provides official bindings for C++, Java, and JavaScript. Third parties provide
bindings for many languages, including Python, Ruby, PHP, and the .NET platform.

This chapter starts by taking an ordinary C++ class and integrating it with Qt to make it
more reusable and easier to use. In the process, you have a look at the build system used to
compile and link Qt applications as well as installing and setting up Qt on your platform.

The chapter then discusses how Qt can enable you to build components that can be inter-
connected in very flexible ways. This is what makes Qt such a powerful tool—it makes it easy
to build components that can be reused, exchanged, and interconnected. Finally, you learn
about the collection and helper classes offered by Qt.

Installing a Qt Development Environment

Before you can start developing Qt applications, you need to download and set up Qt. You will
use the open source edition of Qt because it is freely available for all. If you have a commercial
license for Qt, you have received installations instructions with it.

The installation procedure differs slightly depending on the platform that you are plan-
ning to use for development. Because Mac OS X and Linux are both based on Unix, the
installation process is identical for the two (and all Unix platforms). Windows, on the other
hand, is different and is covered separately. You can start all three platforms by downloading
the edition suitable for your platform from www.trolltech.com/products/qt/downloads.

Installing on Unix Platforms

All platforms except Windows can be said to be Unix platforms. However, Mac OS X differs
from the rest because it does not use the X Window System, more commonly known as X11,

CHAPTER 1 © THE QT WAY OF C++

for handling graphics. So Mac OS X needs a different Qt edition; the necessary file (qt-mac-
opensource-src-version.tar.gz) can be downloaded from Trolltech. The X11-based Unix
platforms use the qt-x11-opensource-src-version.tar.gz file from Trolltech.

Note Qt depends on other components such as compilers, linkers, and development libraries. The
requirements differ depending on how Qt is configured, so you should study the reference documentation
if you run into problems.

When the file has been downloaded, the procedure goes like this: unpack, configure, and
compile. Let’s go through these steps one by one. The easiest way is to work from the com-
mand prompt.

To unpack the file, download it, place it in a directory, and go there in your command
shell. Then type something like this (put x11 or mac in place of edition and use the version
that you have downloaded):

tar xvfz qt-edition-opensource-src-version.tar.gz

This code extracts the file archive to a folder named qt-edition-opensource-src-version.
Use the cd command to enter that directory:

cd qt-edition-opensource-src-version

Before building Qt, you need to configure it using the configure script and its options.
Run the script like this:

./configure options

There are lots of options to choose from. The best place to start is to use -help, which
shows you a list of the available options. Most options can usually be left as the default, but
the -prefix option is good to use. You can direct the installation to go to a specific location by
specifying a path just after the option. For instance, to install Qt in a directory called inst/qt4
in your home directory, use the following configure command:

./configure -prefix ~/inst/qt4

The Mac OS X platform has two other options that are important to note. First, adding the
-universal option creates universal binaries using Qt. If you plan to use a PowerPC-based
computer for your development, you have to add the -sdk option.

The configure script also makes you accept the open source license (unless you have a
commercial license) before checking that all the dependencies are in place and starting to cre-
ate configuration files in the source tree. When the script is done, you can build Qt using the
following command:

make

This process will take a relatively long time to complete, but after it finishes you can
install Qt by using the next line:

make install

CHAPTER 1 © THE QT WAY OF C++

Note The installation command might need root access if you try to install Qt outside your home
directory.

When Qt has been installed, you need to add Qt to your PATH environment variable. If you
are using a compiler that does not support rpath, you have to update the LD_LIBRARY_PATH
environment variable as well.

If you used the $HOME/inst/qt4 prefix when running configure, you need to add the
path $HOME/inst/qt4/bin to PATH. If you are using a bash shell, change the variable using an
assignment:

export PATH=$HOME/inst/qt4/bin:$PATH

If you want this command to run every time you start a command shell, you can add it to
your .profile file just before a line that reads export PATH. This exports the new PATH environ-
ment variable to the command-line session.

Note The methods for setting up environment variables differ from shell to shell. If you are not using
bash, please refer to the reference documentation on how to set the PATH variable for your system.

If you have several Qt versions installed at once, make sure that the version that you
intend to use appears first in the PATH environment variable because the gmake binary used
knows where Qt has been installed.

If you have to change the LD_LIBRARY PATH environment variable, add the
$HOME/inst/qt4/1ib directory to the variable. On Mac OS X and Linux (which use the Gnu
Compiler Collection [GCC]), this step is not needed.

Installing on Windows

If you plan to use the Windows platform for your Qt development, download a file called qt-
win-opensource-version-mingw.exe from Trolltech. This file is an installer that will set up Qt
and a mingw environment.

Note mingw, which is short for Minimalist GNU for Windows, is a distribution of common GNU tools for
Windows. These tools, including GCC and make, are used by the open source edition of Qt for compiling and
linking.

The installer works as a guide, asking you where to install Qt. Make sure to pick a direc-
tory path free from spaces because that can cause you problems later. After you install Qt, you
see a Start menu folder called Qt by Trolltech (OpenSource). This folder contains entries for
the Qt tools and documentation as well as a Qt command prompt. It is important that you

CHAPTER 1 © THE QT WAY OF C++

access Qt from this command prompt because it sets up the environment variables such as
PATH correctly. Simply running the command prompt found in the Accessories folder on the
Start menu will fail because the variables are not properly configured.

Making C++ “Qt-er”

Because this is a book on programming, you will start with some code right away (see
Listing 1-1).

Listing 1-1. A simple C++ class

#include <string>
using std::string;
class MyClass
{
public:
MyClass(const stringd text);

const stringd& text() const;
void setText(const stringd text);

int getlengthOfText() const;

private:
string m_text;

};

The class shown in Listing 1-1 is a simple string container with a method for getting the
length of the current text. The implementation is trivial, m_text is simply set or returned, or
the size of m_text is returned. Let’s make this class more powerful by using Qt. But first, take a
look at the parts that already are “Qt-ish”:

¢ The class name starts with an uppercase letter and the words are divided using Camel-
Casing. That is, each new word starts with an uppercase letter. This is the common way
to name Qt classes.

¢ The names of the methods all start with a lowercase letter, and the words are again
divided by using CamelCasing. This is the common way to name Qt methods.

* The getter and setter methods of the property text are named text (getter) and setText
(setter). This is the common way to name getters and setters.

They are all traits of Qt. It might not seem like a big thing, but having things named in a
structured manner is a great timesaver when you are actually writing code.

CHAPTER 1 © THE QT WAY OF C++

Inheriting Qt

The first Qt-specific adjustment you will make to the code is really simple: you will simply let
your class inherit the Q0bject class, which will make it easier to manage instances of the class
dynamically by giving instances parents that are responsible for their deletion.

Note All Qt classes are prefixed by a capital Q. So if you find the classes QDialog and Dialog, you can
tell right away that QDialog is the Qt class, whereas Dialog is a part of your application or third-party
code. Some third-party libraries use the QnnClassName naming convention, which means that the class
belongs to a library extending Qt. The nn from the prefix tells you which library the class belongs to. For
example, the class QwtDial belongs to the Qt Widgets for Technical Applications library that provides
classes for graphs, dials, and so on. (You can find out more about this and other third-party extensions to
Qt in the appendixes.)

The changes to the code are minimal. First, the definition of the class is altered slightly, as
shown in Listing 1-2. The parent argument is also added to the constructor as a convenience
because Q0bject has a function, setParent, which can be used to assign an object instance to
a parent after creation. However, it is common—and recommended—to pass the parent as
an argument to the constructor as the first default argument to avoid having to type setParent
for each instance created from the class.

Listing 1-2. Inheriting Q0bject and accepting a parent

#include <QObject>
#include <string>
using std::string;

class MyClass : public QObject

{
public:
MyClass(const string& text, QObject *parent = 0);

};

Note To access the Q0bject class, the header file <Q0bject> has to be included. This works for most
Qt classes; simply include a header file with the same name as the class, omitting the . h, and everything
should work fine.

CHAPTER 1 © THE QT WAY OF C++

The parent argument is simply passed on to the Q0bject constructor like this:
MyClass::MyClass(const string® text, QObject *parent) : QObject(parent)

Let’s look at the effects of the change, starting with Listing 1-3. It shows a main function
using the MyClass class dynamically without Qt.

Listing 1-3. Dynamic memory without Qt

#include <iostream>
int main(int argc, char **argv)
{

MyClass *a, *b, *c;

a = new MyClass("foo");
b = new MyClass("ba-a-ar");
new MyClass("baz");

std::cout << a->text() << " (" << a->getlengthOfText() << ")" << std::endl;
a->setText(b->text());
std::cout << a->text() << " (" << a->getlengthOfText() << ")" << std::endl;

int result = a->getlengthOfText() - c->getlengthOfText();

delete a;
delete b;
delete c;

return result;

Each new call must be followed by a call to delete to avoid a memory leak. Although it is
not a big issue when exiting from the main function (because most modern operating systems
free the memory when the application exits), the destructors are not called as expected. In
locations other than loop-less main functions, a leak eventually leads to a system crash when
the system runs out of free memory. Compare it with Listing 1-4, which uses a parent that is
automatically deleted when the main function exits. The parent is responsible for calling
delete for all children and—ta-dal—the memory is freed.

Note In the code shown in Listing 1-4, the parent object is added to show the concept. In real life, it
would be an object performing some sort of task—for example, a QApplication object, or (in the case of
a dialog box or a window) the this pointer of the window class.

CHAPTER 1 © THE QT WAY OF C++

Listing 1-4. Dynamic memory with Qt

#include <QtDebug>
int main(int argc, char **argv)
{

Q0bject parent;

MyClass *a, *b, *c;

a = new MyClass("foo", 8parent);
new MyClass("ba-a-ar", &parent);
c = new MyClass("baz", 8parent);

qDebug() << QString::fromStdString(a->text())
<« " (" << a->getlengthOfText() << ")";

a->setText(b->text());

gDebug() << QString::fromStdString(a->text())
<« " (" << a->getlengthOfText() << ")";

return a->getlengthOfText() - c->getlengthOfText();
}

You even saved the extra step of having to keep the calculated result in a variable because
the dynamically created objects can be used directly from the return statement. It might look
odd to have a parent object like this, but most Qt applications use a QApplication object to act
as a parent.

Note Listing 1-4 switched from using std: : cout for printing debugging messages to qDebug (). The
nice thing about using gDebug () is that it sends the message to the right place on all platforms. It is also
easy to turn off: simply define the QT_NO_DEBUG_OUTPUT symbol when compiling. If you have debugging
messages after which you want to terminate the application, Qt provides the qFatal() function, which
works just like qDebug (), but terminates the application after the message. The compromise between the
two is to use qWarning(), which indicates something more serious than a debug message, but nothing
fatal. The Qt functions for debugging messages automatically appends a line break after each call, so you
do not have to include the std: :end1 any more.

When comparing the code complexity in Listing 1-3 and Listing 1-4, look at the different
memory situations, as shown in Figure 1-1. The parent is gray because it is allocated on the
stack and thus automatically deleted, whereas the instances of MyClass are white because they
are on the heap and must be handled manually. Because you use the parent to keep track of
the children, you trust the parent to delete them when it is being deleted. So you no longer
have to keep track of the dynamically allocated memory as long as the root object is on the
stack (or if you keep track of it).

10 CHAPTER 1 © THE QT WAY OF C++

Without a parent With a parent on the stack
a b [4 parent
On the stack
a b c
D On the heap

Figure 1-1. Difference between dynamic memory with a parent and without a parent on the stack

Using a Qt String
Another step toward using Qt is to replace any classes from the C++ standard template library
(STL) with the corresponding Qt class. Although it is not required (Qt works great alongside
the STL), it does make it possible to avoid having to rely on a second framework. The benefit
of not using the STL is that you use the same containers, strings, and helpers as Qt does, so the
resulting application will most likely be smaller. You also avoid having to track down compati-
bility issues and strange deviations from the STL standard when moving between platforms
and compilers—you can even develop on platforms that do not have implementations of
the STL.

Looking at the class as it currently stands, spot the string class as the only STL class used.
The corresponding Qt class is called QString. You can mix QString objects and string objects
seamlessly, but using only QString means performance gains and more features. For example,
QString supports Unicode on all platforms, making it a lot easier for international users to use
your application.

Listing 1-5 shows how your code looks after replacing all occurrences of string with
QString. As you can see, the changes to the class are minimal.

Listing 1-5. MyClass using QString instead of string

#include <QString>
#include <QObject>

class MyClass : public QObject

{
public:
MyClass(const QStringd& text, QObject *parent = 0);

const QStringd text() const;
void setText(const QString& text);

int getLengthOfText() const;

CHAPTER 1 © THE QT WAY OF C++

private:
QString m_text;
};

Tip When mixing string and QString, use the QString methods toStdString and fromStdString
to convert to and from the Qt Unicode format to the ASCII representation used by the string class.

Building a Qt Program

Compiling and building this application should not be any different from building the original
application. All that you have to do is make sure that the compiler can find the Qt headers and
that the linker can find the Qt library files.

To handle all this smoothly and in a cross-platform manner, Qt comes with the QMake
tool, which can create Makefiles for a range of different compilers. It even creates the project
definition file for you if you want it to.

Try this by building a simple application. Start by creating a directory called testing. Then
put the code from Listing 1-6 inside this directory. You can call the file anything as long as it
has the cpp extension.

Listing 1-6. A trivial example

#include <QtDebug>

int main()

{
qDebug() << "Hello Qt World!";

return O;

Now open a command line and change your working directory to the one that you just
created. Then type qmake -project and press Enter, which should generate a file named test-
ing.pro. My version of that file is shown in Listing 1-7.

Tip If you are running the open-source version of Qt in Windows, you have an application called some-
thing like Qt 4.2.2 Command Prompt in the Start menu folder that was created when you installed Qt. Run
this application and use the cd command to change the directory. For example, first locate your folder using
Explorer; then copy the entire path (it should be similar to c: \foo\bar\baz\testing). Now type cd, fol-
lowed by a space at the command prompt before you right-click, select Paste, and then press Enter. That
should get you to the right working directory in a snap.

1

12

CHAPTER 1 © THE QT WAY OF C++

Listing 1-7. A generated project file

HHHEHHH
Automatically generated by gmake (2.00a) to 10. aug 17:06:34 2006
JHEHEEHH RSB HUHEHHH RSB

TEMPLATE = app
TARGET +=

DEPENDPATH += .
INCLUDEPATH += .

Input
SOURCES += anything.cpp

The file consists of a set of variables that are set by using = or extended by using +=. The
interesting part is the SOURCES variable, which tells you that QMake has found the anything.
cpp file. The next step is to generate a platform-specific Makefile using QMake. Because the
working directory contains only one project file, simply type qmake and press Enter. This
should give you a Makefile and platform-specific helper files.

Note On GNU/Linux, the result is a single file called Makefile. On Windows, if you use the open-source
edition and mingw you get Makefile, Makefile.Release, Makefile.Debug, and two directories: debug
and release.

The last step is to build the project from the generated Makefile. How to do this depends
on which platform and compiler you are using. You should usually type make and press
Enter, but gmake (common on Berkeley Software Distribution [BSD] systems) and nmake (on
Microsoft compilers) are other common alternatives. Try looking in your compiler manual if
you cannot get it to work at the first try.

Tip When running Windows, applications do not get a console output by default. This means that Win-
dows applications cannot, by default, write output to the command-line users. To see any output from
gDebug (), you must add a line reading CONFIG += console to the project file. If you built the executable
and then saw this tip, try fixing the project file; then run make clean followed by make. This process
ensures that the project is completely rebuilt and that the new configuration is taken into account.

The only thing left to do now is to run the application and watch this message: Hello Qt
World!. The executable will have the same name as the directory that you used. For Windows
users, the executable ends up in the release directory with the exe file name extension, so you
start it by running the following command:

release\testing.exe

CHAPTER 1 © THE QT WAY OF C++

On other platforms it is usually located directly in the working directory, so you start it by
typing the following:

./testing

On all platforms the result is the same: the Hello Qt World! message is printed to the
console. The resulting command prompt on the Windows platform is shown in Figure 1-2.

& Qt 4.2.3 Command Prompt -|=f x|

Figure 1-2. A Qt application running from the command prompt

Signals, Slots, and Meta-Objects

Two of the biggest strengths that Qt brings to C++ are signals and slots, which are very flexible
ways to interconnect objects and help to make code easy to design and reuse.

A signal is a method that is emitted rather than executed when called. So from your view-
point as a programmer, you declare prototypes of signals that might be emitted. Do not
implement signals; just declare them in the class declaration in the signals section of your
class.

A slotis a member function that can be invoked as a result of signal emission. You have to
tell the compiler which methods to treat as slots by putting them in one of these sections:
public slots, protected slots, orprivate slots. The protection level protects the slot only
when it is being used as a method. You can still connect a private slot or a protected slot to a
signal that you receive from another class.

When it comes to connecting signals and slots, you can connect any number of signals to
any number of slots. This means that a single slot can be connected to many signals, and a
single signal can be connected to many slots. There are no limitations to how you intercon-
nect your objects. When a signal is emitted, all slots connected to it are called. The order of the
calls is undefined, but they do get called. Let’s look at some code that shows a class declaring
both a signal and a slot (see Listing 1-8).

13

14

CHAPTER 1 © THE QT WAY OF C++

Listing 1-8. A class with a signal and a slot

#include <QString>
#include <QObject>
class MyClass : public QObject

{
Q_OBJECT

public:
MyClass(const QString &text, QObject *parent = 0);

const QStringd text() const;
int getLengthOfText() const;

public slots:
void setText(const QString &text);

signals:
void textChanged(const QString&);

private:
QString m_text;
1

The code is a new incarnation of the class MyClass you have been working with through-
out the chapter. There are changes related to the signals and slots in the three emphasized
areas of the listing. Start from the bottom with the new section labeled signals:. This tells you
that the functions declared in this section will not be implemented by you; they are simply
prototypes for the signals that this class can emit. This class has one signal: textChanged.

Moving upward, there is another new section: public slots:. Slots can be public, pro-
tected, or private like any other member—just add the appropriate protection level before the
slots keyword. Slots can be considered a member function that can be connected to a signal.
There is really no other difference; it is declared and implemented just like any other member
function of the class.

Tip Setter methods are natural slots. By making all setters slots, you guarantee that you can connect sig-
nals to all interesting parts of your class. The only time when a setter should not also be a slot is when the
setter accepts some very custom type that you are sure will never come from a signal.

At the very top of the class declaration you find the Q_OBJECT macro. It is important that
this macro appears first in the body of the class declaration because it marks the class as a
class that needs a meta-object. Let’s look at what meta-objects are before continuing.

The word meta indicates that the word prefixed is about itself. So a meta-object is an
object describing the object. In the case of Qt, meta-objects are instances of the class

CHAPTER 1 © THE QT WAY OF C++

OMetaObject and contain information about the class such as its name, its super classes, its
signals, its slots, and many other interesting things. The important thing to know now is that
the meta-object knows about the signals and slots.

This leads into the next implication of this feature. Until now, all the examples have fitted
nicely into a single file of source code. It is possible to go on like this, but the process is
much smoother if you separate each class into a header and a source file. A Qt tool called
the meta-object compiler, moc, parses the class declaration and produces a C++ implementa-
tion file from it. This might sound complex, but as long as you use QMake to handle the
project, there is no difference to you.

This new approach means that the code from Listing 1-8 goes into a file called myclass.h.
The implementation goes into myclass. cpp, and the moc generates another C++ file from the
header file called moc_myclass.cpp. The contents from the generated file can change between
Qt versions and is nothing to worry about. Listing 1-9 contains the part of the implementation
that has changed because of signals and slots.

Listing 1-9. Implementing MyClass with signals and slots

void MyClass::setText(const QString &text)
{
if(m_text == text)
return;

m_text = text;
emit textChanged(m text);
¥

The changes made to emit the signal textChanged can be divided into two parts. The first
half is to check that the text actually has changed. If you do not check this before you connect
the textChanged signal to the setText slot of the same object, you will end up with an infinite
loop (or as the user would put it, the application will hang). The second half of the change is
to actually emit the signal, which is done using the Qt keyword emit followed by the signal’s
name and arguments.

SIGNALS AND SLOTS UNDER THE HOOD

Signals and slots are implemented by Qt using function pointers. When calling emit with the signal as argu-
ment, you actually call the signal. The signal is a function implemented in the source file generated by the
moc. This function calls any slots connected to the signal using the meta-objects of the objects holding the
connected slots.

The meta-objects contain function pointers to the slots, along with their names and argument types.
They also contain a list of the available signals and their names and argument types. When calling connect,
you ask the meta-object to add the slot to the signal’s calling list. If the arguments match, the connection is
made.

When matching arguments, the match is checked only for the arguments accepted by the slot. This
means that a slot that does not take any arguments matches all signals. The arguments not accepted by the
slot are simply dropped by the signal-emitting code.

15

16 CHAPTER 1 © THE QT WAY OF C++

Making the Connection

To try out the signals and slots in MyClass, the a, b, and c instances are created:

Q0bject parent;
MyClass *a, *b, *c;

a = new MyClass("foo", 8parent);
b = new MyClass("bar", 8parent);
c = new MyClass("baz", 8parent);

Now connect them. To connect signals and slots, the Q0bject: :connect method is
used. The arguments are source object, SIGNAL(source signal), destination object,
SLOT(destination slot).The macros SIGNAL and SLOT are required; otherwise, Qt refuses to
establish the connection. The source and destination objects are pointers to QObjects or
objects of classes inheriting Q0bject. The source signal and destination slot are the name and
argument types of the signal and slot involved. The following shows how it looks in the code.
Figure 1-3 shows how the object instances are connected.

Q0bject: :connect(
a, SIGNAL(textChanged(const QStringd)),
b, SLOT(setText(const QStringd)));
Q0bject: :connect(
b, SIGNAL(textChanged(const QStringd)),
c, SLOT(setText(const QStringd)));
Q0bject: :connect(
c, SIGNAL(textChanged(const QStringd)),
b, SLOT(setText(const QString8)));

Caution Trying to specify signal or slot argument values when connecting will cause your code to fail at
run-time. The connect function understands only the argument types.

textChanged

QString
textChanged setText textChanged setText J
QString 4 QString b QString ~ QString ¢

Figure 1-3. The connections between a, b, and c

The following line shows a call to one of the objects:
b->setText("test");

Try tracing the call from b, where there is a change from "bar" to "test"; through the con-
nection to c, where there is a change from "baz" to "test"; and through the connection to b,

