Pro Perl Parsing

Christopher M. Frenz

Apress-

Pro Perl Parsing
Copyright © 2005 by Christopher M. Frenz

Lead Editors: Jason Gilmore and Matthew Moodie

Technical Reviewer: Teodor Zlatanov

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,
Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Associate Publisher: Grace Wong

Project Manager: Beth Christmas

Copy Edit Manager: Nicole LeClerc

Copy Editor: Kim Wimpsett

Assistant Production Director: Kari Brooks-Copony

Production Editor: Laura Cheu

Compositor: Linda Weidemann, Wolf Creek Press

Proofreader: Nancy Sixsmith

Indexer: Tim Tate

Artist: Wordstop Technologies Pvt. Ltd., Chennai

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Library of Congress Cataloging-in-Publication Data

Frenz, Christopher.

Pro Perl parsing / Christopher M. Frenz.

p.- cm.

Includes index.

ISBN 1-59059-504-1 (hardcover : alk. paper)

1. Perl (Computer program language) 2. Natural language processing (Computer science) 1. Title.
QA76.73.P22F72 2005
005.13'3--dc22

2005017530

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed and bound in the United States of America 9 8 76 54 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Downloads section.

For Jonathan!
You are the greatest son
any father could ask for.

Contents at a Glance

Aboutthe AUthOr ... o Xiii
About the Technical ReVIEWEr i XV
ACKNOWIBAgMENTS Xvii
INtrodUCHIONo Xix
CHAPTER 1 Parsing and Regular Expression Basics 1
CHAPTER 2 Grammars........ ...ttt 37
CHAPTER 3 ParsingBasics ..., 63
CHAPTER 4 UsingParse:Yapp ..., 85
CHAPTER 5 Performing Recursive-Descent Parsing with
Parse::RecDescent 109
CHAPTER 6 Accessing Web Data with HTML::TreeBuilder 137
CHAPTER 7 Parsing XML Documents with
XML::LibXML and XML:SAX ... 161
CHAPTER 8 Introducing Miscellaneous Parsing Modules................... 185
CHAPTER 9 Finding Solutions to Miscellaneous Parsing Problems. 201
CHAPTER 10 Performing Text and Data Mining.............................. 217

Contents

Aboutthe AUthOr ... o Xiii
About the Technical ReVIEWEr i XV
ACKNOWIBAGMENES xvii
INtrodUCHIONo Xix
CHAPTER 1 Parsing and Regular Expression Basics.................... 1
Parsingand Lexing ... 2

ParseleX 4

Using Regular EXpressions ...t 6

AState Machine........... 7

Pattern Matching 12

Quantifiers. ... 14

Predefined Subpatternsl 15

Posix Character Classes ...t 16

Modifiers. ... 17

ASSEriONS 20

Capturing Substrings.co i 24

Substitution. 26

Troubleshooting Regexes. ... 26

GraphViz:i:RegeX. ... 27

Using Regexp::Common. ... 28
Regexp::Common::Balanced 29
Regexp::Common::Comments. ..., 30
Regexp::Common::Delimited 30

Regexp::Common::List ... 30

Regexp::Common::Net i 31
Regexp::Common:Number ... 31

Universal Flags. 32

Standard Usage ... 32

Subroutine-Based Usage ..., 33

In-Line Matching and Substitution 34

Creating Your Own EXpressionscovvvvinnn... 35

SUMMANY ... 36

vii

viii

CONTENTS

CHAPTER 2

CHAPTER 3

CHAPTER 4

Grammars 37
Introducing Generative Grammars................................. 38
Grammar ReCIPeSoo o 39
Sentence Constructionl 41
Introducing the Chomsky Method. 42
Type 1 Grammars (Context-Sensitive Grammars) 44
Type 2 Grammars (Context-Free Grammars) 48
Type 3 Grammars (Regular Grammars) 54
Using Perl to Generate Sentences 55
Perl-Based Sentence Generation 56
Avoiding Common Grammar Errors ...t 59
Generation vs. Parsingco i 60
SUMMANY ... 61
ParsingBasics 63
Exploring Common Parser Characteristics 64
Introducing Bottom-Up Parsers.................. 65
Coding a Bottom-Up ParserinPerl............................ 68
Introducing Top-Down Parsers il 73
Coding a Top-Down ParserinPerl 74
Using Parser Applications i 78
ProgrammingaMath Parser 80
SUMMANY ... 83
Using ParsexYapp... 85
Creating the GrammarFile 85
The Header Section.................. ...t 86
The Rule Section i 87
The Footer Section............... 88
USING VaPD ..o 94
The-vFlag ... 99
The-mFlag ... 103
The-sFlag 103
Using the Generated ParserModule 104
Evaluating Dynamic Content................. ...t 105

SUMMANY ... 108

CHAPTER 5

CONTENTS
Performing Recursive-Descent Parsing with
Parse::RecDescent... 109
Examining the Module’s Basic Functionality 109
ConstructingRules ... 111
SUbrUuIES . ..o 112
Introducing Actions 115
@itemand %item 116
@argand %argii 117
Sreturn. ... 118
text. 120
$thisline and $prevline, 120
$thiscolumn and $prevcolumn 121
$thisoffset and $prevoffset, 121
Sthisparser ... 121
$thisrule and $thisprod. 122
BSCOre ... 122
Introducing Startup Actions 122
Introducing Autoactions 124
Introducing Autotrees ... 125
Introducing Autostubbing. 127
Introducing Directives. 128
<commit> and <uncommit>l 129
<PBJBCE> .. 130
<SKIP> . 131
PBSYNC >, . et te ettt et e e 132
D11 (0] = 132
<defer>.... 132
PO > 133
<score> and <autoscore> ...t 134
Precompilingthe Parser................. 135

SUMMANY ... 135

ix

X

CONTENTS

CHAPTER 6

CHAPTER 7

CHAPTER 8

Accessing Web Data with HTML::TreeBuilder............ 137
Introducing HTML Basics. ... 137
Specifying Titles. 138
SpecifyingHeadings 139
Specifying Paragraphs 140
Specifying Lists 141
Embedding Links 142
Understanding the Nested Nature of HTML. 143
Accessing Web Contentwith LWP 145
Using LWP::Simple 146
USiNngLWPo 146
Using HTML::TreeBuilder i L. 150
Controlling TreeBuilder Parser Attributes...................... 152
Searching Through the Parse Tree 154
Understanding the Fair Use of Information Extraction Scripts......... 158
SUMMANY ... 159

Parsing XML Documents with

XML::LibXML and XML::SAX 161
Understanding the Nature and Structure of XML Documents 163
The DocumentProlog ..., 164
Elements and the DocumentBody 166
Introducing Web Servicesco i 172
XML-RPC ... o 173
RPCXML ..o 173
Simple Object Access Protocol (SOAP)........................ 174
SOAP:LIte 175
Parsing with XML::LIbXML 177
Using DOMtoParse XML ...t 177
Parsing with XML::SAX::ParserFactory 179
SUMMANY ... 182
Introducing Miscellaneous Parsing Modules 185
UsingText:Balancedc it 185
Using extract_delimited 186
Using extract_bracketed 188

Using extract_codeblock, 189

CHAPTER 9

CHAPTER 10

CONTENTS
Using extract_quotelike L. 190
Using extract_variable 191
Using extract_multiple ... 192

Using Date:Parseco o 193

Using XML::RSS::Parser. ... 194

Using Math::Expression ... 197

SUMMANY ... 199

Finding Solutions to Miscellaneous

Parsing Problems ... 201

Parsing Command-Line Arguments............................... 201

Parsing Configuration Files 204

Refining Searches............. 205

Formatting Output......... ... 212

SUMMANY ... 214

Performing Text and Data Mining......................... 217

Introducing Data Mining Basics 218

Introducing Descriptive Modeling........................... ..., 219
Clustering ...t 219
Summarization. ... 220
AssociationRules 221
Sequence DiSCOVErYt 224

Introducing Predictive Modeling.................................. 224
Classification 225
Regression ...t 225
Time SerieSAnalysiSt 228
Prediction 229

SUMMANY ... 241

Xi

About the Author

CHRISTOPHER M. FRENZ is currently a bioinformaticist at New York Medical College. His
research interests include applying artificial neural networks to protein engineering as
well using molecular modeling techniques to determine the role that protein structures
have on protein function. Frenz uses the Perl programming language to conduct much
of his research. Additionally, he is the author of Visual Basic and Visual Basic .NET for
Scientists and Engineers (Apress, 2002) as well as numerous scientific and computer arti-
cles. Frenz has more than ten years of programming experience and, in addition to Perl
and VB, is also proficient in the Fortran and C++ languages. Frenz can be contacted at
cfrenz@gmail.com.

xiii

About the Technical Reviewer

TEODOR ZLATANOV earned his master’s degree in computer engineering from Boston
University in 1999 and has been happily hacking ever since. He always wonders how it
is possible to get paid for something as fun as programming, but tries not to make too
much noise about it.
Zlatanov lives with his wife, 15-month-old daughter, and two dogs, Thor and Maple,
in lovely Braintree, Massachusetts. He wants to thank his family for their support and for
the inspiration they always provide.

Xv

Acknowledgments

Bringing this book from a set of ideas to the finished product that you see before you
today would not have been possible without the help of others. Jason Gilmore was a
great source of ideas for refining the content of the early chapters in this book, and
Matthew Moodie provided equally insightful commentary for the later chapters and
assisted in ensuring that the final page layouts of the book looked just right. I am also
appreciative of Teodor Zlatanov’s work as a technical reviewer, since he went beyond
the role of simply finding technical inaccuracies and made many valuable suggestions
that helped improve the clarity of the points made in the book. Beth Christmas also
played a key role as the project manager for the entire process; without her friendly
prompting, this book would probably still be in draft form. I would also like to express
my appreciation of the work done by Kim Wimpsett and Laura Cheu, who did an excel-
lent job preparing the manuscript and the page layouts, respectively, for publication.
Last, but not least, I would like to thank my family for their support on this project,
especially my wife, Thao, and son, Jonathan.

Xvii

Introduction

Over the course of the past decade, we have all been witnesses to an explosion of infor-
mation, in terms of both the amounts of knowledge that exists within the world and the
availability of such information, with the proliferation of the World Wide Web being a
prime example. Although these advancements of knowledge have undoubtedly been
beneficial, they have also created new challenges in information retrieval, in information
processing, and in the extraction of relevant information. This is in part due to a diversity
of file formats as well as the proliferation of loosely structured formats, such as HTML.
The solution to such information retrieval and extraction problems has been to develop
specialized parsers to conduct these tasks. This book will address these tasks, starting
with the most basic principles of data parsing.

The book will begin with an introduction to parsing basics using Perl’s regular expres-
sion engine. Once these regex basic are mastered, the book will introduce the concept of
generative grammars and the Chomsky hierarchy of grammars. Such grammars form the
base set of rules that parsers will use to try to successfully parse content of interest, such as
text or XML files. Once grammars are covered, the book proceeds to explain the two basic
types of parsers—those that use a top-down approach and those that use a bottom-up
approach to parsing. Coverage of these parser types is designed to facilitate the under-
standing of more powerful parsing modules such as Yapp (bottom-up) and RecDescent
(top-down).

Once these powerful and flexible generalized parsing modules are covered, the book
begins to delve into more specialized parsing modules such as parsing modules designed
to work with HTML. Within Chapter 6, the book also provides an overview of the LWP mod-
ules, which facilitate access to documents posted on the Web. The parsing examples within
this chapter will use the LIWP modules to parse data that is directly accessed from the Web.
Next the book examines the parsing of XML data, which is a markup language that is
increasingly growing in popularity. The XML coverage also discusses SOAP and XML-RPC,
which are two of the most popular methods for accessing remote XML-formatted data. The
book then covers several smaller parsing modules, such as an RSS parser and a date/time
parser, as well as some useful parsing tasks, such as the parsing of configuration files. Lastly,
the book introduces data mining. Data mining provides a means for individuals to work
with extracted data (as well as other types of data) so that the data can be used to learn
more about a given area or to make predictions about future directions that area of interest
may take. This content aims to demonstrate that although parsing is often a critical data
extraction and retrieval task, it may just be a component of a larger data mining system.

Xix

XX

INTRODUCTION

This book examines all these problems from the perspective of the Perl programming
language, which, since its inception in 1987, has always been heralded for its parsing and
text processing capabilities. The book takes a practical approach to parsing and is rich in
examples that are relevant to real-world parsing tasks. While covering all the basics of parser
design to instill understanding in readers, the book highlights numerous CPAN modules
that will allow programmers to produce working parser code in an efficient manner.

CHAPTER 1

Parsing and Regular
Expression Basics

The dawn of a new age is upon us, an information age, in which an ever-increasing and
seemingly endless stream of new information is continuously generated. Information
discovery and knowledge advancements occur at such rates that an ever-growing num-
ber of specialties is appearing, and in many fields it is impossible even for experts to
master everything there is to know. Anyone who has ever typed a query into an Internet
search engine has been a firsthand witness to this information explosion. Even the most
mundane terms will likely return hundreds, if not thousands, of hits. The sciences, espe-
cially in the areas of genomics and proteomics, are generating seemingly
insurmountable mounds of data.

Yet, one must also consider that this generated data, while not easily accessible to all,
is often put to use, resulting in the creation of new ideas to generate even more knowl-
edge or in the creation of more efficient means of data generation. Although the old adage
“knowledge is power” holds true, and almost no one will deny that the knowledge gained
has been beneficial, the sheer volume of information has created quite a quandary. Find-
ing information that is exactly relevant to your specific needs is often not a simple task.
Take a minute to think about how many searches you performed in which all the hits
returned were both useful and easily accessible (for example, were among the top matches,
were valid links, and so on). More than likely, your search attempts did not run this
smoothly, and you needed to either modify your query or buckle down and begin to dig
for the resources of interest.

Thus, one of the pressing questions of our time has been how do we deal with all of
this data so we can efficiently find the information that is currently of interest to us? The
most obvious answer to this question has been to use the power of computers to store
these giant catalogs of information (for example, databases) and to facilitate searches
through this data. This line of reasoning has led to the birth of various fields of informatics
(for example, bioinformatics, health informatics, business informatics, and so on). These
fields are geared around the purpose of developing powerful methods for storing and
retrieving data as well as analyzing it.

CHAPTER 1 © PARSING AND REGULAR EXPRESSION BASICS

In this book, I will explain one of the most fundamental techniques required to per-
form this type of data extraction and analysis, the technique of parsing. To do this, I will
show how to utilize the Perl programming language, which has a rich history as a power-
ful text processing language. Furthermore, Perl is already widely used in many fields of
informatics, and many robust parsing tools are readily available for Perl programmers in
the form of CPAN modules. In addition to examining the actual parsing methods them-
selves, I will also cover many of these modules.

Parsing and Lexing

Before I begin covering how you can use Perl to accomplish your parsing tasks, it is essen-
tial to have a clear understanding of exactly what parsing is and how you can utilize it.
Therefore, I will define parsing as the action of splitting up a data set into smaller, more
meaningful units and uncovering some form of meaningful structure from the sequence
of these units. To understand this point, consider the structure of a tab-delimited data file.
In this type of file, data is stored in columns, and a tab separates consecutive columns (see
Figure 1-1).

| ¥ TabbetimFibe-tx1 - Opewiffice. org 1.1.0
Bl fot Yew poet Foms Joos Wedow few

=]

o — BTN T e @
[preoommeitos =] [comwtee =[] B i U [Mmmmiz=e X7E
[] Y F 2 K 2 N 22 a ad " AL s & =l
: 0.0000 0.0000 2.2738 -5.5963 -2.0779 -2.4921 |
o 9.8971 -0.5409 0.0000 0.0000 8.1846 -3.6679
L 9.8863 -0.3689 2.2738 -5.0043 3.3303 -5.0083
f 9.3757 -0.1513 2.2738 -4.4974 7.5140 -4.0320
- 0.0000 0.0000 2.2738 -4.0614 0.0000 0.0000
=l 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
E 0.0000 0.0000 0.0000 0.0000 10.7279 -2.8476
= 10.8173 -0.1001 -5.0137 -3.3834 9.0320 -3.3892
= 0.0000 0.0000 -5.0037 -3.5149 0.0000 0.0000
- 11.3026 -0.0459 -4.7766 -3.5961 10.2337 -2.8376
0.0000 0.0000 -6.0990 -3.0316 9.0320 -3.2257
0.0000 0.0000 0.0000 0.0000 10.7279 -2.7388
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
11.4319 -0.0081 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 7.5140 -3.5643
0.0000 0.0000 -6.0990 -2.9962 6.0155 -4.1937
0.0000 0.0000 -4.7766 -3.5225 8.2709 -2.9627
11.3026 -0.0084 -5.0037 -3.4406 8.1213 -3.0431
-0.2481 -0.9916 -5.0137 -3.2829 0.0000 0.0000
-0.3114 -0.8926 0.0000 0.0000 2.7020 -3.6072
0.0000 0.0000 0.0000 0.0000 2.7020 -3.2440
-2.0537 -1.0654 0.0000 0.0000 -3.5557 -3.3699
-2.0429 -0.9427 0.0000 0.0000 0.0000 0.0000
-1.5323 -0.6968 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 -4.7766 -3.1602
0.0000 0.0000 3.2810 -7.0223 -6.0990 -2.7036 =
0.0000 0.0000 9.6426 -3.8963 0.0000 0.0000 E
Ly 2 ELSTN AT A | (at [t Ra W A aatheR Noonnnn [al l"\f'\l"\f\ ﬂ
Fage 1/ Cutas TR |NSAT STD MR

Figure 1-1. A tab-delimited file

CHAPTER 1 = PARSING AND REGULAR EXPRESSION BASICS

Reviewing this file, your eyes most likely focus on the numbers in each column and
ignore the whitespace found between the columns. In other words, your eyes perform a
parsing task by allowing you to visualize distinct columns of data. Rather than just taking
the whole data set as a unit, you are able to break up the data set into columns of num-
bers that are much more meaningful than a giant string of numbers and tabs. While this
example is simplistic, we carry out parsing actions such as this every day. Whenever we
see, read, or hear anything, our brains must parse the input in order to make some kind
of logical sense out of it. This is why parsing is such a crucial technique for a computer
programmer—there will often be a need to parse data sets and other forms of input so
that applications can work with the information presented to them.

The following are common types of parsed data:

* Data TypeText files

e CSVfiles

e HTML

* XML

* RSS files

e Command-line arguments

e E-mail/Web page headers

e HTTP headers

* POP3 headers

* SMTP headers

e IMAP headers

To get a better idea of just how parsing works, you first need to consider that in order
to parse data you must classify the data you are examining into units. These units are
referred to as tokens, and their identification is called lexing. In Figure 1-1, the units are
numbers, and a tab separates each unit; for many lexing tasks, such whitespace identifi-
cation is adequate. However, for certain sophisticated parsing tasks, this breakdown may
not be as straightforward. A recursive approach may also be warranted, since in more
nested structures it becomes possible to find units within units. Math equations such as
4*(3+2) provide an ideal example of this. Within the parentheses, 3 and 2 behave as their

own distinct units; however, when it comes time to multiply by 4, (3+2) can be consid-
ered as a single unit. In fact, it is in dealing with nested structures such as this example

CHAPTER 1 © PARSING AND REGULAR EXPRESSION BASICS

that full-scale parsers prove their worth. As you will see later in the “Using Regular
Expressions” section, simpler parsing tasks (in other words, those with a known finite
structure) often do not require full-scale parsers but can be accomplished with regular
expressions and other like techniques.

Note Examples of a well-known lexer and parser are the C-based Lex and Yacc programs that generally
come bundled with Unix-based operating systems.

Parse::Lex

Before moving on to more in-depth discussions of parsers, I will introduce the Perl mod-
ule Parse: : Lex, which you can use to perform lexing tasks such as lexing the math
equation listed previously.

Tip Parse::Lex and the other Perl modules used in this book are all available from CPAN (http://
www . cpan.org). If you are unfamiliar with working with CPAN modules, you can find information about
downloading and installing Perl modules on a diversity of operating systems at http://search.cpan.
org/~jhi/perl-5.8.0/pod/perlmodinstall. pod. If you are using an ActiveState Perl distribution,
you can also install Perl modules using the Perl Package Manager (PPM). You can obtain information about
its use at http://aspn.activestate.com/ASPN/docs/ActivePerl/faq/ActivePerl-faq2.html.

For more detailed information about CPAN and about creating and using Perl modules, you will find that
Writing Perl Modules for CPAN (Apress, 2002) by Sam Tregar is a great reference.

Philipe Verdret authored this module; the most current version as of this book’s pub-
lication is version 2.15. Parse: : Lex is an object-oriented lexing module that allows you to
split input into various tokens that you define. Take a look at the basics of how this mod-
ule works by examining Listing 1-1, which will parse simple math equations, such as
18.2+43/6.8.

Listing 1-1. Using Parse: :Lex
#!/usx/bin/perl

use Parse::Lex;

CHAPTER 1 = PARSING AND REGULAR EXPRESSION BASICS

#defines the tokens

@token=qw(
BegParen [\(]
EndParen [\)]
Operator [-+*/*]
Number [-?\d+|-2\d+\.\d*]
);

$lexer=Parse::Lex->new(@token); #Specifies the lexer
$lexer->from(STDIN); #Specifies the input source

TOKEN:
while(1){ #1 will be returned unless EOI
$token=$lexer->next;
if(not $lexer->eoi){
print $token->name . " " . $token->text . " " . "\n";

}
else {last TOKEN;}

The first step in using this module is to create definitions of what constitutes an
acceptable token. Token arguments for this module usually consist of a token name
argument, such as the previous BegParen, followed by a regular expression. Within the
module itself, these tokens are stored as instances of the Parse: : Token class. After you
specify your tokens, you next need to specify how your lexer will operate. You can accom-
plish this by passing a list of arguments to the lexer via the new method. In Listing 1-1,
this list of arguments is contained in the @token array. When creating the argument list,
it is important to consider the order in which the token definitions are placed, since an
input value will be classified as a token of the type that it is first able to match. Thus,
when using this module, it is good practice to list the strictest definitions first and then
move on to the more general definitions. Otherwise, the general definitions may match
values before the stricter comparisons even get a chance to be made.

Once you have specified the criteria that your lexer will operate on, you next define
the source of input into the lexer by using the from method. The default for this property is
STDIN, but it could also be a filename, a file handle, or a string of text (in quotes). Next you
loop through the values in your input until you reach the eoi (end of input) condition and
print the token and corresponding type. If, for example, you entered the command-line
argument 43.4*15"2, the output should look like this:

Number 43.4
Operator *
Number 15
Operator "
Number 2

CHAPTER 1 © PARSING AND REGULAR EXPRESSION BASICS

In Chapter 3, where you will closely examine the workings of full-fledged parsers, I will
employ a variant of this routine to aid in building a math equation parser.

Regular expressions are one of the most useful tools for lexing, but they are not the
only method. As mentioned eatrlier, for some cases you can use whitespace identification,
and for others you can bring dictionary lists into play. The choice of lexing method depends
on the application. For applications where all tokens are of a similar type, like the tab-
delimited text file discussed previously, whitespace pattern matching is probably the best
bet. For cases where multiple token types may be employed, regular expressions or dic-
tionary lists are better bets. For most cases, regular expressions are the best since they are
the most versatile. Dictionary lists are better suited to more specialized types of lexing,
where it is important to identify only select tokens.

One such example where a dictionary list is useful is in regard to the recent bioinfor-
matics trend of mining medical literature for chemical interactions. For instance, many
scientists are interested in the following:

<Chemical A> <operates on> <Chemical B>

In other words, they just want to determine how chemical A interacts with chemical
B. When considering this, it becomes obvious that the entire textual content of any one
scientific paper is not necessary to tokenize and parse. Thus, an informatician coding
such a routine might want to use dictionary lists to identify the chemicals as well as to
identify terms that describe the interaction. A dictionary list would be a listing of all the
possible values for a given element of a sentence. For example, rather than operates on,
I could also fill in reacts with, interacts with, or a variety of other terms and have a
program check for the occurrence of any of those terms. Later, in the section “Capturing
Substrings,” I will cover this example in more depth.

Using Regular Expressions

As you saw in the previous Parse: : Lex example, regular expressions provide a robust tool
for token identification, but their usefulness goes far beyond that. In fact, for many sim-
ple parsing tasks, a regular expression alone may be adequate to get the job done. For
example, if you want to perform a simple parsing/data extraction task such as parsing
out an e-mail address found on a Web page, you can easily accomplish this by using a
regular expression. All you need is to create a regular expression that identifies a pattern
similar to the following:

[alphanumeric characters]@[alphanumeric characters.com]

CHAPTER 1 = PARSING AND REGULAR EXPRESSION BASICS

Caution The previous expression is a simplification provided to illustrate the types of pattern matching
for which you can use regular expressions. A more real-world e-mail matching expression would need to be
more complex to account for other factors such as alternate endings (for example, .net, . gov) as well as
the presence of metacharacters in either alphanumeric string. Additionally, a variety of less-common alter-
native e-mail address formats may also warrant consideration.

The following sections will explain how to create such regular expressions in the for-
mat Perl is able to interpret. To make regular expressions and their operation a little less
mysterious, however, I will approach this topic by first explaining how Perl’s regular expres-
sion engine operates. Perl’s regular expression engine functions by using a programming
paradigm known as a state machine, described in depth next.

A State Machine

A simple definition of a state machine is one that will sequentially read in the symbols

of an input word. After reading in a symbol, it will decide whether the current state of the
machine is one of acceptance or nonacceptance. The machine will then read in the next
symbol and make another state decision based upon the previous state and the current
symbol. This process will continue until all symbols in the word are considered. Perl’s regu-
lar expression engine operates as a state machine (sometimes referred to as an automaton)
for a given string sequence (that is, the word). In order to match the expression, all of the
acceptable states (that is, characters defined in the regular expression) in a given path must
be determined to be true. Thus, when you write a regular expression, you are really provid-
ing the criteria the differing states of the automaton need to match in order to find a
matching string sequence. To clarify this, let’s consider the pattern /123/ and the string 123
and manually walk through the procedure the regular expression engine would perform.
Such a pattern is representative of the simplest type of case for your state machine. That is,
the state machine will operate in a completely linear manner. Figure 1-2 shows a graphical
representation of this state machine.

Note It is interesting to note that a recursive descent parser evaluates the regular expressions you
author. For more information on recursive descent parsers, see Chapter 5.

CHAPTER 1 © PARSING AND REGULAR EXPRESSION BASICS

The String in Question = 123

1 2 3
Match Match Match
Start Success
—> —> —> —>
The State Machine

Figure 1-2. A state machine designed to match the pattern /123/

In this case, the regular expression engine begins by examining the first character of
the string, which is a 1. In this case, the required first state of the automaton is also a 1.
Therefore, a match is found, and the engine moves on by comparing the second charac-
ter, which is a 2, to the second state. Also in this case, a match is found, so the third
character is examined and another match is made. When this third match is made, all
states in the state machine are satisfied, and the string is deemed a match to the pattern.

In this simple case, the string, as written, provided an exact match to the pattern. Yet,
this is hardly typical in the real world, so it is important to also consider how the regular
expression will operate when the character in question does not match the criterion of a
particular state in the state machine. In this instance, I will use the same pattern (/123/)
and hence the same state machine as in the previous example, only this time I will try to
find a match within the string 4512123 (see Figure 1-3).

This time the regular expression engine begins by comparing the first character in
the string, 4, with the first state criterion. Since the criterion is a 1, no match is found.
When this mismatch occurs, the regular expression starts over by trying to compare the
string contents beginning with the character in the second position (see Figure 1-4).

As in the first case, no match is found between criterion for the first state and the
character in question (5), so the engine moves on to make a comparison beginning with
the third character in the string (see Figure 1-5).

CHAPTER 1 = PARSING AND REGULAR EXPRESSION BASICS

The String in Question = 4512123

4
No Match

Start Fail

The State Machine

Figure 1-3. The initial attempt at comparing the string 4512123 to the pattern /123/

The String in Question = 4512123

5
No Match
Start Fail
— —> —> —>

The State Machine

Figure 1-4. The second attempt at comparing the string 4512123 to the pattern /123/

The String in Question = 4512123

1 2 1
Match Match No Match

Start Fail
—> —> —> —>

The State Machine

Figure 1-5. The third attempt at comparing the string 4512123 to the pattern /123/

10

CHAPTER 1 © PARSING AND REGULAR EXPRESSION BASICS

In this case, since the third character is a 1, the criterion for the first state is satisfied,
and thus the engine is able to move on to the second state. The criterion for the second
state is also satisfied, so therefore the engine will next move on to the third state. The 1 in
the string, however, does not match the criterion for state 3, so the engine then tries to
match the fourth character of the string, 2, to the first state (see Figure 1-6).

The String in Question = 4512123

2
No Match

Start Fail

The State Machine

Figure 1-6. The fourth attempt at comparing the string 4512123 to the pattern /123/

As in previous cases, the first criterion is not satisfied by the 2, and consequently the
regular expression engine will begin to examine the string beginning with the fifth char-
acter. The fifth character satisfies the criterion for the first state, and therefore the engine
proceeds on to the second state. In this case, a match for the criterion is also present, and
the engine moves on to the third state. The final character in the string matches the third
state criterion, and hence a match to the pattern is made (see Figure 1-7).

The String in Question = 4512123

Match Match Match

Start Success

The State Machine

Figure 1-7. A match is made to the pattern /123/.

CHAPTER 1 = PARSING AND REGULAR EXPRESSION BASICS

The previous two examples deal with a linear state machine. However, you are not
limited to this type of regular expression setup. It is possible to establish alternate paths
within the regular expression engine. You can set up these alternate paths by using the
alternation (“or”) operator (|) and/or parentheses, which define subpatterns. I will cover
more about the specific meanings of regular expression syntaxes in the upcoming sec-
tions “Pattern Matching,” “Quantifiers,” and “Predefined Subpatterns.” For now, consider
the expression /123 |1b(c|C)/, which specifies that the matching pattern can be 123, 1bc,
or 1bC (see Figure 1-8).

Finish

—>

ﬁ
‘ ‘ ™ Finish
@ﬂ;

Finish
—>

Start

The State Machine

Figure 1-8. The state machine defined by the pattern /123 |1b(c|C)/

Note Parentheses not only define subpatterns but can also capture substrings, which | will discuss in the
upcoming “Capturing Substrings” section.

As you can see, this state machine can follow multiple paths to reach the goal of a
complete match. It can choose to take the top path of 123, or can choose to take one of
the bottom paths of 1bc or 1bC. To get an idea of how this works, consider the string 1bc
and see how the state machine would determine this to be a match. It would first find
that the 1 matches the first state condition, so it would then proceed to match the next
character (b) to the second state condition of the top path (2). Since this is not a match,
the regular expression engine will backtrack to the location of the true state located
before the “or” condition. The engine will backtrack further, in this case to the starting
point, only if all the available paths are unable to provide a correct match. From this point,
the regular expression engine will proceed down an alternate path, in this case the bot-
tom one. As the engine traverses down this path, the character b is a match for the second

11

12

CHAPTER 1 © PARSING AND REGULAR EXPRESSION BASICS

state of the bottom path. At this point, you have reached a second “or” condition, so the
engine will check for matches along the top path first. In this case, the engine is able to
match the character c with the required state c, so no further backtracking is required,
and the string is considered a perfect match.

When specifying regular expression patterns, it is also beneficial to be aware of the
notations [] and [*], since these allow you to specify ranges of characters that will serve as
an acceptable match or an unacceptable one. For instance, if you had a pattern containing
[ABCDEF] or [A-F], then A, B, C, D, E, and F would all be acceptable matches. However, a or G
would not be, since both are not included in the acceptable range.

Tip Perl’s regular expression patterns are case-sensitive by default. So, A is different from a unless a
modifier is used to declare the expression case-insensitive. See the “Modifiers” section for more details.

If you want to specify characters that would be unacceptable, you can use the [*]
syntax. For example, if you want the expression to be true for any character but A, B, C, D,
E, and F, you can use one of the following expressions: [*ABCDEF] or [*A-F].

Pattern Matching

Now that you know how the regular expression engine functions, let’s look at how you
can invoke this engine to perform pattern matches within Perl code. To perform pattern
matches, you need to first acquaint yourself with the binding operators, =~ and !~. The
string you seek to bind (match) goes on the left, and the operator that it is going to be
bound to goes on the right. You can employ three types of operators on the right side of
this statement. The first is the pattern match operator, m//, or simply // (the mis implied
and can be left out), which will test to see if the string value matches the supplied expres-
sion, such as 123 matching /123/, as shown in Listing 1-2. The remaining two are s///
and tr///, which will allow for substitution and transliteration, respectively. For now, I
will focus solely on matching and discuss the other two alternatives later. When using =~,
a value will be returned from this operation that indicates whether the regular expression
operator was able to successfully match the string. The !~ functions in an identical man-
ner, but it checks to see if the string is unable to match the specified operator. Therefore,
if a =~ operation returns that a match was successful, the corresponding !~ operation will
not return a successful result, and vice versa. Let’s examine this a little closer by consider-
ing the simple Perl script in Listing 1-2.

