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Introduction

This book helps database developers and DBAs gain a conceptual understanding of
machine learning, including the methods, algorithms, the process, and deployment. The
book covers Oracle Machine Learning (OML) technologies that enable machine learning
with Oracle Database, including OML4SQL, OML Notebooks, OML4R, and OML4Py.
Machine Learning for Oracle Database Professionals focuses on Oracle machine learning
in Oracle autonomous databases, such as the Autonomous Data Warehouse (ADW)
database as part of the ADW collaborative environment. This book also covers some
advanced topics, such as delivery and automation pipelines in machine learning.

This book also provides practical implementation details through hands-on
examples to show how to implement machine learning with OML with ADW and how
to automate the deployment of machine learning. The primary goal is to bridge the
gap between database development/management and machine learning by gaining
practical knowledge of machine learning. As a seasoned database professional skilled
in managing data, you can apply this knowledge by analyzing data in the same data
management system. Through this book, three authors with rich experience in machine
learning and database development and management take you on a journey from being
a database developer or DBA to a data scientist.

Readers and Audiences

This book is written for

e Database developers and administrators who want to learn about
machine learning

o Developers wanting to build models and applications using Oracle
Database’s built-in machine learning feature set

e Administrators tasked with supporting applications in Oracle
Database and ADW that use the machine learning feature set



INTRODUCTION

Readers will learn how to do the following.

Build an automated pipeline that can detect and handle changes in
data/model performance

Develop and deploy machine learning projects in ADW

Develop machine learning with Oracle Database using the built-in
machine learning packages

Analyze, develop, evaluate, and deploy various machine learning
models using OML4R and OML4SQL



CHAPTER 1

Introduction to
Machine Learning

We live in exciting times with smartphones and watches, smart clothes, robots, drones,
face recognition, smart personal assistants, recommender systems, self-driving
autonomous cars, and 24/7 service chatbots, all of which are artificial intelligence (Al).
But what is intelligence? Intelligence might be defined as the ability to acquire and
apply knowledge and skills, in other words, to learn and use the skills learned. Artificial
intelligence is exactly that but done by computers and software. In real life, people would
like to have intelligent machines that can do things people find boring, do inefficiently,
or maybe cannot do at all. It could be an extension of human intelligence through using
computers, which is artificial intelligence. The core of artificial intelligence is the ability
to learn, acquire knowledge and skills, which is machine learning. In machine learning,
the machine is learning, reasoning, and self-correcting. Arthur Samuel defined machine
learning in 1959 as “a field of study that gives computers the ability to learn without
being explicitly programmed,” which defines machine learning very well.

Why Machine Learning?

When Arthur Samuel defined machine learning in 1959, a lot of the mathematics and
statistics needed was already invented. Still, there was no technology nor enough data to
get the theory to practice. Today, there are hardware solutions, including GPUs and TPUs
for matrix calculation, inexpensive storage solutions for storing data, open data sets, pre-
trained models for transfer learning, and so on. All this makes it possible to use machine
learning in the most interesting and useful ways. But it is not only that we are now able

to use machine learning; it is also necessary to use it. With its volume, velocity, variety,

© Heli Helskyaho, Jean Yu, Kai Yu 2021
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CHAPTER 1  INTRODUCTION TO MACHINE LEARNING

veracity, viability, value, variability, and visualization, big data has made it necessary to
change traditional data processing into something more efficient and faster: machine
learning.

Machine learning is not a silver bullet, and it should not be seen as such.
Machine learning should be used only when it brings value. Typical use cases are
when the rules and equations are complex or constantly changing. If the rules are
understandable and can be programmed with if-else-then structures, machine
learning might not be the best solution.

Classic examples of machine learning use cases are image recognition, speech
recognition, fraud detection, predicting shopping trends, spam filters, medical diagnosis,
or robotics. Some examples of machine learning to businesses are churn prediction,
predicting customer behavior, anticipating voluntary employee attrition, and cross and
up-sell opportunities.

An important requirement for machine learning is that you have data; otherwise,
it makes no sense. The data is given to the machine, or the machine produces it, as it
does in reinforcement learning. The better the quality of the data is, the better it can
be used by machine learning. But even though the data is of excellent quality and
machine learning works like a charm, a machine learning prediction is never a fact;
it is always a sophisticated guess. Sometimes that guess is good and even useful, but
sometimes it is not.

Also, a well-working machine learning model will no longer work well if something
has changed—perhaps there is more noise in the data, the amount of data is larger,
or the quality of data has lessened. In other words, it is important to understand that
machine learning models need to monitor their defined metrics to make sure they still
work as planned and to tune them if necessary.

What Is Machine Learning?

Machine learning can be divided into different categories based on the nature of the
training data, the problem type, and the technique used to solve it. This book divides
machine learning into three main categories: supervised learning, unsupervised

learning, and semi-supervised learning.
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Supervised Learning

Supervised machine learning is supervised by a human. Typically, that means that
somebody has labeled the data to show the output or the correct answer. For example,
somebody manually checks 1000 pictures and labels them to identify which of the
pictures show cats, dogs, or horses.

Supervised learning is used when there is enough high-quality data and you know
the target (e.g., the data is labeled). The models are trained and tested on known
input and known output data to predict future outputs on new data. When testing
the models, the prediction is compared to the true output to evaluate the models. To
make this process meaningful, the training data must separate from the data used
for testing. Each model is built using a different algorithm. A model maps the data to
the algorithm and produces the prediction. So, each algorithm is processing the data
differently. Depending on the chosen metrics, the evaluation process defines which
algorithm performed the best, and the model using that algorithm can be implemented
into production. The selection of an algorithm depends on the data’s size, the type of
data, the insights you want to get from the data, or how those insights will be used. The
decision is a trade-off between many things, such as the predictive accuracy on new
data, the speed of training, memory usage, transparency (black box vs. “clear box,”
how decisions are made), or interpretability (the ability of a human to understand the
model).

Regression and classification are the most common methods for supervised
learning. Regression predicts numeric values and works with continuous data.
Classification works with categorized data and classifies data points. So, if you want to
predict a quantity, you should use regression. If you want to predict a class or a group,
you should use classification. An example of regression is the price of a house over time.
An example of classification is predicting a beer’s evaluation by rating it against other
beers on a scale of 1 to 5, with 1 being poor quality and 5 being excellent. Figure 1-1 is
a simple example of regression. From the line shown in Figure 1-1, you can see that for
value 3, the prediction of the target value is 1.5.
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Figure 1-1. An example of regression
Figure 1-2 is an example of classification. The data points are classified in orange

and blue. The red line shows in which category each data point belongs. You can see that
point (4,1) belongs to the orange group, and point (9,2) belongs to the blue group.
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Figure 1-2. An example of classification
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Time series forecasting can be a supervised learning problem. The machine learning

model predicts the value of the next time step by using the value of a previous time step.
You need data that is suitable for the purpose. This method is called the sliding window

method. For example, the following is a small part of a data set.

Time Measure
1 100
2 150
3 170
4 250
5 330

You can reconstruct this data set to be useful in supervised learning by setting the

next value as the prediction of the value, as follows.

X Y

? 100
100 150
150 170
170 250
250 330
330 ?

The first and the last rows cannot be used because some of the information is

missing, so we remove those rows. Afterward, there is a solid data set that can be used in

supervised machine learning.

Time series forecasting can be used in weather forecasting, inventory planning,

or resource allocation, for example. Time series prediction can be very complex, and

understanding the data is very important. For example, trends in data might be different

in summer than in winter, or on weekdays than on weekends. That must be considered
when building the model or maybe several models for different trends.



CHAPTER 1  INTRODUCTION TO MACHINE LEARNING

Deep learning has become very popular as a technique for mainly supervised
machine learning. Deep learning is typically used with more complex machine
learning tasks on text, voice, recommender systems, or images and videos. Text can
be transformed into speech using deep learning. Speech can be transformed into text,
which can be used as input to another machine learning task, such as translating from
the Finnish language to English.

Automatic speech recognition or natural language processing might also be
tasks for deep learning. Recommender systems are producing recommendations for
users to make their decision process easier and more fluent. There are three kinds of
recommender systems: collaborative filtering, content-based, and hybrid recommender
systems. A collaborative filtering recommender system uses the decisions of other users
with a similar profile as a base for a recommendation for another user. Content-based
recommender systems create recommendations based on similarities of new items
to those that the user liked in the past. Hybrid recommender systems use multiple
approaches when creating recommendations. Visual recognition and computer vision
are very typical and useful tasks for deep learning. Image or action classification,
object detection or recognition, image captioning, or image segmentation are useful in
machine learning.

One difference between classical supervised learning and deep learning is that
in deep learning you do not need to perform feature extraction at all, it is done by the
machine as part of the deep learning process. In supervised learning, feature extracting
is time-consuming manual work. Of course, that means that deep learning needs more
data to do it and, in general, more resources and time. Deep learning has become more
popular and useful because of so many improvements in different areas. There is a
lot of digital data (photos, videos, voice, etc.) available. The technology has improved:
existing data sets and pre-trained models, transfer learning, research such as combining
convolutional layers to a neural network, and much more is available. Things that were
difficult or nearly impossible to perform using deep learning have become easy and
almost trivial. There are plenty of example codes that programmers can use and start
building their first deep learning projects.

Deep learning uses neural networks for the prediction process and backpropagation
to learn (e.g., tune the network). A neural network consists of neurons. Each input
is multiplied by its weight, and a bias is added to that. When using an activation
function, an output is passed to the next layer until the last layer and the prediction are
reached. The weight and the bias are called hyperparameters. Their values are defined



CHAPTER 1  INTRODUCTION TO MACHINE LEARNING

before the machine learning process starts. The first values are a guess, but by using
backpropagation and an optimizer function, the process tunes those hyperparameters to
have a better-performing model.

In a neural network, there are plenty of hyperparameters that need to be defined
before starting the process, and they need to be tuned during it. Some examples of
hyperparameters are the number of layers, number of epochs, the batch size, number of
neurons in each layer, or what activation function, optimizer, and loss function to use.
The backpropagation computes the loss function for the initial guess and the gradient
of the loss function. Using that information the optimizer takes the steps to a negative
gradient direction to reduce loss. This is done as long as needed to get the weights as
good as possible. A convolutional neural network complements the neural network with
convolutional layers. Convolutional neural networks are especially useful with image
processing. A convolutional neural network consists of several convolutional layers
(filter, output, pooling) and a flattening layer to pass the data to a neural network for
further processing.

Algorithms for Supervised Learning

A model uses an algorithm to produce a prediction. The goal is to find the best algorithm
for the use case. There are plenty of algorithms to be used with supervised learning.
For classification, examples of algorithms include k-nearest neighbors (kNN),
naive Bayes, neural networks, decision trees, or support-vector machine (SVM). kNN
categorizes objects based on the classes of their nearest neighbors that have already
been categorized. It assumes that objects near each other are similar. kNN is a simple
algorithm, but it consumes a lot of memory, and the prediction speed can be slow if the
amount of data is large or several dimensions are used. Naive Bayes assumes that the
presence (or absence) of a particular feature of a class is unrelated to the presence (or
absence) of any other feature when the class is defined. It classifies new data based on
the highest probability of its belonging to a particular class. For example, if a fruit is red,
it could be an apple, and if a fruit is round, it could be an apple, but if it is both red and
round, there is a stronger probability that the fruit is an apple.
Naive Bayes works well for a data set containing many features (e.g., the
dimensionality of the inputs is high). It is simple to implement and easy to interpret.
A neural network imitates the way biological nervous systems and the brain process
information. A large number of highly interconnected processing elements (neurons)
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work together to solve specific problems. Neural networks are good for modeling highly
nonlinear systems when the interpretability of the model is not important. They are
useful when data is available incrementally, you wish to constantly update the model,
and unexpected changes in your input data may occur.

Decision trees are very typical classification algorithms. Decision trees, bagged
decision trees, or boosted decision trees are tree structures that consist of branching
conditions. They predict responses to data by following the decisions in the tree from the
root down to a leaf node.

A bagged decision tree consists of several trees that are trained independently on
data. Boosting involves reweighting misclassified events and building a new tree with
reweighted events. Decision trees are used when there is a need for an algorithm that
is easy to interpret and fast to fit, and you want to minimize memory usage but high
predictive accuracy is not a requirement and the time taken to train a model is less
of a concern. A support-vector machine (SVM) classifies data by finding the linear
decision boundary, or hyperplane, that separates all the data points of one class from
those of another class. The best hyperplane for an SVM is the one with the largest
margin between the two classes when the data is linearly separable. If the data is not
linearly separable, a loss function penalizes points on the wrong side of the hyperplane.
Sometimes SVMs use a kernel to transform nonlinearly separable data into higher
dimensions where a linear decision boundary can be found. SVMs work the best for
high-dimensional, nonlinearly separable data that has exactly two classes. For multiclass
classification, it can be used with a technique called error-correcting output codes. It is
very useful as a simple classifier, it is easy to interpret, and it is accurate.

For regression tasks, some examples of algorithms are linear regression, nonlinear
regression, generalized linear model (GLM), Gaussian process regression (GPR),
regression tree, or support-vector regression (SVR).

Linear regression describes a continuous response variable as a linear function of
one or more predictor variables. Linear regression could be used when you need an
algorithm that is easy to interpret and fast to fit. It is often the first model to be fitted
to anew data set and could be used as a baseline for evaluating other, more complex,
regression models.

Nonlinear regression describes nonlinear relationships in data. It can be used when
data has nonlinear trends and cannot be easily transformed into a linear space.
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GLM is a special nonlinear model that uses linear methods. It fits a linear
combination of the input to a nonlinear function of the output. It could be used when
the response variables have non-normal distributions.

GPR is for nonparametric models used to predict the value of a continuous response
variable; for example, to interpolate spatial data, as a surrogate model to optimize
complex designs such as automotive engines, or to forecast mortality rates.

Regression trees are similar to decision trees for classification, but they are modified
to predict continuous responses. They could be used when predictors are categorical
(discrete) or behave nonlinearly.

SVM regression algorithms (SVR) work like SVM classification algorithms but
are modified to predict a continuous response. Instead of finding a hyperplane that
separates data, SVR algorithms find the decision boundaries and data points inside
those boundaries. SVR can be useful with high-dimensional data.

Unsupervised Learning

Unsupervised learning is machine learning with unlabeled data, with an unknown
target, to find something useful from the data. Unsupervised learning finds hidden
patterns or intrinsic structures in input data.

Clustering is one of the most common methods for unsupervised learning. It is
used for exploratory data analysis to find hidden patterns or groupings in data. There
are typically two ways of clustering: hard and soft. In hard clustering, each data point
belongs to only one cluster, whereas in soft clustering, each data point can belong to
more than one cluster.

In Figure 1-3, you can see data points, and in Figure 1-4, you see how they have
been clustered in two clusters: green and blue. The idea of clustering is that you tell the
algorithm that you want to break the data into two groups, and it finds things that are
common to the data points and things that are different. Using that information, the
algorithm decides which group (cluster) a particular data point belongs to.



CHAPTER 1  INTRODUCTION TO MACHINE LEARNING

3,5

2,5 @

15 ° ®

0,5 °®

Figure 1-3. Data points for clustering
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Figure 1-4. Data points clustered in two clusters: green and blue
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Association rule mining/learning is also a very useful unsupervised machine
learning method. It is for identifying hidden patterns in the data set. A typical example of
association rules is shopping basket data analysis. Using association rules, you can find
interesting patterns on what people typically buy. Using that information, you can better
plan the layout of a shop, product placement in a supermarket, or launch better market
campaigns to different customer groups. A classic example is that diapers and beer are
often bought at the same time. The historical explanation was that fathers stop by the store
to buy diapers on their way home from the office and often end up buying beer as well.

Anomaly detection is for finding anomalies in a data set. It can be used with
unsupervised, supervised, or semi-supervised machine learning. Figure 1-5 is an
example of an anomaly (marked in red). Anomaly detection can be used for finding
exceptions that must be handled, or it can be used for data preparation for machine
learning to find outliers. For instance, if an anomaly has been detected in a log file, it can
alert the database administrator to check what is going on.

14
12

10

Figure 1-5. An example of an anomaly

Dimensionality reduction is an unsupervised machine learning method that can
be used when there is a need to reduce the data set’s features as preprocessing for
supervised learning or to tune the model. Feature selection is a technique to reduce the
number of features in a data set to improve the model accuracy or performance.

11
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It ranks the importance of the existing features in the data set and discards less
important ones. Feature extraction also aims to reduce the number of features in a data
set, but it creates new features from the existing ones and then discards the original
features. A term used for both methods is dimensionality reduction because they aim to
reduce the dimensions/features of the data set.

Algorithms for Unsupervised Learning

There are plenty of algorithms for unsupervised learning. For hard clustering, several
algorithms are available, including k-means, k-medoids, and hierarchical clustering.
K-means (Lloyd’s algorithm) partitions data into k number of mutually exclusive clusters
(centroids) and assigns each observation to the closest cluster. Then it moves the
centroids to the true mean of its observations. K-means works well when the number of
clusters is known, and there is a need for fast clustering of large data sets.

K-medoids is similar to k-means but requires that the cluster centers coincide with
points in the data. In other words, it chooses datapoints as centers, medoids. k-medoids
can be more robust to noise and outliers than k-means. It works well when the number
of clusters is known, and there is a need for fast clustering of categorical data.

Hierarchical clustering is used when the number of clusters is unknown and/or you
want visualization to guide the selection. It works either as a divisive or agglomerative
method. A divisive method assigns all observations to one cluster and then partitioning
that cluster into several clusters. An agglomerative method sets each observation
to its own cluster and merges similar clusters. Of these two types of methods, the
agglomerative method is used more often.

For soft clustering, there are algorithms like Fuzzy C-means (FCM) or Gaussian
mixture model. FCM is similar to k-means, but data points may belong to more than
one cluster. It could be used when the number of clusters is known and they overlap. A
typical use case is pattern recognition. A Gaussian mixture model is a partition-based
clustering where data points come from different multivariate normal distributions with
certain probabilities, such as home prices in different areas. It could be used when data
points might belong to more than one cluster, and those clusters have different sizes and
correlation structures within them.

For anomaly detection, kNN is a simple algorithm, and for each data point, its
distance to its k-nearest neighbor could be viewed as the outlier score.

An Apriori algorithm is for association rule-learning problems. It identifies items that
often occur together.

12
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Semi-Supervised Learning

There is also a combination of unsupervised and supervised machine learning called
semi-supervised learning. In semi-supervised learning, a small part of the data is
supervised data with labeled data, and a large part of the data is unsupervised data
with unlabeled data. The idea in semi-supervised learning is that you should find a way
to let the algorithm label the data automatically. These algorithms are often based on
assumptions on the relationships of the data distribution. Some algorithms assume that
the points close to each other are likely to have similar or the same labels (continuity
assumption). Some assume that data in the same cluster most likely have the same labels
(cluster assumption). For high-dimensional data, manifold assumption might help find
the label.

There are many algorithms and techniques to automatically label the data, and more
techniques will soon be invented.

A simple way to label the unlabeled data is called pseudo-labeling. The process of
pseudo-labeling is simple.

1. Train the model with a small set of labeled data.

2. Use the model to label unlabeled data. Set the prediction as the
label. This is called a pseudo-label.

3. Linkthe labels from the labeled training data with the pseudo-
labeled data. Link the input data from the labeled data with the
unlabeled data.

4. Train the model with that data set.

After this process, the accuracy of the model should be better than simply training it
with the labeled data set.

Active learning is a technique in which the learning algorithm chooses a subset of
unlabeled data and queries a user interactively to label it. And since the algorithms chose
the data set to be labeled, it is assumed this data set is very useful in learning the algorithm.

Many interesting and promising areas in machine learning research have something
to do with semi-supervised learning. Examples of those areas are reinforcement learning
and self-supervised learning (self-supervision). Some people include reinforcement
learning into semi-supervised learning. Some say it is a different concept because it is
more about learning a skill than labeling data and should have its own category. This
book includes it in semi-supervised learning to keep the concepts simple.

13
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Reinforcement Learning

Reinforcement learning (RL) has a different approach to machine learning. Its goal is
to get the maximum reward, not to predict the input data’s output. RL is typically used
in use cases where the computer needs to learn a skill, such as playing chess or parking
a car. RL works well with problems like games, optimization, or navigation because
data can be generated easily. A computer can play against itself or a human player and
generate a lot of data about the game’s strategies. It learns while playing, and it can also
use transfer learning to learn faster. RL's best feature is that it can become better than a
human since humans are not teaching it with their limited skills. It takes hundreds of
thousands of mistakes to learn, which is not possible in all use cases.

A Markov decision process (MDP) is the basis of reinforcement learning (RL) and the
mathematical formulation for an RL problem. MDP provides a mathematical framework
(a discrete-time stochastic control process) for modeling decision making when
outcomes are partly random and partly under the control of a decision-maker, just like in
RL. The RL process is shown in Figure 1-6.
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Figure 1-6. The reinforcement learning process

A decision-maker/learner is defined as an agent, and anything outside the agent
is defined as an environment. The interactions between an agent and an environment
are described by three core elements: state (s), action (a), and reward (r). The agent
receives as input the current state of the environment. Then the agent chooses an action.
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