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Preface

Nobel laureate Roald Hoffmann pointed out, “Understanding and Explaining and
their Strong-Tie to Teaching” in the memorial lecture at the Kenichi Fukui 100th
birthday anniversary 2018 in Kyoto.1 He sketched a possible path to coexistence,
way from theory and understanding through simulation and then back again to
understanding. We want to quote his sketches. He gave the process of understanding,
insight, and explanation, and then prediction. Understanding is often tacit, or silent, a
state of mind. It is usually qualitative, though it may have quantitative aspects. Quan-
titative reinforces qualitative. And simulation is around the corner. An explanation is
inherently more pedagogic and storytelling. More useful to science are hypotheses,
alternative narratives. An explanation comes to us through stories, chemical stories.
Prediction is the conceptual passage between understanding and simulation and is
the practical counterpart of contemplative understanding, “I know how” instead of
“I know why.”

A molecule can be regarded as a system of electrons in a framework of nuclei,
that is, a molecular structure. Chemists are interested in molecular motions under
the interactions of other molecules or an electromagnetic field. The motion of a
molecule is decomposed into translational, rotational, and vibrational modes. An
intramolecular motion, i.e., molecular deformation, is expressed as a combination of
vibrational modes.

Exactly speaking, vibrations andmotions of electrons cannot be separated. There-
fore, any change of an electronic state gives rise to a molecular deformation.
The couplings among vibrations and electrons are called vibronic coupling (VC).
The magnitude of deformation depends on the strength of VCs, vibronic coupling
constants (VCCs). The direction of deformation depends on the relative values of the
VCCs of vibrational modes. Thus, if we can understand the reason for the relative
strength and magnitude of VCCs, we can explain the molecular deformation under
a certain interaction. Vibronic coupling density (VCD), a density form of a VCC,

1Roald Hoffmann, “Simulation versus Understanding: A tension, and not just in Quantum Chem-
istry.”, the lecture in the Memorial Symposium of “Kenichi Fukui 100th birthday anniversary,”
Kyoto, 2018.
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enables us to explain such a reason. In this monograph, we will give the instructive
path to the VCD and the VCC analyses.

Chemistry in alchemy was just aimed at getting gold without understanding.
Modern chemistry emerged with the concept of atoms and molecules. After the
quantum study, the electron behavior circulating nuclei was led to the principal
concept underlying all explanations in chemistry. Many textbooks have given the
plausible explanations to clarify the molecular structure. And the frontier molecular
orbital concepts were proposed to visualize the path of a chemical reaction. The
conventional explanations have provided students with a considerable familiarity
with the molecular structure in terms of the electronic state. However, the more
rational and more convincing ways should be given. Here the VCD and the VCC
analyses are introduced. They are starting from the ab initio molecular Hamilto-
nian, and systematic, rational ways to understand chemical phenomena, and which
can give the quantitative evaluation of the force applied under the chemical defor-
mation process. We offer the guidelines to integrate the traditional “hand-waving”
approach of chemistry with more rational and general VCD and VCC alternative.
Further outlooks for the newly functionalized chemical systems. Thus, through the
visualization by VCD and the evaluation by VCC, the study of chemistry by molec-
ular orbital theory is brought into the domain of substantial science, where qualitative
concepts can be rendered quantitatively and tested rigorously against the quantum
theory.

Kyoto, Japan
February 2021

Tatsuhisa Kato
Naoki Haruta

Tohru Sato
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