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Prologue

Here is a photograph of a forest in northern Sweden. It is a pine forest near my office
in the Department of Animal Ecology at the Swedish University of Agricultural
Sciences in Umed, Sweden, where 1 wrote much of this book while on sabbatical
during 2005-2006. I would often take a break from writing about mathematical
ecology and walk through this forest to refresh my contact with the natural world,
as a stimulating contrast with the abstract world of this book.

The forest is used to teach forestry students about the measurement and manage-
ment of such lands. Occasionally, parts are thinned, and the evidence of repeated
thinnings and other management activities are readily apparent. Clearly, the large
older trees were spared thinning to provide a seed source for the next cohort of pines.

vii



viii Prologue

None of the trees are “original old growth” but, according to my colleagues, there
has always been a forest here, perhaps since the Vikings. There is a Viking burial
ground on one of the knolls, looking out over what must have once been a bay of
the Baltic Sea when the land was lower — it has risen by almost three meters since
Linneaus’s time because of rebound from the glaciers. Obviously, the forest had seen
what mathematical ecologists dryly refer to as “perturbations” but equally obviously
it had recovered and persisted in some recognizable form.

Questions about the persistence of the forest and recovery from repeated pertur-
bations over the centuries suggested themselves. How is the current number of live
trees of different ages related to the numbers of seedlings established decades and
centuries ago? How do the decay of the annual cohorts of dead needles and other
debris of the forest floor replenish and recycle nutrients taken up by the plants from
the soil? What about the animals which wander through here, such as the moose
who left pellets (more debris!) behind and browsed the pines? How do they affect
the dynamics of the plant populations and the cycling of nutrients?

For that matter, what do we mean by all these abstract terms: perturbation, persist-
ence, dynamics, decay, growth, populations, cycles? 1 could not point to any of these
concepts like I could point to a pine tree or a moose or the soil, but I could not
think about the forest without using them. How can we think clearly about how these
abstract terms relate to the plants, animals, and soil?

That is what this book is all about.



Preface

This is an introductory textbook on mathematical ecology bridging the subdisciplines
of population ecology and ecosystem ecology. The expected reader is you: a begin-
ning graduate student, advanced undergraduate student, or someone who thinks of
themselves as a student all their lives, with a working knowledge of basic calculus
and basic ecology. While this is intended as a stand-alone text, the level is such that
once you have read through it, you will be able to read more advanced texts and
monographs such as Agren and Bosatta (1998) and Kot (2001) with greater depth.
While there are other very good introductory texts in mathematical ecology (e.g.,
Edelstein-Keshet 1988 [reissued but not revised 2005], Yodzis 1989 [now out of print],
Gotelli 1995, Roughgarden 1997, Case 2000, and Kot 2001 are among the most widely
used), none bridge the gap between population ecology and ecosystem ecology.

Ecological problems are complicated in ways that our language has not evolved
to handle. Mathematics provides a more precise way than the spoken word of think-
ing and talking about the rates of change, nonlinearities, and feedbacks characteris-
tic of populations and ecosystems. Even Edward Abbey, one of the sharpest thinkers
who never solved an equation, once said: “Language makes a mighty loose net with
which to go fishing for simple facts, when facts are infinite.”* It is my hope that
mathematics can help us tighten that net a bit, allowing us to catch a few facts that
may have otherwise slipped through. At the very least, mathematics has precise tools
for handling the infinite.

For the past 12 years, I have given courses in mathematical ecology and ecosystems
ecology during alternate fall semesters. Often, the major topics of our discussions
in each of these courses concern the relationships between population dynamics,
species, and ecosystem processes such as productivity, nutrient cycling rates, and
input-output budgets. These are leading research questions in ecology and have been
major interests of mine for the past 25 years.

These are intellectually challenging questions. It is often easy to make a “plausible”
argument that some hypothesized relationship between populations, species, and
ecosystems must be true, only to find on more rigorous examination that it is not
necessarily true, true only under certain restrictions, or simply not true at all. Framing
the plausibility argument in mathematical terms and using the rules of mathematics
to examine its logical structure is often the best way to uncover the sense in which
it might be true. In fact, the mathematical examination of these arguments often
uncovers hidden assumptions; these in turn suggests new experiments to determine

*Desert Solitaire, Author’s Introduction.
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whether they hold in the “real” world or new theoretical investigations to determine
what happens when such hidden assumptions are relaxed in different ways.

Questions about the relations between populations and ecosystems are also chal-
lenging because the cultures of population ecologists and ecosystem ecologists differ
so much. In part, these differences between population and ecosystem ecologists
arise in their graduate training. Population ecologists are often trained to analyze
the dynamics of populations’ and species’ interactions using analytical mathematical
methods which allow them to calculate algebraic expressions for equilibria and
their stability.

Because population models focus on the dynamics of collections of live individu-
als, death is often treated as an export from the system. By contrast, the ecosystem
ecologist considers dead material to still be in the system, simply be detached from
the live populations and subject to different rules. Eventually, through microbial decay,
the dead material is transferred to the resource pool which is then taken up by plants.

Because of the large number of compartments they generally consider and meas-
ure, ecosystem ecologists have not usually used analytical mathematical methods.
Instead, large and complicated computer simulation models have traditionally been
their method of choice in analyzing and synthesizing ecosystem data. Although these
simulation models may make quite accurate predictions for specific situations, they
are often almost as complex as the system being studied. Therefore, it is sometimes
difficult to understand why their predictions are as they are, leading to an interesting
paradox in which accurate prediction may not be the same as general understanding.
Furthermore, through their investigations into the origin of chaos in single-species
models, population ecologists have taught us that we can have understanding with-
out predictability, a conclusion accepted with reluctance by some (but not all)
ecosystem ecologists.

Therefore, ecosystem ecologists and population ecologists have been trained to speak
different languages. Population ecologists have traditionally ignored nutrient feed-
backs to populations through litter and its decay, whereas ecosystem ecologists
traditionally dismiss analytical approaches in favor of simulation models. This lack
of a common language or approach amongst population and ecosystem ecologists
may impede our ability to address important practical problems. It is no wonder that
many ecologists find the relationship between populations, species, and ecosystem
properties extremely difficult to understand: each group has part of the answer
but they find it difficult to speak to each other and frame questions in a common
language.

In spite of the traditional dichotomy of using either simple analytical models of
a few species or complicated simulation models of whole ecosystems, it is possible
to couple interactions between species and the flux of an inorganic resource by
simplifying the ecosystem to only a few compartments so that we can use analytical
mathematical techniques to gain understanding about system behavior, especially
how ecosystem properties emerge from an interaction between populations and the
flux of inorganic resources. In this book, the same mathematical techniques will be
used as a common thread to help unify population and ecosystem ecology.

These mathematical techniques are also essential for exploring how changes in con-
trolling factors across thresholds often cause rapid changes between different states
of an ecological system, which are sometimes called “regime shifts” (Scheffer et al.
2001). These rapid changes between different states are often accompanied by the
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appearance of new behaviors, such as limit cycles, extinction of species, or changes
in top-down and bottom-up controls. Some examples of current interest are the
possibility of rapid change in communities and ecosystems with slowly rising tem-
peratures once some critical value of temperature is exceeded, the rapid changes
in communities once critical thresholds of nutrient inputs are exceeded, and the
rapid changes and extinctions in populations once critical values of harvesting rates
are exceeded.

Different states of populations, communities, or ecosystems often correspond to dif-
ferent equilibrium solutions of a model. In turn, these solutions are often separated
by a critical value of a parameter or a function of several parameters. Rapid changes
in the nature and stability of solutions of equations as critical parameter values are
crossed are known mathematically as bifurcations. Bifurcations between different
equilibrial solutions appear suspiciously like the rapid changes in nature as con-
trolling factors cross critical thresholds. Examples of bifurcations which we will
meet in this book include: (i) saddle-node bifurcations, separating persistence from
extinction of a species once a critical harvesting rate is exceeded; (ii) transcritical
bifurcations, leading to shifts between two different communities once critical inputs
of a limiting nutrient are exceeded; (iii) Hopf bifurcations, leading to stable limit cycles
once critical values of carrying capacity are exceeded, otherwise known as the “para-
dox of enrichment” (Rosenzweig 1971); and (iv) Turing bifurcations, leading to the
appearance of spatial patterns once critical values of diffusion rates of populations
are exceeded. We shall explore examples of these and other bifurcations and their
ecological implications throughout this book.

Bifurcation theory is therefore a powerful mathematical technique to help us under-
stand sudden and interesting changes in the behaviors of ecological systems as some
parameter or combination of parameters pass some critical value. Bifurcation theory
draws heavily on the theory of eigenvalues and Jacobians and, insofar as bifurcation
theory seems a promising mathematical approach to understand rapid changes in
nature, one must have some grounding in eigenvalue analyses — indeed one must
be able to frame questions and construct systems of equations with the use of these
techniques in mind.

The purpose of this textbook is therefore to help you develop your thinking to
bridge population and ecosystem problems using the mathematical tools of eigen-
value analysis and bifurcation theory as common threads. To successfully do this, you
need a working understanding of calculus, especially the concept of limits; linear
algebra, especially matrix operations required to analyze populations with age or
stage structure or multiple species models; and differential and difference equations,
especially the analysis of model stability by means of eigenvalues and eigenvectors.
While all ecology graduate students have had training in calculus, it may have been
a while since they used it; a few have had experience of linear and matrix algebra;
very few have been exposed to eigenvalues and eigenvectors. Accordingly, Chapter 2
is a “mathematical toolbox” laying out the tools to be used in this book and providing
some exercises for you to practice using these tools without much reference to any
biology at first. This lays the foundations for a mathematical vocabulary for the
book. Many of these exercises will appear later in more ecological form.

I try whenever possible to derive the standard equations of mathematical ecology
from some more fundamental “first principles” of birth and death, probability of
two individuals meeting, and conservation of matter. Typically, these derivations are
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motivated by uncovering or relaxing some “hidden assumption” to address an unreal-
istic behavior in some prior, simpler model. In addition, intermediate steps in these
derivations often shed some light on what the final equation means: a lack of under-
standing of where the final equation came from can lead to misleading analogies and
conclusions. In addition, many derivations and proofs often depend on some trick
or turn of an argument in an intermediate step, and learning these tricks or turns of
an argument both enriches the ecological and mathematical underpinnings of a model
and often proves useful in derivations of other models.

Every chapter begins with an introduction to a new problem, usually motivated
by some problems unearthed in the previous chapter or chapters. These problems
are usually an unrealistic biological behavior of the previous, simpler models. We
then try to uncover the assumptions that may be responsible for the problem beha-
viors. The chapters usually proceed by mathematically relaxing these assumptions in
different ways and analyzing how this improves the model’s behavior (or not).

Every chapter ends with two sections, the first entitled: “Summary: what have we
learned?” which, besides the obvious summarizing of the main points, also brings
the discussion back to a wider plane. The final concluding section of each chapter
(except the Introduction and Mathematical Toolbox) is a section called “Open ques-
tions and loose ends.” Here, I point you in some directions and towards some papers
or texts about problems that lack of space does not allow me to go into. I also sug-
gest some open questions for you to consider. Some of these are small questions for
you to explore, perhaps as additional homework problems, but they may lead to larger
questions. Some of these are large open questions (such as control of chaos in popu-
lation models) which are at the current edge of research. I hope that these may help
you choose a thesis problem (if you are a graduate student) or research problem (if
you are already establishing your own program). I would welcome learning from you
any findings along these lines or about any papers that have addressed them that I
may not know about (and for which I apologize to the authors).

By introducing you to the mathematical tools required to analyze models of
populations, communities, and ecosystems, I hope to help you develop more rigorous
ways of thinking about the interaction of population and ecosystem dynamics. It is
my further hope that these ways of thinking will spawn more creative approaches to
these problems.

I have learned much by writing this book: oftentimes, connections have emerged
that neither I nor (I believe) anyone else has seen before. If you are already a pro-
fessional mathematical ecologist or mathematician, I hope that these connections
will surprise you as much as they did me. If you are a student, I hope you will learn
as much or more than I did and, in turn, teach me through the papers you will write.
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What is mathematical ecology
and why should we do it?

Let’s begin by looking again at the photograph in the Prologue and imagine yourself
walking through this forest. What do you see? Jot down a few things (this is your
first exercise). They need not be profound — in fact, it is best not to try to make them
profound. After all, Darwin constructed the most profound theory in biology by asking
ordinary questions about barnacles, birds, and tortoises, amongst many other things.

Perhaps you see big trees and little trees and think that big trees are older than
little trees. You also might notice that there are more little trees than big trees, and
so not every little tree grows up to be a big tree — most die young. But the little trees
must come from somewhere, namely seeds produced and shed by the bigger trees.
These are the core ideas of population ecology.

Or perhaps you might notice that there are some dead needles and leaves on the
ground and some standing dead trees which will eventually fall to the soil, the result
of the deaths of those young trees and plant parts. You also note that the live trees
have roots in the soil formed partly from those dead leaves and logs and surmise that
the trees obtain some nutrients from them. These are the core ideas of ecosystem
ecology.

These two views of the forest look very different, but they both contain biological
objects that interact with each other through hypothesized processes. When we model
a biological object such as a population, we begin by offering an analogy between it
and a mathematical object. Mathematically we will term these analogs state variables.
The processes usually represent a transfer of something (live individuals, seeds,
nutrients) from one biological object to another. Processes will be modeled by math-
ematical operations, such as addition, multiplication, subtraction, or powers. One or
more operations and the objects they operate on will be encapsulated into an equation,
specifically an equation which relates how one state variable partly determines the
state of itself and perhaps another at some point in the future. These equations will
contain, besides mathematical operations and state variables, some parameters, whose
values remain fixed while the state variables change. Each state variable will be
described by one equation. The time-dependent behavior of the state variables and
the magnitudes of the state variables at equilibrium are called the time-varying and
equilibrium solutions of the model, respectively. We then use the rigor of mathematics
to work through the logic of our thinking to gain some insight into the biological objects
and processes.

Therefore, mathematical ecology does not deal directly with natural objects.
Instead, it deals with the mathematical objects and operations we offer as analogs of
nature and natural processes. These mathematical models do not contain all informa-
tion about nature that we may know, but only what we think are the most pertinent

3
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for the problem at hand. In mathematical modeling, we have abstracted nature into
simpler form so that we have some chance of understanding it. Mathematical ecology
helps us understand the logic of our thinking about nature to help us avoid making
plausible arguments that may not be true or only true under certain restrictions.
It helps us avoid wishful thinking about how we would like nature to be in favor of
rigorous thinking about how nature might actually work.

What equations should we choose to use to model the dynamical relations
amongst the state variables? Of course, there are an infinite number of equations we
can choose, but we prefer equations that are simple to understand, are derived from
simple “first principles,” have parameters and operations that correspond to some
real biological process and are therefore potentially measurable, and produce surprising
results that lead to new observations. These four properties of these equations are
components of mathematical beauty. They are important criteria by which we judge
the utility of an equation or model because they help clarify our thinking. They often
force our thinking into new directions.

This is all well and good, but why should we play this game? Why not just state
hypotheses as clearly as we can and do the experiments to test them? One reason is
that we are often not sure of either the internal logic of our ideas and hypotheses or
their consequences. For example, state variables often affect and are affected by another
state variable. This mutual interaction between state variables is termed feedback.
Feedbacks are common in ecological systems — in fact, they are characteristic of all
interesting ecological systems. Systems with internal feedbacks are almost imposs-
ible to completely understand in an intuitive way. Without a clear understanding of
how the feedback works, it is also very difficult to do an experiment which manip-
ulates the feedback. It is easy to understand a chain of events where X influences
Y and Y influences Z, but what if Z also affects X? What then happens to Y? By
writing a system of equations, one for each of the state variables and using the
rules of mathematics, we can examine the logical structure of feedbacks and their
consequences.

Examining the properties of a system of equations allows us to pose further ques-
tions and determine how their answers might follow logically from their structure
and properties. For example, the population ecologist might wonder how the
proportion of individuals of a given age class changes over time, whether the pro-
portional distribution over all age classes ever settles down to a stable distribution,
and what that distribution is. The ecosystem ecologist might note that the world
surrounding the forest contributes material to it (in rainwater, for example) and the
forest contributes material back to the surrounding world (in the water leaching
out of the soil). He or she might wonder what difference it makes how and where
the material enters and leaves the ecosystem. Both ecologists might also wonder
what happens if we harvest some of a population or ecosystem: does the population
or ecosystem recover to its earlier state? How will it recover? Can we harvest so much
that the population or ecosystem will never recover? And what exactly is meant
by “recover”?

Examining these equations also allows us to uncover hidden assumptions about
our ideas and ask what happens when we relax those assumptions. For example, we
have assumed that each equation in our model applies equally well to every species
that is reasonably similar to the one we are studying. Well, do they? What difference
does it make if they aren’t similar to each other? How different do things have to be
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The nature of
theoretical problems
and their relation to
experiment

to make a difference in the system’s behavior? How do different species affect each
other? How does including additional tropic levels or other components affect the
behavior of the models?

Finally, mathematical modeling allows us to rigorously connect the two different
views of population and ecosystem ecologists. For example, the ecosystem ecologist
notices that the forest floor contains layers corresponding to different ages of leaf
litter from many years in the past. One year’s leaf litter is transferred into older decay
classes with each passing year. If the leaves are decomposing, something is being lost
from each age class of litter. The ecosystem ecologist pauses and notices that these
ideas bear a great deal of resemblance to the age class model of the population eco-
logist. Can we take the equations for the dynamics of the live populations and extend
them belowground into the leaf litter? This shows the real power of mathematical
abstraction. Once you recognize a structural correspondence between two different
systems, then the same equations and same mathematical techniques could apply to
both. If it turns out that this is the case, then the ecologist has discovered some under-
lying principle of organization in nature, a principle which he or she did not expect
when first observing a particular forest (or prairie or lake) and jotting down what
first caught his or her eye.

And that is what mathematical ecology is about.

In the process of abstracting nature into a mathematical model, we run into a num-
ber of theoretical problems. These are distinct from the sorts of problems experimenters
have to deal with. Most ecologists are familiar with experimental questions such as
measuring the response of an individual, population, or ecosystem to manipulations,
or determining the proper number of samples required to detect a difference
between mean values of measurements. In contrast to these experimental problems,
mathematical models of ecological systems address a variety of theoretical questions
regarding the logical consistency and consequences of ideas (Caswell 1988). While
measuring devices are the tools of the experimental ecologist, equations are the tools
of the mathematical ecologist. Equations are used to examine the following theoret-
ical problems (Caswell 1988):

Exploring the possible ranges of behavior of a natural system. In order to understand
why a particular natural system behaves as it does, it is useful to discover the range
of behaviors that is possible for the system to exhibit. The behavior of a particular
natural system is simply one realization of a family of possible behaviors. Models
delimit the theoretical range of behaviors that follow from simple assumptions (mass
balance, birth and death, etc). Experiments delimit the actual range of behaviors
realized in nature, or the realized subset of the set of possible behaviors. Sometimes,
by delimiting the full range of possible behaviors, models indicate new areas where
experiments need to be performed that no one had previously realized, such as in
extreme environments.

Exploring the logical consistency of ideas with a set of common axioms. Upon detailed
examination, we often find that many plausible ideas are not consistent with some
simple assumptions we must make about nature. Mathematical models allow one to
logically connect an idea or a hypothesis with some axiom about nature. Reiners (1986),
for example, offers several axioms upon which ecosystem ecology might be based.
Often, such theoretical exercises show that our hypotheses may be simply wishful
thinking. It is often said that beautiful theories are killed by ugly facts, but it is equally
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true that a beautiful hypothesis can be killed by being inconsistent with some more
fundamental axiom of how nature works.

Exploring the connections between different ideas or experimental results by deriving
them from a common set of assumptions. Oftentimes in ecology, different camps take
up one side of an argument or another, resulting in “either—or” false dichotomies.
Ecology is rife with these “either—or” arguments: either competition is important,
or it is not; food webs are controlled either by top-down forces or by bottom-up
forces; etc. The key word in all these arguments that creates the problem is the con-
junction “or.” Usually, there is ample experimental evidence for both sides of the
argument and so it is impossible for experimental ecology to clearly decide on one
side or the other. At such times, it is useful to ask: when does one thing happen
and when does the other thing happen? It may well be that there is some common
underlying model that produces both sides of the argument at different time scales,
for different parameter values, or for different initial conditions. Finding such a model
and showing the conditions that lead to one system behavior or the other is a very
important theoretical problem.

Evaluating the robustness of different approaches. An experimental result may be
consistent with a particular way of simplifying nature, but how robust are our con-
clusions to uncertainties in the details of the structure of the natural system? Do we
need to represent every age class in a population model, or can we aggregate age
classes? Do we need to measure the population dynamics of every microbe to pre-
dict the fate of a nutrient during decomposition, or can we aggregate microbes into
“microbial biomass”? How precisely do we need to measure minute-by-minute
changes in photosynthesis to predict tree growth several years into the future?
Can we even make predictions far into the future or is the natural system inherently
sensitive to very small differences in initial conditions? How fast does the accuracy
of our predictions decay with time?

Finding the simplest model capable of generating an observed pattern in nature. Such
a model would suggest the simplest set of experimental protocols required to experi-
mentally characterize a natural system. It could also pinpoint exactly which processes,
interactions, or parameter values are responsible for observed behavior. Whether such
a model is true to reality remains to be tested by experiment.

Predicting critical (falsifiable) consequences of verbal or conceptual theories. Pre-
diction is considered to be a precise numerical value for something that can be
measured, and so it often is. But prediction can also be qualitative, such as the shape
of a response curve. The shape of a response can distinguish one mechanism from
another. For example, different theories of nutrient uptake may yield response
curves with different shapes, suggesting that experimenters test hypotheses about mech-
anisms of nutrient uptake by distinguishing between uptake curves of different
shapes (O'Neill et al. 1989). Prediction can also be as simple (and as powerful)
as postulating the existence of a particular behavior, such as the existence of limit
cycles or other forms of complex population dynamics (Turchin 2003) or a decline
in nutrient use efficiency at low levels of nutrient availability (Pastor and Bridgham
1999). At an early stage of experimental investigation, precise prediction of the
magnitude of response may be unnecessary and being overly concerned with precise
prediction or “validation” may even obscure broader issues of which mechanism is
actually operating. We will have more to say about prediction and its role in model
evaluation shortly.
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Errors of perception
of mathematical
models

What do we expect
of mathematical
models?

There are several common errors of perception of mathematical models (Caswell 1988):

The only thing to do with a theory is to test its predictions with experiments. This has
to be done, but this ignores the role that rigorous mathematics can play in helping
us work out the logic of our ideas before we even begin to design or execute an experi-
ment. Much effort has been spent by myself and others on collecting data that in
the end bears no relationship to the hypothesis being tested. Sometimes, this is fine
because it helps us put the experiment in a larger context. It also allows us to serendipi-
tously make connections between processes that might otherwise not have been made.
But, since it also takes time and effort to collect data which may turn out to be un-
necessary, we may also miss collecting data that is essential. Every modeler has had the
experience of an experimentalist friend showing up with a boatload of hard-won data
and asking for help to construct a model, only to have to say upon examining the
data that much of it is not relevant to the experimenter’s own statement of their hypo-
thesis or that some key data required to construct a model of the hypothesis was not
collected. In the latter case, the modeler then says that we will have to assume certain
values. The conversation then usually deteriorates. The point here is that we should
know which data are essential to the test of a hypothesis and which are ancillary,
albeit desirable for other reasons. When we translate a hypothesis into a mathematical
model, the attempt to precisely define each parameter and variable in terms of an
analogous biological process or object helps clarify the essential data we need to collect.

Theories that are refuted by experiment should be abandoned. They can also be modified.
Perhaps the experiment is in error or itself has ignored an important process. Data
themselves may be in error, perhaps because of an unrecognized sampling bias. We
should be as skeptical of data as we are of theories. As Sir Arthur Eddington once
said, “Do not believe an experiment unless it is confirmed by theory.”

Modelers make assumptions, which are evil, and the worst assumption is that the system
is simple. Like many models, every experiment is based on a set of hidden assumptions.
For example, the statistical analysis of experimental data makes the assumption
that the natural system can be explained by linear models even though the system
being manipulated is clearly non-linear. Models at least make assumptions explicit
and also explicitly show the logical consequences of those assumptions, while the
assumptions of an experiment often go unrecognized. In addition, uncovering and
relaxing hidden assumptions of a model is a powerful theoretical tool to advance
our understanding, one that we shall use throughout this book.

The simplicity of many models often brings out strong reactions from many experi-
menters, who are often upset when a process that they have spent their career study-
ing and which is clearly operating in nature is not included in a model. The model
is then often said to “oversimplify” nature and should therefore not be trusted. This
is a healthy skepticism but it could also be directed against the experiments them-
selves. For example, most experiments (including my own) manipulate only two or
three factors and measure the response of a single state variable, while many models
consider two or more state variables and more than two or three parameters.
Therefore, many experiments often simplify the natural system of interest even more
than models.

Some ecologists (e.g., Peters 1991) have argued that ecologists should concentrate
solely on making quantitative predictions from models. Such a recommendation has
much to recommend it, not least of which is that it will facilitate the interface between
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models and experiments by demonstrating very specific and falsifiable consequences
of hypotheses.

Prediction is a good thing when you can get it, but we cannot always get it. Prediction
is often regarded as the highest test of a scientific theory — indeed, the ability to quan-
titatively predict something is often taken as the hallmark of a “hard” science. The
epitomes of the hard, predictive sciences are, of course, physics and astronomy. However,
predictive capability or the lack thereof may be “. .. an essential difference between
the biological as against the physical sciences, rather than a sine qua non of scientific
synthesis as such” (Holton 1978). There are several reasons why quantitative pre-
dictions are easier in physics than in ecology.

First, the entities that much of physics deals with, such as electrons and other
particles, are identical in all pertinent respects, whereas the basic entities of ecology,
namely individual organisms, vary quite a bit in their pertinent properties (and
necessarily so, as Darwin taught us). Second, physical relationships are often linear.
A linear model is one in which the size of something changes in proportion to itself
or the size of something else (we will explore linearity in more rigor in Chapter 2).
Linear models, as we shall see, exhibit simple behaviors. After all, much of the physics
of the everyday world is derived from F = ma, which is a linear model. Ecological
processes are inherently nonlinear (the size of something changes out of proportion
to itself or the size of something else), and we shall see that nonlinear models exhibit
very complex and surprising behaviors, stabilities, and instabilities (or bifurcations)
with small changes in parameters near critical values. Predicting the behaviors of non-
linear systems using nonlinear models is a daunting task.

The statistical design and analysis of experiments is based on linear models of expected
values of variables. We do not know how to design and analyze a nonlinear experi-
ment. Instead, we experimentally break the system into linear chunks within which
predictions are robust and easily falsifiable or verifiable. Models are useful in
reassembling those chunks and synthesizing results of many experiments. Finally, it
is well to note that in the branches of physics that deal with nonlinear processes,
such as turbulence in fluid dynamics, prediction is every bit as difficult as in
ecology.

Nonetheless, the physicist’s ability to simplify a problem to its essentials so that
first and foremost the tools of mathematical rigor and logic can be brought to bear
on the problem is a useful lesson for ecologists. When certain reasonable and almost
axiomatic constraints — such as the conservation laws — are imposed on our equa-
tions, the number of solutions is minimized. The constraints on the model also tend
to sharpen the differences between the solutions. This style of research produces insights
of remarkable clarity. The solutions could represent different communities, for
example, and discovering how the parameters and variables of a model lead to
different solutions can give great insight into what controls the diversity of life
without needing the model to make quantitative predictions. Predictive ability is
sought only after a general mathematical analysis of the situation and the possible
controlling factors. It is this style of thinking — the homing in on the essentials of a
problem and its translation into mathematics — that I think ecologists can borrow
from physicists, not the ability to make extremely precise predictions of properties,
which may be something peculiar to much of physics.

Not being able to make a prediction should not prevent us from grappling with
ideas. I don’t think Peters is saying that we should abandon an approach when it
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cannot give a quantitative prediction. Rather, I believe he is saying that we should
always have prediction in mind as a goal to work towards and in this I agree with
him. But too much of an emphasis on quantitative prediction can blind us to the
often more important and interesting qualitative behaviors of a model, such as when
limit cycles or spatial patterns suddenly appear.

Another problem with concentrating solely or even mainly on prediction is that it
can be quite easy to get very good predictions without gaining any understanding of
nature. For example, one can obtain a very long time series of data (weather data or
long-term population data, for example) and fit a model to it that is essentially a sum
of sine functions of different amplitudes, frequencies, and phases. In principle, one
can eventually get a model that goes through every point and will probably make
accurate predictions into the future, for a while at least. But why do the sine waves
have different frequencies, amplitudes, and phases, or for that matter why should
sine waves describe the data at all? What are the sine waves trying to tell us about
how nature works? Again, building models solely by fitting sine waves to data is a
bit of a caricature and nobody is really suggesting that this and only this is what we
should be doing, but it does serve to point out the problems of an overemphasis on
predictability as the goal of modeling.

Finally, there is the class of models (used frequently in ecosystem ecology) known
as simulation models, which are very complicated computer codes that try to depict
processes explicitly and often give very good predictions. These are valuable tools
and have certainly helped advance ecology and should not be abandoned. But, in my
own experience with simulation models whose development I have been a part of,
these models are often nearly as complicated as the system they are attempting to
depict. Therefore, while it is wonderful to see trajectories of ecosystem development
emerging on your computer screen when these models are run, why those traject-
ories are developing the way they are can be rather mysterious. There is a temptation
(which I myself have felt) for simulation modelers, when asked: “How do you think
such-and-such system works?,” to hand the questioner a disk containing computer
code and say “Just run this and you will see precisely what I think.” Needless to say,
the questioner does not always feel enlightened by this answer. Precise prediction
of a wide variety of natural phenomena using a model that incorporates many con-
ceivable ecological processes operating over a wide range of spatial and temporal
response scales is impressive output, but we want something other than this from a
model or theory.

What we require first and foremost of a model or theory is not prediction or repro-
duction of experimental results, but that it deepens and extends our understanding
of nature, or at least our understanding of how we think about nature. By under-
standing I mean that the model transparently shows how various complicated
phenomena, such as population cycles or sharp boundaries between ecosystems, emerge
naturally from the basic ecological processes of birth, death, immigration and
emigration, uptake of nutrients and water through roots or uptake of carbon
dioxide and energy through leaves, and consumption of one species by another. How
much of the complicated phenomena we see around us can be explained through
these few processes? Transparency of assumptions and model structure, how the model
relates to basic biological processes, and emergence of surprising results that bear
some resemblance to complicated behaviors of natural systems are the main things
we expect from models.
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How mathematics helps us better understand nature is actually not well under-
stood. Eugene Wigner called this “the unreasonable effectiveness of mathematics in
the natural sciences” (Wigner 1960). Wigner asked why should some of the most
abstract mathematical ideas of which we have no direct sensory experience have such
an uncanny ability to describe the natural world and deepen our understanding of
it? Neither Wigner nor anyone else has been able to answer that, but anyone who
has experienced this consilience between mathematics and the natural world knows
that it is a beautiful gift (Wilson 1998).

The mathematical models we will explore in this book have had a long history of
deepening our understanding of the ecological world. Their simplicity makes some
of the consequences of basic biological processes transparent but at the same time
they exhibit behaviors that surprise us. As we think more deeply about why we are
surprised by a model’s behavior and why it conforms to similar behaviors of real
populations and ecosystems, we gain a deeper understanding of why certain things
and not others might be happening in nature. Simplicity, transparency, emergence
of surprising results, and understanding are what we seek. You must be the judge of
whether you find them in any model.



Numbers,
operations,
and closure

Mathematical toolbox

In Chapter 1 we drew attention to the analogical, even metaphorical, relation
between mathematical objects and operations and biological objects and processes.
The use of metaphor and analogy in scientific reasoning is very deep and perhaps
not as well appreciated as it should be (Holton 1986). Because analogies between
two things are slippery, before we can properly use an analogy we must have a solid
understanding of both sides of it. Otherwise, an analogy becomes “. . . a form of rea-
soning that is particularly liable to yield false conclusions from true premises”
(Holton 1986). But if mathematical reasoning about the real world is an analogy, it
has the peculiar strength of allowing us to determine exactly where our reasoning
went false or whether we would arrive at the same conclusions from different but
equally true premises. In order to do this, we must understand mathematical objects
and operations as mathematical objects and operations first before we offer them as
analogs of biological objects and processes.

In this chapter, we will develop and explore some basic mathematical objects and
operations which will be used as analogs of biological objects and processes, respect-
ively. We will use this material in the rest of the book to sharpen our thinking about
ecological objects, the processes that they affect and which, in turn, act upon them.
If you have a working familiarity with limits, matrices, and eigenvalues, you can skip
this chapter. If not then it would be useful to spend time on this chapter so that later
we can concentrate on the biological meaning of the derivations and analyses of these
models without making too many side diversions into the mathematical techniques.
I hope that this chapter will introduce you to some of the ways mathematicians think
about things. I will occasionally “look ahead” and let you know the type of ecolo-
gical problems for which this chapter’s material will be used. But for now, I mostly
want you to just think about mathematics without worrying too much yet about how
it will be applied to ecology. Let's begin with numbers, which are perhaps the sim-
plest of all mathematical objects, but as you shall see, they are deceptively simple.

The origin of mathematics may lie in the needs of primitive humans to characterize
the magnitude of foods in relation to the size of a social unit: is there enough of
something to feed all of us? Numbers might have been invented as convenient short-
hand to keep track of essential resources and to determine if there is at least a 1:1
correspondence between the magnitude of resources and the size of the social unit
among which the resources need to be shared (Barrow 1993). It is interesting to think
that at least one plausible reason for the origin and early development of mathematics
might be a problem that will concern us throughout this book, namely the relation-
ship between a population and the resources that it must draw upon.

11
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It is difficult to imagine how one could even begin to “think” about population
density or the size of a pool of a particular nutrient without using numbers. Thinking
about populations or nutrients seems to require using numbers at such a basic level
that ecologists rarely give numbers and their mathematical properties a second
thought. It may come as a surprise to many “pure” experimentalists that when they
take data, they are implicitly doing mathematical modeling because they are asso-
ciating a mathematical object (a number) with a property of a biological object.
Indeed, we often proceed as if properties are defined in terms of numbers without
realizing that numbers are mathematical objects used to model some perceived mag-
nitude of a property. And so it may be good to begin our exploration of mathemat-
ical ecology by examining the properties of numbers and the basic operations which
are performed upon them. Much of the discussion of numbers that follows is loosely
based on chapter 22 from Feynman et al. (1963), which belongs in the repertoire of
any literate scientist.

We need to develop a set of numbers upon which we can perform operations. We
wish the set to be closed under the operation. By closure is meant that an operation
on any element of a set of objects will produce another object that is also a member
of that set. Closure avoids the problem of generating, by means of a mathematical
operation analogous to a biological process, a mathematical object which does not
belong to the set of mathematical objects that represents a set of biological objects.
Without closure, the analogy between mathematical and biological objects and
operations/processes would break down.

The natural numbers 1, 2, 3,...and 0 are the simplest sort of number. We will
take these as given and not go into the set theoretic notions required to construct
them from more basic concepts. What sort of operations are the natural numbers
and zero closed under? Which biological processes are modeled by these operations
and are these all the operations we need?

Beginning with 0, we generate the next natural number by adding 1:

a=a+1
Adding 1 to an object b times always generates a new natural number:
’
a=a+b

And so natural numbers are closed under addition. Suppose we start with 0 and add
a to it b times. We then get the operation of multiplication:

a=0+axh
Since

axXxb=b+b+b+--+b

a times

natural numbers are also closed under multiplication. If we start with 1 and multiply
it by a b times in a row, we get the operation of powers, under which natural numbers
are also closed:

a=a
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Besides the condition of equality, there is also the inequality conditions of > (greater
than) and < (less than), which we will also find useful. Addition and multiplication
of natural numbers are also closed under these inequality conditions, sometimes known
as monotonic laws (Klein 1932):

ifb>c, thena+b>a+c

ifb>c, thenaxb>axc

Natural numbers are closed not only under addition, multiplication, taking powers,
and the monotonic laws individually but also under various combinations and
sequences of these operations. Combining these three operations give us a rich set
of possibilities with which to manipulate natural numbers. Natural numbers are closed
under the following sets of combinations of these operations:

a+b=b+a a+(b+c)=(@+Db)+c
ab = ba a(b + ¢) =ab + ac
(ab)c = a(bc) (ab) = a‘b*

abac — a(b+c) (ab)c — a(bf)

There are also identity operations which take a number and return it. The natural
numbers are obviously closed under the identity operations. The identity operation
for addition is adding zero, that for multiplication is multiplying by 1, and that for
powers is raising any number to the power 1.

Functions are particular combinations of objects and operations. A function takes
some mathematical object or objects, x € A, performs operations on them, and returns
exactly one other object y € B. The objects, x, which functions take and change
are called the arguments of the function, or the independent variables. Independent
variables are usually acted upon by parameters, which are constants. The returned
value, y, is the dependent variable. The set of values which the function takes, A,
are called the domain and the set of acceptable values for the returned value, B, is
called the range of the function. Although a function must return only one value y
for each value of x, it can return the same value for several values of x. Functions
are usually expressed as equations, but a table consisting of a column of values of an
independent variable with a corresponding paired column of values of the depend-
ent variable is also a function. A contour map is also a function that takes a
latitude, longitude pair of numbers and returns a single elevation for that point on
the surface of an object (such as the Earth). Whether they are tables, maps, equa-
tions or algorithms, functions associate each argument with a single returned value
through their operations.

The standard symbol for the value of an argument is x (or, for many population
models, N) and the returned value from the function is f(x) (or f(N)). Strictly speak-
ing, the function itself is not f(x) — the function is f, which stands for the “rules” or
sequence of operations. Sometimes we see the statement y = f(x), but that means
y is the returned value after the function operates on x; y is not the function. For
example, in the function b = 54, a is the argument, 5 is a parameter, b is the returned
value, and the function is the rule: “multiply a by 5 and return the value b.”
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One of the keys to creating helpful biological models is to be able to associate each
variable with a measurement of a biological object that can change in time or over
space (e.g., mass, population density, nutrient content), each parameter with some
constant property of the object (e.g., specific heat, input, per capita birth rate or death
rate), and the operations with some biological process (e.g., birth, death, decay, har-
vesting, etc.). The relationship between a hypothesis about how a process operates
on biological objects and the analogous mathematical function is then clarified.

For each operation, we also want to have an inverse operation that undoes the
result of the first operation. The inverse of addition is subtraction. If a + b = ¢, then
a = c — b. Now, the set of natural numbers is not closed under subtraction because
subtraction of one natural number from another does not always yield another
natural number. For example the operation 3 — 5 makes no sense in the set of
natural numbers. What should we do? Clearly, subtraction is sometimes very useful
as the above example shows. Let’s assume that subtraction is “true” in some sense
and define new mathematical objects that are closed under subtraction so that we
can use them to solve equations without generating something undefined. This is
of course the set of integers, which is all the natural numbers plus negative whole
numbers. This object allows us to solve the above equation, yielding 3 — 5 = 2.
Enlarging the set of objects to maintain closure under new operations is the strategy
that mathematicians have used when faced with similar situations. This strategy
has the advantage that the new set of objects remains closed under all the previous
operations that the more restricted set is closed under and it is also closed under
the new operation.

Using the set of integers, addition, and its inverse subtraction, we are now ready
to make our first mathematical model of a biological process. This is a model for the
population growth of a bee colony: There is one queen that produces b offspring over
some as yet unspecified but still definite period of time and a workers who don’t
reproduce. The set of positive integers is the mathematical object of which one mem-
ber is analogous to the size of the hive, b is another object from the set of positive
integers analogous to the number of new offspring, and adding is the mathematical
operation analogous to reproduction by one queen. Nj is the size of the original colony
of one queen and a workers before the queen reproduces and N, is the size of the
colony after the queen produces b offspring. Thus, the new population is formed by
the bees in a manner analogous to addition on natural numbers:

No=a+1

N,

No+b=(@+1)+b
If we subtract the first equation from the second we get:
N -Ny=(@+1)+b-(@+1=b

and so b is the rate of change of the bee colony (number of new individuals) over
some span of time.

Let's make a model of a different kind of population in which each of a organisms
can produce b offspring apiece during some unspecified but still definite time period,
such as a population of protozoan that can reproduce by mitosis or that of a plant
species in which each individual can produce viable seeds. We now have a new
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population which requires the operation of multiplication to stand for reproduction
instead of addition:

Ny=a

N, =Ny +bNy=a+ba

Subtracting the first equation from the second gives the net change in the popula-
tion during the time period, or

N, - Nyo=a+ba—a=ha

Thus, multiplication on the set of integers is a mathematical operation that yields a
new model of population growth, one that is faster than addition because a > 1 and
therefore ba > b. We will later show that this is the basic idea underlying exponen-
tial growth. Therefore, not only is the growth of a bee colony slower than that of
populations of many other organisms, also it is fundamentally different because it is
modeled by different mathematical operations.

These two examples are known as recursive models because they take the previous
returned value of the dependent variable and use it in the next step as the argument
to get or “map” the next value for the dependent variable. Recursive models operate
in steps and the rate of change obtained by subtracting one step from the next is
called a difference equation. There is an implicit delay in the process going from
one step to the next. This delay in recursive models causes some peculiar behaviors,
as we shall see in Chapter 6.

Integers thus allow us to count discrete objects such as individuals and manip-
ulate them by means of multiplication, addition, and its inverse subtraction. But there
are many quantities that interest us which can’t be counted because they vary con-
tinuously, such as mass, population density per unit area, light levels, nutrient con-
tent, and nutrient concentration. These we must measure, not count. The measured
values usually fall between the discrete values used for counting. Thus, to model
measurements we must be able to express a fraction of an integer unit. This, of course,
requires division. Division is also the inverse of multiplication but the integers are
not closed under the operation of division: 3/5 does not yield a number that can be
expressed as an integer. Therefore, for the empirical reason of being able to express
continuous measurements and also the mathematical reason of being able to use the
operation of division, we have to proceed further by assuming division to be closed
for all members of another class of numbers and define that class, which is the set
of rational numbers (e.g., 3/5 = 0.600 000). A feature of all rational numbers is that
the sequence of numbers to the right of a decimal point eventually either falls into
a repeatable pattern, or ends with 000 . . .

It is easy to prove there are an infinite number of rational numbers. Take any rational
number p/q in which p and q do not have any common divisors (otherwise we can
simply factor them out). Add 1 to either p or q or both. The result is another rational
number, p’/q’ because p and q are both integers and integers are closed under the
operation of adding 1. Generate yet another rational number by applying the same
processes to p’” and ¢, ad infinitum.

But unlike the integers, rational numbers are “dense” in the sense that the gaps
between successive integers are filled by the rational numbers such that between any
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two rational numbers, no matter how close, we can always construct another. Here’s
how: take any two rational numbers p and q where p > q. Then there is some
distance p — q between p and q. Divide this distance by any number (2 will give
the midpoint of the distance, so let’s use 2 for convenience). Add this new number,
(p — @)/2, to q. We now have a new number ¢’ = q + (p — q)/2, which is also rational
because it can be put into the form (p + ¢q)/2. Therefore, the average of p and q is
another rational number, ¢, that lies between p and q (ie., ¢ < ¢’ < p). Now con-
struct another rational number between g and ¢ in the same way and iterate ad infinitum.
We have just demonstrated how to construct a sequence of rational numbers that
gets as close to q as we please and without ever reaching a stopping point by remain-
ing in an interval from q to q" which is arbitrarily small. Note that we have not defined
density as every rational number being “next to” or “immediately adjacent to”
another rational number. Instead we have defined density as a sequence of opera-
tions which yields a rational number which can be made arbitrarily close to g by
constructing intervals that are arbitrarily small but that still contain at least one
rational number. This is a preview of problems that will be addressed by the con-
cept of limits.

What happens when we take negative numbers as a power? In other words,
what is the value of: a®™, where a is a natural number? Division provides the answer.
We know from one of the above operations under which natural numbers are closed
that

a( 3-5) aS — a3

and by using the definition of division as the inverse of multiplication on a number,
V=l =(axaxa)axaxaxaxa)=1/(axa) = 1/a*

but a® also equals a, so a = 1/a*. Therefore, taking a negative power of a natural
number is equal to the multiplicative inverse of a number raised to the positive
magnitude of that power.

Division gives us the ability to more precisely and operationally define what we
mean by “rate of change.” In the above simple models of population growth, the rate
of growth is somehow captured by b new individuals per reproductive individual over
some unspecified but still definite period of time. How do we measure b? Well, we
go out and watch a single reproductive individual over some period of time and count
the number of new individuals produced. But clearly the data we obtain will depend
on how long we count — someone else could get a different estimate of b simply by
counting for a different length of time. We don’t want our measurements to depend
on such trivialities as how long to count, so we need to express rate in terms of some
basic unit of time. To do this, we must count not only the numbers of new indi-
viduals but the numbers of time units elapsed during the measurement. We then
divide N, — N, by t, — t,, where t, and ¢, are the end and beginning clock readings
during the time of our counting:

N-N, (a@a+D)+b-(a+1) b
4L =1 t —t t =t

:b,




