




Hedge Fund
Modelling and

Analysis



The Wiley Finance series contains books written specifically for finance and investment
professionals as well as sophisticated individual investors and their financial advisors.
Book topics range from portfolio management to e-commerce, risk management, financial
engineering, valuation and financial instrument analysis, as well as much more. For a list
of available titles, visit our website at www.WileyFinance.com.

Founded in 1807, John Wiley & Sons is the oldest independent publishing company
in the United States. With offices in North America, Europe, Australia and Asia, Wiley
is globally committed to developing and marketing print and electronic products and ser-
vices for our customers’ professional and personal knowledge and understanding.

http://www.WileyFinance.com


Hedge Fund
Modelling and

Analysis
An Object Oriented Approach Using C++

PAUL DARBYSHIRE
DAVID HAMPTON



This edition first published 2017
© 2017 Paul Darbyshire and David Hampton

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United
Kingdom

For details of our global editorial offices, for customer services and for information about how to apply
for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with
the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior
permission of the publisher.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in
print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version
you purchased, you may download this material at http://booksupport.wiley.com. For more information
about Wiley products, visit www.wiley.com.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The publisher is not associated with any product or
vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is
not engaged in rendering professional services and neither the publisher nor the author shall be liable
for damages arising herefrom. If professional advice or other expert assistance is required, the services
of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data is available

A catalogue record for this book is available from the British Library.

ISBN 978-1-118-87957-3 (hbk) ISBN 978-1-118-87955-9 (ebk)
ISBN 978-1-118-87956-6 (ebk) ISBN 978-1-118-87954-2 (ebk)

Cover Design: Wiley
Cover Images: Top Image: ©iStock.com/agsandrew

Bottom Image: ©iStock.com/Storman

Set in 11/13pt Times by Aptara Inc., New Delhi, India
Printed in Great Britain by TJ International Ltd, Padstow, Cornwall, UK

http://www.wiley.com
http://booksupport.wiley.com
http://www.wiley.com


Mum and Dad,

Whose love and support encourages me to achieve success.
– P.D.

For Marie-Christine, Juliette and Antoine.
– D.H.





Contents

Preface xi

CHAPTER 1
Essential C++ 1

1.1 A Brief History of C and C++ 1
1.2 A Basic C++ Program 2
1.3 Variables 4

1.3.1 Characters and Strings 5
1.3.2 Variable Declarations 8
1.3.3 Type Casting 9
1.3.4 Variable Scope 10
1.3.5 Constants 11

1.4 Operators 12
1.4.1 The Assignment Operator 12
1.4.2 Arithmetic Operators 14
1.4.3 Relational Operators 15
1.4.4 Logical Operators 16
1.4.5 Conditional Operator 17

1.5 Input and Output 18
1.6 Control Structures 21

1.6.1 Branching 21
1.6.2 Looping 25
1.6.3 The for Loop 25
1.6.4 The while Loop 27
1.6.5 The do … while Loop 29

1.7 Arrays 30
1.8 Vectors 31
1.9 Functions 33

1.9.1 Call-by-Value vs. Call-by-Reference 36
1.9.2 Overloading Functions 39

1.10 Object Oriented Programming 41
1.10.1 Classes and Abstract Data Types 42

vii



viii CONTENTS

1.10.2 Encapsulation and Interfaces 43
1.10.3 Inheritance and Overriding Functions 44
1.10.4 Polymorphism 45
1.10.5 An Example of a Class 46
1.10.6 Getter and Setter Methods 49
1.10.7 Constructors and Destructors 52
1.10.8 A More Detailed Class Example 55
1.10.9 Implementing Inheritance 61
1.10.10 Operator Overloading 64

CHAPTER 2
The Hedge Fund Industry 71

2.1 What are Hedge Funds? 71
2.2 The Structure of a Hedge Fund 74

2.2.1 Fund Administrators 74
2.2.2 Prime Brokers 75
2.2.3 Custodian, Auditors and Legal 76

2.3 The Global Hedge Fund Industry 77
2.3.1 North America 79
2.3.2 Europe 80
2.3.3 Asia 81

2.4 Specialist Investment Techniques 82
2.4.1 Short Selling 82
2.4.2 Leverage 83
2.4.3 Liquidity 84

2.5 Recent Developments for Hedge Funds 85
2.5.1 UCITS Hedge Funds 85
2.5.2 The European Passport 88
2.5.3 Restrictions on Short Selling 88

CHAPTER 3
Hedge Fund Data Sources 91

3.1 Hedge Fund Databases 91
3.2 Major Hedge Fund Indices 92

3.2.1 Non-Investable and Investable Indices 92
3.2.2 Dow Jones Credit Suisse Hedge Fund Indices

(www.hedgeindex.com) 94
3.2.3 Hedge Fund Research (www.hedgefundresearch.com) 100
3.2.4 FTSE Hedge (www.ftse.com) 102
3.2.5 Greenwich Alternative Investments (www.greenwichai.com) 104
3.2.6 Morningstar Alternative Investment Center (www.

morningstar.com/advisor/alternative-investments.htm) 108

http://www.hedgeindex.com
http://www.hedgefundresearch.com
http://www.ftse.com
http://www.greenwichai.com
http://www.morningstar.com/advisor/alternative-investments.htm
http://www.morningstar.com/advisor/alternative-investments.htm


Contents ix

3.2.7 EDHEC Risk and Asset Management Research Centre
(www.edhec-risk.com) 112

3.3 Database and Index Biases 113
3.3.1 Survivorship Bias 113
3.3.2 Instant History Bias 115

3.4 Benchmarking 115
3.4.1 Tracking Error 116

CHAPTER 4
Statistical Analysis 119

4.1 The Stats Class 119
4.2 The Utils Class 120
4.3 The Import Class 123
4.4 Basic Performance Plots 127

4.4.1 Value Added Index 127
4.4.2 Histograms 130

4.5 Probability Distributions 131
4.5.1 Populations and Samples 132

4.6 Probability Density Function 133
4.7 Cumulative Distribution Function 134
4.8 The Normal Distribution 134

4.8.1 Standard Normal Distribution 136
4.9 Visual Tests for Normality 136

4.9.1 Inspection 136
4.9.2 Normal Probability Plot 137

4.10 Moments of a Distribution 138
4.10.1 Mean and Standard Deviation 138
4.10.2 Skew 141
4.10.3 Kurtosis 142

4.11 Covariance and Correlation 146
4.12 Linear Regression 158

4.12.1 Coefficient of Determination 163
4.12.2 Residual Plots 167

CHAPTER 5
Performance Measurement 173

5.1 The PMetrics Class 173
5.2 The Intuition Behind Risk-Adjusted Returns 174

5.2.1 Risk-Adjusted Returns 182
5.3 Absolute Risk-Adjusted Return Metrics 184
5.4 The Sharpe Ratio 187
5.5 Market Models 191

http://www.edhec-risk.com


x CONTENTS

5.5.1 The Information Ratio 192
5.5.2 The Treynor Ratio 197
5.5.3 Jensen’s Alpha 203
5.5.4 M-Squared 205

5.6 The Minimum Acceptable Return 207
5.6.1 The Sortino Ratio 207
5.6.2 The Omega Ratio 211

CHAPTER 6
Mean-Variance Optimisation 213

6.1 The Optimise Class 213
6.2 Mean-Variance Analysis 214

6.2.1 Portfolio Return and Variance 214
6.2.2 The Mean-Variance Optimisation Problem 229
6.2.3 The Global Minimum Variance Portfolio 244
6.2.4 Short Sale Constraints 246

CHAPTER 7
Market Risk Management 247

7.1 The RMetrics Class 247
7.2 Value-at-Risk 248
7.3 Traditional VaR Methods 251

7.3.1 Historical Simulation 251
7.3.2 Parametric Method 254
7.3.3 Monte-Carlo Simulation 261

7.4 Modified VaR 263
7.5 Expected Shortfall 266
7.6 Extreme Value Theory 271

7.6.1 Block Maxima 272
7.6.2 Peaks Over Threshold 272

References 277

Index 279



Preface

T his book is a practical introduction to modelling and analysing hedge funds using
the C++ programming language. The structure of the book is as follows. Chap-

ter 1 gives an overview of the C++ syntax in enough detail to approach the material
covered in the technical chapters. Chapter 1 also introduces the concept of object ori-
ented programming which allow us to build large and complex programs that can be
broken down into smaller self-contained reusable code units known as classes. We
will develop a series of classes throughout the book to tackle many of the problems
encountered. Please note that this book is not intended to be an exhaustive exploration
of C++ to solve problems in modelling and analysing hedge fund data. In addition,
C++ is used to facilitate the solution of such problems through object oriented pro-
gramming methods and various details highlighted as and when necessary.

Chapters 2 and 3 give an update of the current state of the global hedge fund indus-
try and a detailed look at the primary data sources available to hedge fund managers
and analysts. With this fundamental knowledge in place, Chapters 4–7 cover the more
quantitative and theoretical material needed to effectively analyse a series of hedge
fund returns and extract the relevant information required in order to make critical
investment decisions.

C++ SOURCE CODE

Throughout the book there are numerous C++ source boxes (e.g., Source 2.4) typi-
cally listing the AClass.h, AClass.cpp, and main.cpp files and a console win-
dow showing the results of the class implementation. For example, an extract from
the Optimise class is shown in Source P.1.

SOURCE P.1: A SAMPLE C++ SOURCE CODE

// Optimise.h
#pragma once;

xi



xii PREFACE

#include "Matrix.h"
#include "Stats.h"

class Optimise: public Stats
{

public:
Optimise() {}
virtual ~Optimise() {}

// Member function declarations
Matrix PRet(const V2DD& v); // PRet()
Matrix PVar(const V2DD& v); // PVar()

private:
// Member variable declarations
Matrix m_matrix; // An instance of the Matrix class

};

// Optimise.cpp
#include "Optimise.h"

Matrix Optimise::PRet(const V2DD& v)
{
UINT n = v[0].size()-1;

// Declare wT and R matrices
Matrix wT = Matrix(1, n);
Matrix R = Matrix(n, 1);

// Transpose weights
for (UINT i=1; i<=n; i++)

wT(1, i) = 1 / (DBL)n; // Equal weights

// Mean returns
V1DD r = Mean(v, 12);

// R matrix
for (UINT i=1; i<=n; i++)
R(i, 1) = r[i-1];

return wT * R;
}

Matrix Optimise::PVar(const V2DD& v)
{



Preface xiii

UINT n = v[0].size()-1;

// Declare w, wT and VCV matrices
Matrix w = Matrix(n, 1);
Matrix wT = Matrix(1, n);
Matrix VCV = Matrix(n, n);

// Initialise portfolio weights
for (int i=1; i<=n; i++)

w(i, 1) = 1 / (DBL)n; // Equal weights

// Transpose weights
for (int i=1; i<=n; i++)
wT(1, i) = 1 / (DBL)n; // Equal weights

// Covariance matrix
V1DD cov = Cov(v);

// VCV matrix
int k = 0; // Covariance offset
for (UINT i=1; i<=n; i++)
{

for (UINT j=1; j<=n; j++)
{

VCV(i, j) = cov[j+k-1];
if(i == j)
VCV(i, j) *= 12; // Annualise variance

}
k+=10;

}

return wT * VCV * w;
}

// ...
// main.cpp
// ...

// Create class instances
Import thfs;
Optimise optimise;

// Declare and call GetData()
V2DD data = thfs.GetData("./data/10_hedge_funds.dat");



xiv PREFACE

// Declare and call PRet() and PVar() member function
Matrix pret = optimise.PRet(data);
Matrix pvar = optimise.PVar(data);

// Output results
cout << "\n Port. Ret. (%) = ";
pret.Print();
cout << " Port. Var. (%) = ";
pvar.Print();

// ...

Comment blocks, such as:

// ...
// main.cpp
// ...

are used to omit parts of the source code (above and below) when new code is added
to existing definitions or implementations. As we progress through the book we will
gradually reduce unnecessary overuse of comments (//) within source listings once
we feel confident we have clearly defined such routines and concepts in previous
listings.

Please note that we do not give any warranty for completeness, nor do we guar-
antee that the code is error free. Any damage or loss incurred in the application of
the C++ source code, algorithms and classes discussed in the book are entirely the



Preface xv

TABLE P.1 10 Hypothetical Hedge Funds

Hedge Fund Abbreviation

Commodity Trading Advisor CTA1, CTA2, CTA3

Long Short Equity LS1, LS2, LS3

Global Macro GM1, GM2

Market Neutral MN1, MN2

reader’s responsibility. If you notice any errors in the C++ source code, algorithms
or classes, or you wish to submit some new method as a C++ function, algorithm,
class, model or some improvement of the method illustrated in the book, you are very
welcome.

HYPOTHETICAL HEDGE FUND DATA

Throughout the book there is constant reference to many monthly hedge fund return
series. The 10 hedge funds are all hypothetical and have been simulated by the authors
as a unique data set for demonstration purposes only. The techniques and models used
in the book can therefore be tested on the hypothetical data before being applied to
real-life situations by the reader. The hypothetical data is nonetheless close to what
would be expected in reality. The 10 funds are a mixture of several major hedge fund
strategies i.e. Commodity Trading Advisor (CTA), Long/Short Equity (LS), Global
Macro (GM) and Market Neutral (MN) strategies as described in Table P.1.

All data files used throughout the book are identified in italics e.g.
10_hedge_funds.dat.

BOOK WEBSITE

The official website for the book is located at: www.darbyshirehampton.com
The website provides free downloads to all of the hypothetical data, C++ pro-

grams and classes, as well as many other useful resources.
The authors can be contacted on any matter relating to the book, or in a profes-

sional capacity, at the following email addresses:

Paul Darbyshire: pd@darbyshirehampton.com

David Hampton: dh@darbyshirehampton.com

let &hbox {char '046}www.darbyshirehampton.com
http://www.darbyshirehampton.com
let &hbox {char '046}pd@darbyshirehampton.com
http://pd@darbyshirehampton.com
let &hbox {char '046}dh@darbyshirehampton.com
http://dh@darbyshirehampton.com




CHAPTER 1
Essential C++

T his chapter covers the fundamental requirements necessary to allow the reader to
get up and running building quantitative models using the C++ programming lan-

guage. This introduction is in no way intended to be an in-depth treatment of the C++
programming language but more an overview of the basics required to build your own
efficient and adaptable programs. Once the key concepts have been developed, object-
oriented principles are introduced and many of the advantages of building quantita-
tive systems using such programming approaches are outlined. It is assumed that the
reader will have some prerequisite knowledge of a low-level programming language
and the necessary computation skills to effectively grasp and apply the material pre-
sented here.

1.1 A BRIEF HISTORY OF C AND C++

C is a procedural1 programming language developed at Bell Laboratories between
1969 and 1973 for the UNIX operating system. Early versions of C were known as
K&R C after the publication of the book The C Programming Language written by
Brian Kernighan and Dennis Ritchie in 1978. However, as the language developed
and became more standardised, a version known as ANSI2 C became more prominent.
Although C is no longer the choice of many developers, there is still a huge amount of
legacy software coded in it that is actively maintained. Indeed, C has greatly influenced
other programming languages, in particular C++ which began purely as an extension
of C.

1 Procedural programming is a form of imperative programming in which a program is built from one or
more procedures i.e. subroutines or functions.
2 Founded in 1918, the American National Standards Institute (ANSI) is a private, non-profit membership
organisation that facilitates the development of American National Standards (ANS) by accrediting the
procedures of the Standards Developing Organizations (SDOs). These groups work cooperatively to
develop voluntary national consensus standards.

1



2 HEDGE FUND MODELLING AND ANALYSIS

Often described as a superset of the C language, C++ uses an entirely differ-
ent set of programming concepts designed around the Object-Oriented Programming
(OOP) paradigm. Solving a computer problem with OOP involves the design of so-
called classes that are abstractions of physical objects containing the state, members,
capabilities and methods of the object. C++ was initially developed by Bjarne Strous-
trup in 1979 whilst at Bell Laboratories as an enhancement to C; originally known
as C with Classes. The language was renamed C++ in the early 80s and by 1998,
C++ was standardised as ANSI/ISO3 C++. During this time several new features
were added to the language, including virtual functions, operator overloading, multi-
ple inheritance and exception handling. The ANSI/ISO standard is based on two main
components: the core language and the C++ Standard Library that incorporates the
C Standard Library with a number of modifications optimised for use with the C++
language. The C++ Standard Library also includes most of the Standard Template
Library (STL); a set of tools, such as containers and iterators that provide array-like
functionality, as well as algorithms designed specifically for sorting and searching
tasks. C++11 is the most recent complete overhaul of the C++ programming lan-
guage approved by ANSI/ISO on 12 August 2011, replacing C++03, and superseded
by C++14 on 18 August 2014. The naming convention follows the tradition of naming
language versions by the year of the specification’s publication, although it was for-
merly known as C++0x to take into account many publication delays. C++14 is the
informal name for the most recent revision of the C++ ANSI/ISO standard, intended
to be a small extension over C++11, featuring mainly bug fixes and small syntax
improvements.

1.2 A BASIC C++ PROGRAM

Without doubt the best method of learning a programming language is to actually start
by writing and analysing programs. Source 1.1 implements a basic C++ program that
simply outputs a string of text, once the program has been compiled and executed, to
the console window. Although the program looks very simple it nevertheless contains
many of the fundamental components that every C++ program generally requires.

SOURCE 1.1: A BASIC C++ PROGRAM

// main.cpp
#include <windows.h>
#include <iostream>

3 The International Organisation for Standardisation (ISO) is an international standard-setting body
made up of representatives from a range of National Standards Organisations (NSOs).



Essential C++ 3

using std::cout;
using std::cin;

int main()
{
SetConsoleTitle(L"Console Output"); // Set title of console
window

cout << "\n " << "Hedge Fund Modelling and Analysis: An Object
Oriented Approach Using C++";

cin.get(); // Pause console window
return 0; // Return null integer and exit

}

Statements beginning with a hash symbol (#) indicate directives to the preproces-
sor that initialise when the compiler is first invoked, in this case, to inform the compiler
that certain functions from the C++ Standard Library must be included. #include
<windows.h> gives the program access to certain functions in the library, such as
SetConsoleTitle() whilst #include <iostream> enables console input and
output (I/O). Typical objects in the iostream library include cin and cout which
are explicitly included through the using statement at the top of the program. Writ-
ing using std::cout at the top of the program avoids the need to keep retyp-
ing std through the scope resolution operator (::) every time cout is used. For
example, if we had not specified using std::cout we would have to explicitly
write std in front of each usage throughout the program, that is:



4 HEDGE FUND MODELLING AND ANALYSIS

std::cout << "\n " << "Hedge Fund Modelling and Analysis: An Object
Oriented Approach Using C++";
std::cin.get();

Although in this case there are only two occasions where we need std, you can
imagine how this could quickly clog up code for very large programs. Note also that
all C++ statements must end with a semi-colon (;).

A commonly identified problem with the C language is the issue of running out of
names for definitions and functions when programs reach very large sizes eventually
resulting in name clashes. Standard C++ has a mechanism to prevent such a clash
through the use of the namespace keyword. Each set of C++ definitions in a library
or program is wrapped into a namespace, and if some other definition has an identical
name, but is in a different namespace, then there is no conflict. All Standard C++
libraries are wrapped in a single namespace called std and invoked with the using
keyword:

using namespace std;

Whether to use using namespace std or explicitly state their use through
using std::cout, for example, is purely a preference of programming style. The
main reason we do not invoke using namespace std in our programs is that this
leaves us the opportunity of defining our own namespaces if we wish and it is generally
good practice to have only one namespace invocation in each program.

The main() function is the point at which all C++ programs start their execution
even if there are several other functions declared in the same program. For this reason,
it is an essential requirement that all C++ programs have a main() function within
the body at some point in the program. Once the text is output to the console window,
cin.get() is used to cause the program to pause so that the user can read the output
and then close and exit the window by pressing any key. Technically, in C or C++
the main() function must return a value because it is declared as int i.e. the main
function should return an integer data type. The int value that main() returns is
usually the value that will be passed back to the operating system; in this case it is 0
i.e. return 0 which indicates that the program ran successfully. It is not necessary
to state return 0 explicitly, because the compiler invokes this automatically when
main() terminates, but it is good practice to include a return type for all functions
(including main()).

1.3 VARIABLES

A variable is a name associated with a portion of memory used to store and manipulate
the data associated with that variable. The compiler sets aside a specific amount of
memory space to store the data assigned to the variable and associates the variable
name with that memory address. As the name implies, variables can be changed within
a program as and when required. When new data is assigned to the same variable, the
old data is overwritten and restored in the same memory address. The data stored in a



Essential C++ 5

TABLE 1.1 Reserved C++ keywords

asm, auto, bool, break, case, catch, char, class, const,
const_cast, continue, default, delete, do, double,
dynamic_cast, else, enum, explicit, export, extern, false,
float, for, friend, goto, if, inline, int, long, mutable,
namespace, new, operator, private, protected, public,
register, reinterpret_cast, return, short, signed, sizeof,
static, static_cast, struct, switch, template, this,
throw, true, try, typedef, typeid, typename, union,
unsigned, using, virtual, void, volatile, wchar_t, while

variable is only temporary and only exists as long as the variable itself exists (defined
by the scope of the variable). If the data stored in a variable is required beyond its
existence then it must be written to a permanent storage device, such as a disk or file.

A variable name can be any length and composed of lower and upper case letters,
numbers and the underscore (_) character, but keep in mind that variables are case-
sensitive. In practice, a programmer will usually develop their own variable naming
convention but bear in mind that C++ reserves certain keywords for variable names
so try not to clash with these. Table 1.1 shows a list of reserved C++ keywords.

There are sevenal built-in data types provided by C++ along with specific type
modifiers to further quantify the data. A complete list of all the data types and their
associated modifiers are described in Table 1.2.

In Table 1.2, other than char (which has a size of exactly one byte), none of
the fundamental types has a standard size (only a minimum size, at most). This does
not mean that these types are of an undetermined size, but that there is no standard
size across all compilers and machines; each compiler implementation can specify
the sizes that best fit the architecture where the program is going to be executing. This
rather generic size specification of data types allows the C++ language a lot of flexi-
bility in adapting to work optimally on all kinds of platforms, both present and future.

1.3.1 Characters and Str ings

When using the char data type, we use single quotes, for example:

char Stock = 'MSFT';

Certain characters, such as single ('') and double ("") quotes have special mean-
ing in C++ and have to be treated with care. In addition, C++ reserves special
characters for formatting text and other processing tasks known as character escape
sequences (or backslash character constants) as shown in Table 1.3.

A more versatile data type than char is string which can be a combination of
characters, numbers, spaces and symbols of any length. C++ does not have a built-in
data type to hold strings instead it is defined in the C++ Standard Library through
the inclusion of the header file <string>. An example of using string variables is
shown in Source 1.2.



6 HEDGE FUND MODELLING AND ANALYSIS

TABLE 1.2 Common C++ data types

Name Description
Size
(Bytes) Range

char

Character

1 -128 to 127

unsigned char 1 0 to 255 (ASCII characters)

signed char 1 -128 to 127 (ASCII characters)

int

Integer number

4 -2,147,483,648 to
2,147,483,647

unsigned int 4 0 to 4,294,967,295

signed int 4 -2,147,483,648 to
2,147,483,647

short int 2 -32,768 to 32,767

unsigned short int 2 0 to 65,535

signed short int 2 -32,768 to 32,767

long int 4 Same as int

unsigned long int 4 Same as unsigned int

signed long int 4 Same as signed int

float Floating point number 4 3.4E-38 to 3.4E+38

double Double precision
floating point number

8 1.7E-308 to 1.7E+308

long double 10 3.4E-4932 to 1.1E+4932

bool Boolean value 1 True or False

string As required Any length

wchar_t Wide character 2 0 to 65,535

TABLE 1.3 Character escape sequences

Sequence Output

\n New line

\t Tab

\b Back space

\? Question mark

\f Page feed

\a Alert (beep)

\\ Backslash

\’ Single quote

\” Double quote



Essential C++ 7

SOURCE 1.2: STRING VARIABLES

// main.cpp
#include <windows.h>
#include <iostream>
#include <string>
using std::cout;
using std::cin;
using std::string;

int main()
{
SetConsoleTitle(L"Console Output"); // Set title of console
window

//declare two string variables
string strFirstName = "Paul";
string strLastName = "Darbyshire";

//concatenate the two strings
string strFullName = strFirstName + " " + strLastName;

cout << "\n " << strFullName;

cin.get(); // Pause console window
return 0; // Return null integer and exit

}



8 HEDGE FUND MODELLING AND ANALYSIS

In Source 1.2, two string variables are declared and initialised and then joined
together to form another string. The (+) symbol is used for joining (or concatenating)
two variables together, and in this context the (+) symbol is often referred to as the
concatenation operator.

1.3.2 Variab le Declarat ions

Before a variable can be used in a program it must first be declared as shown in
Source 1.3. Declaring the variable and its data type allows the compiler to set aside
the appropriate amount of memory for storage and subsequent manipulation.

SOURCE 1.3: DECLARING VARIABLES

// ...

// Declare variables
int x, y;
int result;
// Assign values
x = 4;
y = 2;
x = x + 1;
//Do something
result = x - y;

cout << "\n " << result << "\n ";

// ...



Essential C++ 9

It is possible to declare more than one variable of the same type in the same dec-
laration statement. It is also possible to assign initial values to variables whilst they
are being declared through the process of initialisation, for example:

int x, y = 4, z = 3;

There is another useful method of initialising a variable known as constructor
initialisation:

int x(0);

1.3.3 Type Cast ing

One way to force an expression to produce a result that is of a different type to the
variables declared in the expression is to use a construct calledcast (i.e. type casting).
Source 1.4 shows an example of declaring two variables as int and dividing them to
produce an int and double division through type casting.

SOURCE 1.4: TYPE CASTING

// ...

int a = 6, b = 4;

cout << "\n " << a/b << "\n"; // Integer division
cout << " " << (double)a/b << "\n "; // Type casting to double
division

// ...



10 HEDGE FUND MODELLING AND ANALYSIS

Note that type casting will not change the type of the variables from integer only
the type of the result to double.

1.3.4 Variab le Scope

A variable can have either global (i.e. public) or local (i.e. private) scope depending
on where it is declared within the program. Any variables declared with global scope
should be prefixed with the keyword const. An example is shown in Source 1.5.

SOURCE 1.5: VARIABLE SCOPE

// ...

// GLOBAL variable

int globalN = 144;

int main()

{

SetConsoleTitle(L"Console Output"); // Set title of console

window

// LOCAL variable

int localN = 72;

cout << "\n " << "# of data points (LOCAL) = " << localN;

cout << "\n " << "# of data points (GLOBAL) = " << globalN;

cin.get(); // Pause console window

return 0; // Return null integer and exit

}



Essential C++ 11

In Source 1.5, you can see that the variable globalN has been declared globally
and initialised to the value 144. Global variables can be accessed from anywhere in
the program once they have been declared. Local variables, on the other hand, such
as localN can only be used within the block enclosed by the braces ({}) in which it
is declared.

1.3.5 Constants

Constants are fixed values assigned to variables that cannot be changed once they have
been declared and initialised. We have already used literal constants when a variable
was declared and initialised in Source 1.2:

string FirstName = "Paul";

Or, as in Source 1.5:

int localN = 72;

With symbolic constants the const keyword is used in front of the declaration
and initialisation, for example:

const double Volatility = 0.18;

Enumerated constants are an alternative way of creating a series of integer con-
stants. Suppose you wanted to assign an integer value of 0 to 6 to the days of the week
starting at Sunday. This could be achieved using a list of symbolic constants written as:

const int Sun = 0;
const int Mon = 1;
const int Tue = 2; etc.

However, with enumeration it is possible to write:

enum WeekDays
{
Sun,
Mon,
Tue,
Wed,
Thu,
Fri,
Sat
};



12 HEDGE FUND MODELLING AND ANALYSIS

If each week day is not explicitly initialised, they are automatically assigned the
values 0, 1, 2, 3, etc., starting with the variable Sun. Note that the default value starts
at 0 and not 1. Alternatively, it is possible to initialise one or more of the variables to
any integer value, for example:

enum WeekDays
{
Sun = 10,
Mon,
Tue,
Wed = 6,
Thu,
Fri,
Sat
};

Variables that are not explicitly initialised are given initial values count-
ing upwards from the preceding initialised variable i.e. Sun = 10, Mon = 11,
Tue = 6, Wed = 7, Thu = 8 and so on.

1.4 OPERATORS

Operators are used to perform a specific operation on a set of operands in an expres-
sion. Operators can be of two types:

Unary – take only one argument and

Binary – take two arguments.

1.4.1 The Assignment Operator

The assignment operator simply assigns a value to a variable, for example:

x = 4;

The statement above assigns to the variable x the value 4. Note that the assign-
ment operator always reads from right -> left, and never the other way around. The
following statement is valid in C++:

x = y = z = 3;

In this statement, the value 3 is assigned to all three variables x, y and z. Expres-
sions that are evaluated within the assignment operator, such as:

x = x + 1;


