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Preface
When the author took courses in quantum mechanical
principles and chemical bonding in graduate school in the
early 1970s, the course materials seldomly covered the
fascinating interplay between spectroscopy and quantum
mechanics, and textbooks of these days devoted the
majority of space to derivations and mathematical
principles and the discussion of the hydrogen atom and
chemical bonding. While an understanding of these
subjects is, of course, a necessity for further study, this
book emphasizes a slightly different approach to quantum
mechanics, namely, one from the viewpoint of a
spectroscopist. In this approach, the existence of stationary
energy states – either electronic, vibrational, rotational, or
spin states – is considered the fundamental concept, since
spectroscopy exists because of transitions between these
states. Quantum mechanics provides the theoretical
framework for the interpretation of experimental data. On
the other hand, spectroscopic results provide the impetus
for refining theories that explain the results. Classical
physics cannot provide this framework, since the idea of
stationary energy states violates the laws of classical
physics.
Thus, the approach taken here in this book is to present
early on, in Chapter 2, how the application of quantum
mechanical principles leads necessarily to the existence of
stationary energy states using the particle‐in‐a box model
system. The third chapter then introduces the concept of
spectroscopic transitions between these stationary states,
using time‐dependent perturbation theory.
The following chapters are presented in order of
mathematical complexity of the Schrödinger equation that



describes the problem. The simplest case, the particle in a
box, is discussed in Chapter 2. The next subject is the
simple harmonic oscillator, for which the eigenfunctions
resemble those of the particle in a box, and transitions can
be visualized in terms of the discussion in Chapters 2 and
3. In the following discussions (Chapters 5–10), vibrational,
rotational, atomic, molecular electronic, and spin
spectroscopies will be introduced. These discussions, if
possible, start with a classical description, followed by the
quantum mechanical equations for wavefunctions and
eigenvalues, and the derivation of the selection rules.
These selection rules determine the form and information
content of the respective spectroscopic techniques.
Although space limitations prevent in‐depth discussions of
spectroscopic applications to complex molecular systems,
all efforts have been made to include molecular systems
larger than diatomic molecules (the level of molecular
complexity where many textbooks capitulate), since the
world we live in mostly consists of more complicated
molecules than diatomics.
Thus, in Chapter 5, the concept of the harmonic oscillator
(Chapter 4) will be extended to vibrational (infrared and
Raman) spectroscopy of polyatomic molecules. This chapter
introduces concepts of band shapes, lifetimes, and a
quantum mechanical description of molecular polarizability.
Next in complexity are the differential equations for a
rotational molecule that leads to rotational spectroscopy
(Chapter 6). These equations will introduce the quantum
mechanical description of the angular momentum and the
energy levels of simple and more complicated molecules.
The results from the rotational Schrödinger will also be
used to solve the radial part of the hydrogen atom
Schrödinger equation (Chapter 7). The principles learned
from the rotational Schrödinger equation will also be used
to introduce the spin eigenfunctions and eigenstates, a



subject that leads directly to spin spectroscopy such as
nuclear magnetic resonance (NMR), which is discussed in
Chapter 8.
Next, the structure of atoms and ions containing more than
one electron will be presented. This discussion includes an
introduction to atomic spectroscopy and term symbols of
electronic states. However, since the main theme of this
book is molecular spectroscopy, this chapter only serves as
an introduction to these subjects.
Chapter 10 is devoted to electronic spectroscopy of di‐ and
polyatomic molecules. Again, as in previous chapters, it is
necessary to define the states between which electronic
transitions occur. This leads necessarily to the discussion of
chemical bonding in terms of molecular orbital theory.
Chemical bonding will be discussed to the level that
electronic spectra of simple molecules can be explained,
but the interaction between vibrational and electronic
wavefunctions to produce vibronic states will be discussed
in more detail to explain fluorescence phenomena as well
as some Raman effects that rely on transitions into vibronic
energy levels. Finally, Chapter 11 introduces group theory
and the symmetry properties of molecules and the
influence of symmetry on the appearance of molecular
spectra.
The approach taken here in this book was strongly
influenced by an excellent textbook Physical Chemistry by
Engel and Reid [1] that was used as a required text in
undergraduate physical chemistry courses at Northeastern
University. This book emphasizes the unconventional
approach taken by the early theorists who are responsible
for the field of quantum mechanics as we know it. I gained
substantial understanding of the philosophical background
of quantum mechanics from this book. What is presented
here in Quantum Mechanical Foundations of Molecular



Spectroscopy is a similar approach but with much more
emphasis on molecular spectroscopy.
Although the present book emphasizes the relationship
between spectroscopy and quantum mechanics more than
other texts, the author wishes to point out the importance
of following up on some proofs and derivations (omitted
here) by studying books on “real” quantum mechanics or
quantum chemistry. In particular, the one‐ and two‐volume
treatments by I. Levine [2, 3] are highly recommended, as
well as many other old and new books [4, 5].
The mathematical requirements for understanding this
book do not exceed the level achieved after a three‐
semester sequence of calculus, and all efforts have been
made to provide examples and problems that will illuminate
the mathematical steps. Most importantly, although some
derivations are presented, the goal is not to lose sight of
what quantum mechanics does for spectroscopy in the
mathematical complexities.
Boston, August 2019
Literature references for the Preface are at the end of the
Introduction.



Introduction
This book, Quantum Mechanical Foundations of Molecular
Spectroscopy, is based on a graduate‐level course by the
same name that is being offered to first‐year graduate
students in chemistry at the Department of Chemistry and
Chemical Biology at Northeastern University in Boston.
When I joined the faculty there in 2005, I revised the
course syllabus to emphasize the philosophical
underpinnings of quantum mechanics and introduce much
more of the quantum mechanics of molecular spectroscopy,
rather than atomic structure, chemical bonding, and what
is commonly referred to as “quantum chemistry.”
As my own appreciation of many aspects of quantum
mechanics evolved, I found it useful to start my lectures in
this course with a quote from a famous researcher and
Nobel laureate (1995, for his work on quantum
electrodynamics), the late Professor Richard Feynman,
which – taken slightly out of context – reads [6]:

I think I can safely say that nobody understands quantum
mechanics.

This rather discouraging statement has to be seen from the
viewpoint that, when studying quantum mechanics, one
realizes that this theory is not based on axioms, but on
postulates – a very unusual fact in the sciences.
Furthermore, it replaced deterministic results with
probabilistic answers. When exposed to these conundrums,
students will naturally ask the question: “Why bother
studying quantum mechanics, if I will not understand it
anyway?” or worse, “Is quantum mechanics for real, or is it
the brainchild of some far‐out mad scientists?” The answer
here is also contained in a quote by Feynman:



It doesn't matter how beautiful a theory is, …. If it
doesn't agree with experiment, it's wrong.

This statement could also be formulated to imply that a
theory that consistently provides answers that agree with
the experiment most likely is correct. Thus, although
nobody may understand quantum mechanics in its entirety,
it gives answers that – over and over – agree with
experiments and in fact provides a mechanism and
framework for explaining the experimental results.
Quantum mechanics originated in the early decades of the
twentieth century, when it was found that some experiment
results just could not be explained by existing laws of
physics and, in fact, violated established physical dogmas.
It was these results that gave rise to the emergence of
quantum mechanics that grew out of a patchwork of ideas
aimed at explaining these hitherto unexplainable
experimental results. These ideas coalesced into the field
we now refer to as quantum mechanics. This newly
formulated theory was wildly successful in explaining a
myriad of physical and chemical observations – from the
shape and meaning of the periodic chart of elements to the
subject of this book, namely, the interaction of light with
matter that is the basis of spectroscopy.
While many aspects of molecular spectroscopy, such as the
rotational or vibrational energies of a molecule, can be
described in classical terms, the idea that atoms and
molecules can exist in quantized, stationary energy states
is a direct result of the postulates of quantum mechanics.
Furthermore, application of the principles of time‐
dependent quantum mechanics explains how
electromagnetic radiation of the correct energy may cause
a transition between these stationary energy states and
produce observable spectra. Thus, the entire field of
molecular spectroscopy is a direct result of quantum



mechanics and represents the experimental results that
confirms the theory. The phenomenal growth of all forms of
spectroscopy over the past eight decades has contributed
enormously to our understanding of molecular structure
and properties. What started as simple molecular
spectroscopy such as infrared and Raman vibrational
spectroscopy, (microwave) rotational spectroscopy,
ultraviolet–visible absorption, and emission spectroscopy
has now bloomed into a very broad field that includes, for
example, the modern magnetic resonance techniques
(including medical magnetic resonance imaging); nonlinear,
laser, and fiber‐based spectroscopy; surface and surface‐
enhanced spectroscopy; pico‐ and femtosecond time‐
resolved spectroscopy, and many more. Spectroscopy is
embedded as a major component in material science,
chemistry, physics, and biology and other branches of
scientific and engineering endeavors. Thus, the quantum
mechanical underpinnings of spectroscopy are a major
subject that need to be understood in the pursuit of
scientific efforts.
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1
Transition from Classical Physics to
Quantum Mechanics
At the end of the nineteenth century, classical physics had
progressed to such a level that many scientists thought all
problems in physical science had been solved or were about to be
solved. After all, classical Newtonian mechanics was able to
predict the motions of celestial bodies, electromagnetism was
described by Maxwell's equations (for a review of Maxwell's
equations, see [1]), the formulation of the principles of
thermodynamics had led to the understanding of the
interconversion of heat and work and the limitations of this
interconversion, and classical optics allowed the design and
construction of scientific instruments such as the telescope and
the microscope, both of which had advanced the understanding of
the physical world around us.
In chemistry, an experimentally derived classification of elements
had been achieved (the rudimentary periodic table), although the
nature of atoms and molecules and the concept of the electron's
involvement in chemical reactions had not been realized. The
experiments by Rutherford demonstrated that the atom consisted
of very small, positively charged, and heavy nuclei that identify
each element and electrons orbiting the nuclei that provided the
negative charge to produce electrically neutral atoms. At this
point, the question naturally arose: Why don't the electrons fall
into the nucleus, given the fact that opposite electric charges do
attract? A planetary‐like situation where the electrons are held in
orbits by centrifugal forces was not plausible because of the
(radiative) energy loss an orbiting electron would experience.
This dilemma was one of the causes for the development of
quantum mechanics.
In addition, there were other experimental results that could not
be explained by classical physics and needed the development of
new theoretical concepts, for example, the inability of classical
models to reproduce the blackbody emission curve, the



photoelectric effect, and the observation of spectral “lines” in the
emission (or absorption) spectra of atomic hydrogen. These
experimental results dated back to the first decade of the
twentieth century and caused a nearly explosive reaction by
theoretical physicists in the 1920s that led to the formulation of
quantum mechanics. The names of these physicists – Planck,
Heisenberg, Einstein, Bohr, Born, de Broglie, Dirac, Pauli,
Schrödinger, and others – have become indelibly linked to new
theoretical models that revolutionized physics and chemistry.
This development of quantum theory occupied hundreds of
publications and letters and thousands of pages of printed
material and cannot be covered here in this book. Therefore, this
book presents many of the difficult theoretical derivations as
mere facts, without proof or even the underlying thought
processes, since the aim of the discussion in the following
chapters is the application of the quantum mechanical principles
to molecular spectroscopy. Thus, these discussions should be
construed as a guide to twenty‐first‐century students toward
acceptance of quantum mechanical principles for their work that
involves molecular spectroscopy.
Before the three cornerstone experiments that ushered in
quantum mechanics – Planck's blackbody emission curve, the
photoelectric effect, and the observation of spectral “lines” in the
hydrogen atomic spectra – will be discussed, electromagnetic
radiation, or light, will be introduced at the level of a wave model
of light, which was the prevalent way to look at this phenomenon
before the twentieth century.

1.1 Description of Light as an
Electromagnetic Wave
As mentioned above, the description of electromagnetic radiation
in terms of Maxwell's equation was published in the early 1860s.
The solution of these differential equations described light as a
transverse wave of electric and magnetic fields. In the absence of
charge and current, such a wave, propagating in vacuum in the
positive z‐direction, can be described by the following equations:



(1.1)

(1.2)

(1.3)

(1.4)

where the electric field  and the magnetic field  are
perpendicular to each other, as shown in Figure 1.1, and oscillate
in phase at the angular frequency

where ν is the frequency of the oscillation, measured in units of
s−1 =  Hz. In Eqs. (1.1) and (1.2), k is the wave vector (or
momentum vector) of the electromagnetic wave, defined by Eq.
(1.4):

Here, λ is the wavelength of the radiation, measured in units of
length, and is defined by the distance between two consecutive
peaks (or troughs) of the electric or magnetic fields. Vector
quantities, such as the electric and magnetic fields, are indicated
by an arrow over the symbol or by bold typeface.
Since light is a wave, it exhibits properties such as constructive
and destructive interference. Thus, when light impinges on a
narrow slit, it shows a diffraction pattern similar to that of a plain
water wave that falls on a barrier with a narrow aperture. These
wave properties of light were well known, and therefore, light
was considered to exhibit wave properties only, as predicted by
Maxwell's equation.



Figure 1.1  Description of the propagation of a linearly
polarized electromagnetic wave as oscillation of electric ( ) and
magnetic ( ) fields.

In general, any wave motion can be characterized by its
wavelength λ, its frequency ν, and its propagation speed. For
light in vacuum, this propagation speed is the velocity of light c
(c  = 2.998  ×  108 m/s). (For a list of constants used and their
numeric value, see Appendix 1.) In the context of the discussion
in the following chapters, the interaction of light with matter will
be described as the force exerted by the electric field on the
charged particles, atoms, and molecules (see Chapter 3). This
interaction causes a translation of charge. This description leads
to the concept of the “electric transition moment,” which will be
used as the basic quantity to describe the likelihood (that is, the
intensity) of spectral transition.
In other forms of optical spectroscopy (for example, for all
manifestations of optical activity, see Chapter 10), the magnetic
transition moment must be considered as well. This interaction
leads to a coupled translation and rotation of charge, which
imparts a helical motion of charge. This helical motion is the
hallmark of optical activity, since, by definition, a helix can be left‐
or right‐handed.

1.2 Blackbody Radiation
From the viewpoint of a spectroscopist, electromagnetic radiation
is produced by atoms or molecules undergoing transitions


