


Table of Contents

Title Page

Copyright

Foreword

Preface

Acknowledgments

Part One: Problem Seeking

Overview

The Primer

The Search

Programmers and Designers

Analysis and Synthesis

The Separation

The Interface

Process

Five Steps

Procedure

Considerations

The Whole Problem



Four Considerations

Framework

Information

Information Index

Organizing Information

Two-Phase Process

Data Clog

Processing and Discarding

Participation

User on Team

Effective Group Action

Team

Participatory Process

Background Information

Decision Making

Communication

Steps

Establish Goals

Collect and Analyze Facts

Uncover and Test Concepts

Determine Needs

Cost Estimate Analysis

Abstract to the Essence

State the Problem

Summary



Programming Principles

Part Two: How to Use the

Method

Introduction

Definitions and Examples

On Theory and Process

On Considerations

On Goals

On Facts

On Concepts

On Needs

On Problem Statements

Programming Procedures

Establish Goals

Collect and Analyze Facts

Uncover and Test Concepts

Determine Needs

State the Problem

Programming Activities

Typical Programming Activities

Four Degrees of Sophistication

Variable Conditions

How to Simplify Design Problems



Useful Techniques

Data Management

Questionnaires

Interviews and Work Sessions

Audio- and Videoconferencing

Functional Relationship Analysis

Gaming and Simulation

Space Lists

Program Development

Brown Sheets and Visualization

Analysis Cards and Wall Displays

Electronic White Boards and Flip Charts

Electronic Presentations

Programming Reports

Program Evaluation

Building Evaluation

Selected Bibliography

Index

About the Authors





This book is printed on acid-free paper.

PROBLEM SEEKING® is a registered trademark owned by

HOK Group, Inc.

Copyright © 2012 by HOK Group, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New

Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a

retrieval system, or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording,

scanning, or otherwise, except as permitted under

Section 107 or 108 of the 1976 United States Copyright

Act, without either the prior written permission of the

Publisher, or authorization through payment of the

appropriate per-copy fee to the Copyright Clearance

Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,

978-750-8400, fax 978-646-8600, or on the web at

www.copyright.com. Requests to the Publisher for

permission should be addressed to the Permissions

Department, John Wiley & Sons, Inc., 111 River Street,

Hoboken, NJ 07030, 201-748-6011, fax 201-748-6008, or

online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the

publisher and author have used their best efforts in

preparing this book, they make no representations or

warranties with respect to the accuracy or completeness

of the contents of this book and specifically disclaim any

implied warranties of merchantability or fitness for a

particular purpose. No warranty may be created or

extended by sales representatives or written sales

materials. The advice and strategies contained herein

may not be suitable for your situation. You should consult

with a professional where appropriate. Neither the

http://www.copyright.com/
http://www.wiley.com/go/permissions


publisher nor author shall be liable for any loss of profit or

any other commercial damages, including but not limited

to special, incidental, consequential, or other damages.

For general information on our other products and

services, or technical support, please contact our

Customer Care Department within the United States at

800-762-2974, outside the United States at 317-572-3993

or fax 317-572-4002.

Wiley publishes in a variety of print and electronic

formats and by print-on-demand. Some material included

with standard print versions of this book may not be

included in e-books or in print-on-demand. If this book

refers to media such as a CD or DVD that is not included

in the version you purchased, you may download this

material at http://booksupport.wiley.com. For more

information about Wiley products, visit www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Peña, William.

Problem seeking : an architectural programming primer /

William M. Peña, Steven A. Parshall.—5th ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-1-118-08414-4 (cloth); ISBN 978-1-118-13361-3

(ebk); ISBN 978-1-118-13362-0 (ebk); ISBN 978-1-118-

15287-4 (ebk); ISBN 978-1-118-15292-8 (ebk); ISBN 978-

1-118-15293-5 (ebk)

1. Architecture—Data processing.I. Parshall, Steven,

1951–-II. Title.III. Title: Architectural programming primer.

NA2728.P462012

720.285'536—dc23

2011020611

http://booksupport.wiley.com/
http://www.wiley.com/


Foreword

The fifth edition of Problem Seeking: An Architectural

Programming Primer is written for clients, architects, and

students. The broad range of principles and techniques

presented in this book has evolved over 50 years of

architectural practice. In 1969, William Peña wrote the

first edition of the book, and it was used in 1973 by the

National Council of Architectural Registration Boards as a

basis for the predesign section of the professional exam.

In 1994, Hellmuth, Obata + Kassabaum (HOK) acquired

CRSS Architects, which had evolved from the original firm

of Caudill, Rowlett and Scott (CRS). Many of the principles

and techniques presented in this book can be attributed

to Bill Caudill, one of the founders of CRS, and an AIA

Gold Medalist. HOK's practice was founded on the same

principle as CRS—both firms viewed design as problem

solving.

William Peña (“Willie”) dedicated his professional career

to the definition, development, and pioneering of

architectural programming. He became the champion,

teacher, and mentor to countless professionals who

followed his path as specialists in the analysis of

architectural problems.

In the end, Problem Seeking is not the product of one

person, but the theoretical and practical contribution of

many professionals who worked at CRS and now HOK.

Assisting Willie with the publication of the book have

been several co-authors, including: John Focke, FAIA (first

and second editions), William Caudill, FAIA (second

edition), Kevin Kelly, FAIA (third edition), and Steven

Parshall, FAIA (third, fourth, and fifth editions).



While the method has adapted to new considerations

and techniques with each edition of the book, the

principles outlined in the first part of the book, “The

Primer,” have withstood the test of time. As we look

forward, the role of programmer as analyst and

information manager will increase significantly as the

profession adopts Building Information Modeling (BIM) to

meet client expectations for more sustainable and

integrated design solutions.

HOK is proud to continue the tradition of involving and

interacting with clients in architectural programming as

the first step of the design process.

Bill Hellmuth

President, HOK, Inc.



Preface

This book is the fifth edition of Problem Seeking: An

Architectural Programming Primer. The first edition, in

1969, was based on 20 years of prior research and

practice in architectural programming. The subsequent

editions evolved over the next 40 years, reflecting

changes in communication techniques and expanded

scope of applications, although the original theory

remained intact. This edition, then, has the advantage of

some 60 years of professional application experience—

indicating a practice-tested validity.

This is a two-part book. Part One is a primer on

programming. It is written to help you understand one

programming method, whether you are an architect, a

student, or a client getting ready to start a building

project. Part Two explains how to apply the method;

it comprises a collection of definitions, examples,

considerations, activities, and techniques that expand on

the principles explained in the primer.

What is new in this edition?

Published in 2001, the fourth edition of the book has

been read, primarily, by architectural practitioners and,

secondly, by students as a college course text book.

In the fifth edition we have simplified Part One: The

Primer. In Part Two, regarding methods, we take up

new topics that have emerged in the profession since

writing the fourth edition. It addresses the role of

programming when considering sustainabilityin the

design process, and explains how technology has

enabled new techniques for project delivery, team

communication, and information management.



While the Problem Seeking® process has withstood the

test of time as a powerful problem analysis method, the

content and technology of architectural practice have

evolved over the past decade.

Today, sustainability has become a major

consideration in architectural projects throughout the

world. In 1998, the U.S. Green Building Council (USGBC)

established the Leadership in Energy and Environmental

Design (LEED) standards and system for rating green

buildings.

In addition to updates in content, sustainability

practices encourage an integrated design approach that

is highly participatory among all the stakeholders in the

design, construction, and operation of buildings. Bill

Caudill first introduced this type of collaboration in his

book, Architecture by Team, in 1971. The principles

regarding the user on the team, effective group action,

and participatory process are embedded in Problem

Seeking® as well. The USGBC encourages the organization

of a work session at the outset of the project, during

which the key stakeholders establish project goals and

determine the level of sustainability to be achieved in

design and construction. Once again, these predesign

sustainability activities are easily incorporated into the

programming process as outlined in Problem Seeking.

Two of the emerging trends in architectural practice that

are enabled by technology involve Building Information

Modeling (BIM) and Integrated Project Delivery (IPD).

BIM is the process of generating and managing building

data during the design process, including the program of

requirements. Typically, it uses three-dimensional, real-

time, parametric modeling software to increase

productivity in building design and construction. The

process produces the building information model, which

encompasses building geometry, spatial relationships,



geographic information, and quantities and properties of

building components. The BIM process begins with

capturing the program of requirements for each phase of

the design process.

IPD is a project delivery method that integrates people,

systems, business structures, and practices into a

process that collaboratively harnesses the expertise and

knowledge of stakeholders to optimize project results,

increase value to the owner, reduce waste, and maximize

efficiency throughout the phases of project delivery.

The fifth edition explains how the role of the

programmer may expand to encompass the program of

requirements for the life cycle of a building. This involves

an extended information management role for the

programmer. Information management has been a

cornerstone of the Information Index, organizing

information, a phased process, data clog, and processing

and discarding information. While principles are

fundamental to the programming process, the techniques

and tools that a programmer uses today take advantage

of current digital technology and software to capture and

manage information.

Not only has technology improved the programmer's

ability to manage information, it is allowing new forms of

interaction and collaboration among the project team.

Advanced collaboration technologies are proving a viable

alternative to the traditional on-site squatters' technique.

Now programmers can facilitate virtual squatting with

clients and project team members located worldwide

without ever leaving their place of work.

William M. Peña, FAIA Founder, Caudill, Rowlett and Scott,

Inc.

Steven A. Parshall, FAIA Senior Vice President, HOK Inc.



Acknowledgments

HOK Team

Editor: Melinda Parshall

Project Manager: Lauren Gibbs

Special

Contributors:

Erik Andersen, Robin Ellerthorpe, William Hellmuth, Frank

Kutilek, Eberhard Laepple

Graphics &

Photography:
Gerald Callo, HOK Visual Communications

Cover Graphics: Jay Dacon, HOK Visual Communications

We are grateful to those programmers, past and present,

who have contributed to this book—some much more

than others—but all contributing more than they realize.



Part One

Problem Seeking

An Architectural Programming

Primer



Overview

The Primer

Good buildings don't just happen. They are planned to

look good and perform well. They come about when good

architects and good clients join in thoughtful, cooperative

effort. Programming the requirements of a proposed

building is the architect's first task, often the most

important.

There are a few underlying principles that apply to

programming—whether the most complex hospital or a

simple house. This book concerns these principles.

Programming concerns five steps:

1. Establish Goals.

2. Collect and analyze Facts.

3. Uncover and test Concepts.

4. Determine Needs.

5. State the Problem.

The approach is at once simple and comprehensive—

simple enough for the process to be repeatable for

different building types, and comprehensive enough to

cover the wide range of factors that influence the design

of buildings.

The five-step process can be applied to most any

discipline—banking, engineering, or education—but when

applied specifically to architecture, it has its proper

content that is an architectural product: a room, a

building, or a town. The principle of this process is that a

product will have a much better chance of being

successful if, during the design, four major considerations

are regarded simultaneously.



These considerations (or design determinants) indicate

the types of information needed to define a

comprehensive architectural problem:

Function Form Economy Time

Architectural programming, therefore, involves an

organized method of inquiry—a five-step process

interacting with four considerations.

The Search

Programming is a process. What kind? Webster's spells it

out specifically: “A process leading to the statement of an

architectural problem and the requirements to be met in

offering a solution.”

This process, derived from the definition and referred to

as the five-step process, is basic. The word “basic” is

used advisedly. Since the advent of systematic

programming six decades ago, different degrees of

sophistication have evolved. But the procedures

presented here remain basic to all.

Back to the definition.



Note “statement of an architectural problem.” This

implies problem solving. Although usually identified with

scientific methods, problem solving is a creative effort.

There are many different problem-solving methods, but

only those few that emphasize goals and concepts (ends

and means) can be applied to architectural design

problems.

Almost all problem-solving methods include a step for

problem definition—stating the problem. But most of the

methods lead to confusing duality—finding out what the

problem is and trying to solve it at the same time. You

can't solve a problem unless you know what it is.

What, then, is the main idea behind programming? It's

the search for sufficient information to clarify, to

understand, and to state the problem.

If programming is problem seeking, then

design is problem solving.

These are two distinct processes, requiring different

attitudes, even different capabilities. Problem solving is a

valid approach to design when, indeed, the design

solution responds to the client's design problem. Only

after a thorough search for pertinent information can the

client's design problem be stated: “Seek and you shall

define!”

Programmers and Designers

Who does what? Do designers program? They can, but it

takes highly trained architects who are specialized in

asking the right questions at the right time, who can

separate wants from needs, and who have the skills to

sort things out. Programmers must be objective (to a

degree) and analytical, at ease with abstract ideas, and



able to evaluate information and identify important

factors while postponing irrelevant material. Designers

can't always do this. Designers generally are subjective,

intuitive, and facile with physical concepts.

Qualifications of programmers and designers are

different. Programmers and designers are separate

specialists because the problems of each are very

complex and require two different mental capabilities:

one for analysis, another for synthesis.

It may well be that one person can manage both

analysis and synthesis. If so, he or she must be of two

minds and use them alternately. However, for clarity,

these different qualifications will be represented by

different people—programmers and designers.

Photo courtesy of HOK



Analysis and Synthesis



The total design process includes two stages: analysis

and synthesis. In analysis, the parts of a design problem

are separated and identified. In synthesis, the parts are

put together to form a coherent design solution. The

difference between programming and design is the

difference between analysis and synthesis.

Programming Is analysis. Design Is synthesis.

You may not perceive the design process in terms of

analysis and synthesis. You may even question problem

solving as an approach. You may think of the design

process as a creative effort. It is. But the creative effort

includes similar stages: Analysis becomes preparation or

exposure, and synthesis becomes illumination or insight.

The total design process is, indeed, a creative process.

Does programming inhibit creativity? Definitely not!

Programming establishes the considerations, the limits,

and the possibilities of the design problem. (We prefer

“considerations” to “constraints” to avoid being

petulant.) Creativity thrives when the limits of a problem

are known.

Sometimes I think we arrive at a solution before we

know what the problem is. We say: “My next design will



be Round!” without logic or analysis.

—William Peña

The Separation

Programming precedes design just as analysis precedes

synthesis. The separation of the two is imperative and

prevents trial-and-error design alternatives. Separation is

central to an understanding of a rational architectural

process, which leads to good buildings and satisfied

clients.

The problem-seeking method described in this book

requires a distinct separation of programming and

design.

Most designers love to draw, to make “thumbnail

sketches,” as they used to call these drawings. Today, the

jargon favors “conceptual sketches” and “schematics.”

Call them what you will, they can be serious deterrents in

the planning of a successful building if done at the wrong

time—before programming or during the programming

process. Before the whole problem is defined, solutions

can only be partial and premature. A designer who can't

wait for a complete, carefully prepared program is like



the tailor who doesn't bother to measure a customer

before starting to cut the cloth.

Experienced, creative designers withhold judgment and

resist preconceived solutions and the pressure to

synthesize until all the information is in. They refuse to

make sketches until they know the client's problem. They

believe in thorough analysis before synthesis. They know

that programming is the prelude to good design—

although it does not guarantee it.

Corita Kent, artist and educator, wrote, “Rule Eight:

Don't try to create and analyze at the same time. They

are two different processes.”

—Today You Need a Rule Book, 1973

The Interface

The product of programming is a statement of the

problem. Stating the problem is the last step of the five-

step process in problem seeking (programming); it is also

the first step in problem solving (design). The problem

statement, then, is the interface between

programming and design. It's the baton in a relay

race. It's the handoff from programmer to designer. In



any case, the problem statement is one of the most

important documents in the chain that comprises the

total project delivery system.

While many theorists extol the virtues of the problem

statement, few practitioners stop to formulate a

statement, to verbalize it. This programming method

requires that you actually write out a clear statement of

the problem. Since this statement is the first step in

design, as well as the last step in programming, its

composition must be the joint effort of the designer and

the programmer.



Process

Five Steps

The competent programmer always keeps in mind the

steps in programming: (1) Establish Goals, (2) Collect

and Analyze Facts, (3) Uncover and Test Concepts,

(4) Determine Needs, and (5) State the Problem.

The first three steps are primarily the search for pertinent

information. The fourth is a feasibility test. The last step

is distilling what has been found.

Curiously enough, the steps are alternately qualitative

and quantitative. Goals, con-cepts, and the problem

statement are essentially qualitative. Facts and needs are

essentially quantitative.

Programming is based on a combination of interviews

and work sessions. Interviews are used for asking

questions and collecting data, particularly during the first

three steps. Work sessions are used to verify information

and to stimulate client decisions—particularly during the

fourth step.

Briefly, the five steps pose these questions:

1. Goals: What does the client want to achieve, and

why?

2. Facts: What do we know? What is given?

3. Concepts: How does the client want to achieve the

goals?



4. Needs: How much money and space? What level of

quality?

5. Problem: What are the significant conditions

affecting the design of the building? What are the

general directions the design should take?

Procedure

The five steps, then, are not inflexibly strict. They usually

have no consistent sequence; nor is the information

scrupulously accurate. For example, a 10,000-student

university, a 300-bed hospital, and a 25-student

classroom are only nominal rather than actual sizes.

Information sources are not always reliable, and

predictive capabilities may be limited.

The steps and the information, then, do not have the

rigor or the accuracy of a math-ematical problem.



Programming, therefore, is a heuristic process and not an

algorithm. As such, even good programming cannot

guarantee finding the right problem, but it can reduce the

amount of guesswork. The method is just as good as the

judgment of the people involved.

Working through the steps in numerical sequence is

preferable; theoretically, this is the logical order. But, in

actual practice, steps may be taken in a different

order or at the same time—all but the last step. It is

frequently necessary, for example, to start with a given

list of spaces and a budget (fourth step) before asking

about Goals, Facts, and Concepts (first, second, and third

steps). It usually is necessary to work on the first four

steps simultaneously, cross-checking among them for the

integrity, usefulness, relevance, and congruence of

information.

The fifth step is taken only after marshalling all the

previous information, extracting, abstracting, and getting

to the very essence of the problem.



Considerations

The Whole Problem

It's important to search for and find the whole problem.

To accomplish this, the prob-lem must be identified in

terms of Function, Form, Economy, and Time.

Classifying information accordingly simplifies the problem

while maintaining a compre-hensive approach. A wide

range of factors makes up the whole problem, but all can

be classified in the four areas that serve later as design

considerations.

Too little information leads to a partial statement of the

problem and a premature and partial design solution. The

appropriate amount of information is broad enough in

scope to pertain to the whole design problem, but not so

broad as to pertain to some universal problem. As the

Spanish proverb states: “He who grasps too much,

squeezes little.” Grasp only what you can manage and

what will be useful to the designer.



As a professor might say, “Before you answer individual

questions, be sure to look at the whole examination.”

Designers should look at the whole problem before

starting to solve any of its parts. How can a designer who

does not have a clear understanding of the whole

problem come up with a comprehensive solution?

Four Considerations

Take a closer look at Function, Form, Economy, and Time.

There are three key words to each consideration:

Function implies “what's going to happen in the

building.” It concerns activities, relationship of spaces,

and people—their number and characteristics. Key

words are: (1) people, (2) activities, and (3)

relationships.

Form relates to the site, the physical environment

(psychological, too), and the quality of space and



construction. Form is what you will see and feel. It's

“what is there now” and “what will be there.” Key

words are (4) site, (5) environment, and (6) quality.

Economy concerns the initial budget and quality of

construction, but also may include consideration of

operating and life-cycle costs. Key words are: (7) initial

budget, (8) operating costs, and (9) life-cycle costs.

Time has three classifications—past, present, and

future—which deal with the influ-ences of history, the

inevitability of changes from the present, and

projections into the future. Key words are: (10) past,

(11) present, and (12) future.

Framework

Use the four considerations to guide you at each step

during programming. By estab-lishing a systematic set of

relationships between the steps in problem seeking and

these considerations, between process and content, a


