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Preface

No study of any complexity manages to collect all the intended data. Analysis
of the resulting partially collected data must therefore address the issues raised
by the missing data. Unfortunately, the inferential consequences of missing data
are not simply restricted to the proportion of missing observations. Instead, the
interplay between the substantive questions and the reasons for the missing data
is crucial. Thus, there is no simple, universal, solution.

Suppose, for the substantive question at hand, the inferential consequences
of missing data are nontrivial. Then the analyst must make a set of assumptions
about the reasons, or mechanisms, causing data to be missing, and perform an
inferentially valid analysis under these assumptions. In this regard, analysis of a
partially observed dataset is the same as any statistical analysis; the difference
is that when data are missing we cannot assess the validity of these assumptions
in the way we might do in a regression analysis, for example. Hence, sensitivity
analysis, where we explore the robustness of inference to different assumptions
about the reasons for missing data, is important.

Given a set of assumptions about the reasons data are missing, there are a
number of statistical methods for carrying out the analysis. These include the EM
algorithm, inverse probability weighting, a full Bayesian analysis and, depending
on the setting, a direct application of maximum likelihood. These methods, and
those derived from them, each have their own advantages in particular settings.
Nevertheless, we argue that none shares the practical utility, broad applicability
and relative simplicity of Rubin’s Multiple Imputation (MI).

Following an introductory chapter outlining the issues raised by missing data,
the focus of this book is therefore MI. We outline its theoretical basis, and then
describe its application to a range of common analysis in the medical and social
sciences, reflecting the wide application that MI has seen in recent years. In par-
ticular, we describe its application with nonlinear relationships and interactions,
with survival data and with multilevel data. The last three chapters consider prac-
tical sensitivity analyses, combining MI with inverse probability weighting, and
doubly robust MI.

Self-evidently, a key component of an MI analysis, is the construction of
an appropriate method of imputation. There is no unique, ideal, way in which
this should be done. In particular, there there has been some discussion in the
literature about the relative merits of the joint modelling and full conditional
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specification approaches. We have found that thinking in terms of joint models
is both natural and convenient for formulating imputation models, a range of
which can then be (approximately) implemented using a full conditional speci-
fication approach. Differences in computational speed between joint modelling
and full conditional specification are generally due to coding efficiency, rather
than intrinsic superiority of one method over the other.

Throughout the book we illustrate the ideas with several examples. The code
used for these examples, in various software packages, is available from the
book’s home page, which is at http://www.wiley.com/go/multiple
_imputation, together with exercises to go with each chapter.

We welcome feedback from readers; any comments and corrections should
be e-mailed to mi@lshtm.ac.uk. Unfortunately, we cannot promise to respond
individually to each message.

http://www.wiley.com/go/multiple
mailto:mi@lshtm.ac.uk
http://www.wiley.com/go/multiple_imputation
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Glossary

Indices and symbols

i indexes units, often individuals, unless defined otherwise
j indexes variables in the data set, unless defined otherwise
n total number of units in the data set, unless defined otherwise
p depending on context, number of variables in a

data set or number of parameters in a statistical model
X, Y,Z random variables
Yi,j ith observation on j th variable, i = 1, . . . , n, j = 1, . . . , p.
θ generic parameter
θ generic parameter column vector, typically p × 1
β, γ, δ regression coefficients
β column vector of regression coefficients, typically p × 1.

Matrices

� matrix, typically of dimension p × p.
�i,j i, j th element of �

�T transpose of �, so that �T
i,j = �j,i .

Yj = (Y1,j , . . . , Yn,j )
T n × 1 column vector of observations on variable j .

tr(�) sum of diagonal elements of �, ie
∑

�i,i

known as the trace of the matrix.

Abbreviations

AIPW Augmented Inverse Probability Weighting
CAR Censoring At Random
CNAR Censoring Not At Random
EM Expectation Maximisation
FCS Full Conditional Specification
FEV1 Forced Expiratory Volume in 1 second (measured in litres)
FMI Fraction of Missing Information
IPW Inverse Probability Weighting
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MAR Missing At Random
MCAR Missing Completely At Random
MI Multiple Imputation
MNAR Missing Not At Random
POD Partially Observed Data
POM Probability Of Missingness
S.E. Standard error

Probability distributions

f ( . ) probability distribution function
F( . ) cumulative distribution function
‘|’ to be verbalised ‘given’, as in f (Y |X)

‘the probability distribution function of Y given X’
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FOUNDATIONS





1

Introduction

Collecting, analysing and drawing inferences from data are central to research in
the medical and social sciences. Unfortunately, for any number of reasons, it is
rarely possible to collect all the intended data. The ubiquity of missing data, and
the problems this poses for both analysis and inference, has spawned a substantial
statistical literature dating from 1950s. At that time, when statistical computing
was in its infancy, many analyses were only feasible because of the carefully
planned balance in the dataset (for example, the same number of observations
on each unit). Missing data meant the available data for analysis were unbal-
anced, thus complicating the planned analysis and in some instances rendering it
unfeasible. Early work on the problem was therefore largely computational (e.g.
Healy and Westmacott, 1956; Afifi and Elashoff, 1966; Orchard and Woodbury,
1972; Dempster et al., 1977).

The wider question of the consequences of nontrivial proportions of missing
data for inference was neglected until a seminal paper by Rubin (1976). This set
out a typology for assumptions about the reasons for missing data, and sketched
their implications for analysis and inference. It marked the beginning of a broad
stream of research about the analysis of partially observed data. The literature is
now huge, and continues to grow, both as methods are developed for large and
complex data structures, and as increasing computer power and suitable software
enable researchers to apply these methods.

For a broad overview of the literature, a good place to start is one of the recent
excellent textbooks. Little and Rubin (2002) write for applied statisticians. They
give a good overview of likelihood methods, and give an introduction to multiple
imputation. Allison (2002) presents a less technical overview. Schafer (1997) is
more algorithmic, focusing on the EM algorithm and imputation using the mul-
tivatiate normal and general location model. Molenberghs and Kenward (2007)

Multiple Imputation and its Application, First Edition. James R. Carpenter and Michael G. Kenward.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.



4 MULTIPLE IMPUTATION AND ITS APPLICATION

focus on clinical studies, while Daniels and Hogan (2008) focus on longitudinal
studies with a Bayesian emphasis.

The above books concentrate on parametric approaches. However, there is
also a growing literature based around using inverse probability weighting, in the
spirit of Horvitz and Thompson (1952), and associated doubly robust methods.
In particular, we refer to the work of Robins and colleagues (e.g. Robins et
al., 1995; Scharfstein et al., 1999). Vansteelandt et al. (2009) give an accessible
introduction to these developments. A comparison with multiple imputation in a
simple setting is given by Carpenter et al. (2006). The pros and cons are debated
in Kang and Schafer (2007) and the theory is brought together by Tsiatis (2006).

This book is concerned with a particular statistical method for analysing
and drawing inferences from incomplete data, called Multiple Imputation (MI).
Initially proposed by Rubin (1987) in the context of surveys, increasing awareness
among researchers about the possible effects of missing data (e.g. Klebanoff and
Cole, 2008) has led to an upsurge of interest (e.g. Sterne et al., 2009; Kenward
and Carpenter, 2007; Schafer, 1999a; Rubin, 1996).

Multiple imputation (MI) is attractive because it is both practical and widely
applicable. Recently developed statistical software (see, for example, issue 45
of the Journal of Statistical Software) has placed it within the reach of most
researchers in the medical and social sciences, whether or not they have under-
taken advanced training in statistics. However, the increasing use of MI in a
range of settings beyond that originally envisaged has led to a bewildering pro-
liferation of algorithms and software. Further, the implication of the underlying
assumptions in the context of the data at hand is often unclear.

We are writing for researchers in the medical and social sciences with the
aim of clarifying the issues raised by missing data, outlining the rationale for MI,
explaining the motivation and relationship between the various imputation algo-
rithms, and describing and illustrating its application to increasingly complex
data structures.

Central to the analysis of partially observed data is an understanding of why
the data are missing and the implications of this for the analysis. This is the
focus of the remainder of this chapter. Introducing some of the examples that
run through the book, we show how Rubin’s typology (Rubin, 1976) provides
the foundational framework for understanding the implications of missing data.

1.1 Reasons for missing data

In this section we consider possible reasons for missing data, illustrate these
with examples, and draw some preliminary implications for inference. We use
the word ‘possible’ advisedly, since with partially observed data we can rarely
be sure of the mechanism giving rise to missing data. Instead, a range of possible
mechanisms are consistent with the observed data. In practice, we therefore wish
to analyse the data under different mechanisms, to establish the robustness of our
inference in the face of uncertainty about the missingness mechanism.
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All datasets consist of a series of units each of which provides information
on a series of items . For example, in a cross-sectional questionnaire survey,
the units would be individuals and the items their answers to the questions. In
a household survey, the units would be households, and the items information
about the household and members of the household. In longitudinal studies,
units would typically be individuals while items would be longitudinal data from
those individuals. In this book, units therefore correspond to the highest level in
multilevel (i.e., hierarchical) data, and unless stated otherwise data from different
units are statistically independent.

Within this framework, it is useful to distinguish between units where all the
information is missing, termed unit nonresponse and units who contribute partial
information, termed item nonresponse. The statistical issues are the same in both
cases, and both can in principle be handled by MI. However, the main focus of
this book is the latter.

Example 1.1 Mandarin tableau

Figure 1.1, which is also shown on the cover, shows part of the frontage of a
senior mandarin’s house in the New Territories, Hong Kong. We suppose interest
focuses on characteristics of the figurines, for example their number, height, facial
characteristics and dress. Unit nonresponse then corresponds to missing figurines,
and item nonresponse to damaged – hence partially observed – figurines. �

Figure 1.1 Detail from a senior mandarin’s house front in New Territories, Hong
Kong. Photograph by H. Goldstein.
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1.2 Examples

We now introduce two key examples, which we return to throughout the book.

Example 1.2 Youth Cohort Study (YCS)

The Youth Cohort Study of England and Wales (YCS) is an ongoing UK gov-
ernment funded representative survey of pupils in England and Wales at school-
leaving age (School year 11, age 16–17) (UK Data Archive, 2007). Each year
that a new cohort is surveyed, detailed information is collected on each young
person’s experience of education and their qualifications as well as information
on employment and training. A limited amount of information is collected on
their personal characteristics, family, home circumstances, and aspirations.

Over the life-cycle of the YCS, different organisations have had responsibility
for the structure and timings of data collection. Unfortunately, the documenta-
tion of older cohorts is poor. Croxford et al. (2007) have recently deposited a
harmonised dataset that comprises YCS cohorts from 1984 to 2002 (UK Data
Archive Study Number 5765). We consider data from pupils attending compre-
hensive schools from five YCS cohorts; these pupils reached the end of Year 11
in 1990, 1993, 1995, 1997 and 1999.

We explore relationships between Year 11 educational attainment (the General
Certificate of Secondary Education) and key measures of social stratification. The
units are pupils and the items are measurements on these pupils, and a nontrivial
number of items are partially observed. �

Example 1.3 Randomised controlled trial of patients with chronic asthma

We consider data from a 5-arm asthma clinical trial to assess the efficacy and
safety of budesonide, a second-generation glucocorticosteroid, on patients with
chronic asthma. 473 patients with chronic asthma were enrolled in the 12-week
randomised, double-blind, multi-centre parallel-group trial, which compared the
effect of a daily dose of 200, 400, 800 or 1600 mcg of budesonide with placebo.

Key outcomes of clinical interest include patients’ peak expiratory flow
rate (their maximum speed of expiration in litres/minute) and their Forced
Expiratory Volume, FEV1, (the volume of air, in litres, the patient with fully
inflated lungs can breathe out in one second). In summary, the trial found a
statistically significant dose-response effect for the mean change from baseline
over the study for both morning peak expiratory flow, evening peak expiratory
flow and FEV1, at the 5% level.

Budesonide treated patients also showed reduced asthma symptoms and
bronchodilator use compared with placebo, while there were no clinically
significant differences in treatment related adverse experiences between the
treatment groups. Further details about the conduct of the trial, its conclusions
and the variables collected can be found elsewhere (Busse et al., 1998). Here,
we focus on FEV1 and confine our attention to the placebo and lowest active
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dose arms. FEV1 was collected at baseline, then 2, 4, 8 and 12 weeks after
randomisation. The intention was to compare FEV1 across treatment arms at
12 weeks. However, excluding 3 patients whose participation in the study was
intermittent, only 37 out of 90 patients in the placebo arm, and 71 out of 90
patients in the lowest active dose arm, still remained in the trial at twelve
weeks. �

1.3 Patterns of missing data

It is very important to investigate the patterns of missing data before embarking
on a formal analysis. This can throw up vital information that might otherwise
be overlooked, and may even allow the missing data to be traced. For example,
when analysing the new wave of a longitudinal survey, a colleague’s careful
examination of missing data patterns established that many of the missing ques-
tionnaires could be traced to a set of cardboard boxes. These turned out to have
been left behind in a move. They were recovered and the data entered.

Most statistical software now has tools for describing the pattern of miss-
ing data. Key questions concern the extent and patterns of missing values, and
whether the pattern is monotone (as described in the next paragraph), as if it is,
this can considerably speed up and simplify the analysis.

Missing data in a set of p variables are said to follow a monotone missingness
pattern if the variables can be re-ordered such that, for every unit i and variable j ,

1. if unit i is observed on variable j , where j = 2, . . . , p, it is observed on
all variables j ′ < j , and

2. if unit i is missing on variable j , where j = 2, . . . , p, it is missing on all
variables j ′ > j .

A natural setting for the occurrence of monotone missing data is a longitudinal
study, where units are observed either until they are lost to follow-up, or the
study concludes. A monotone pattern is thus inconsistent with interim missing
data, where units are observed for a period, missing for the subsequent period,
but then observed. Questionnaires may also give rise to monotone missing data
patterns when individuals systematically answer each question in turn from the
beginning till they either stop or complete the questionnaire. In other settings it
may be possible to re-order items to achieve a monotone pattern.

Example 1.2 Youth Cohort Study (ctd)

Table 1.1 shows the covariates we consider from the YCS. There are no missing
data in the variables cohort and boy . The missingness pattern for GCSE score
and the remaining two variables is shown in Table 1.2. In this example it is not
possible to re-order the variables (items) to obtain a monotone pattern, due for
example, to pattern 3 (N = 697). �
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Table 1.1 YCS variables for exploring the relationship between Year 11
attainment and social stratification.

Variable name Description

cohort year of data collection: 1990, 93, 95, 97, 99
boy indicator variable for boys
occupation parental occupation, categorised as managerial,

intermediate or working
ethnicity categorised as Bangladeshi, Black, Indian,

other Asian, Other, Pakistani or White

Table 1.2 Pattern of missing values in the YCS data.

Pattern GCSE score Occupation Ethnicity No. % of total

1 � � � 55145 87%
2 � · � 6821 11%
3 · � � 697 1%
4 � · · 592 1%

Example 1.3 Asthma study (ctd)

Table 1.3 shows the withdrawal pattern for the placebo and lowest active dose
arms (all the patients are receiving their randomised medication). We have
removed three patients with unusual interim missing data from Table 1.3 and all
our analyses. The remaining missingness pattern is monotone in both treatment
arms. �

Table 1.3 Asthma study: withdrawal pattern by treatment arm.

Dropout pattern Placebo arm

Mean FEV1 (litres) measured at week Number Percent

0 2 4 8 12

1 � � � � � 37 41
2 � � � � · 15 17
3 � � � · · 22 24
4 � � · · · 16 18

Lowest Active arm
1 � � � � � 71 79
2 � � � � · 8 9
3 � � � · · 8 9
4 � � · · · 3 3
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1.3.1 Consequences of missing data

Our focus is the practical implications of missing data for both parameter esti-
mation and inference. Unfortunately, the two are often conflated, so that a
computational method for parameter estimation when data are missing is said
to have ‘solved’ or ‘handled’ the missing data issue. Since, with missing data,
computational methods only lead to valid inference under specific assumptions,
this attitude is likely to lead to misleading inferences.

In this context, it may be helpful to draw an analogy with the sampling
process used to collect the data. If an analyst is presented with a spreadsheet
containing columns of numerical data, they can analyse the data (calculate means
of variables, regress variables on each other and so forth). However, they cannot
draw any inferences unless they are told how and from whom the data were
collected. This information is external to the numerical values of the variables.

We may think of the missing data mechanism as a second stage in the sam-
pling process, but one that is not under our control. It acts on the data we intended
to collect and leaves us with a partially observed dataset. Once again, the missing
data mechanism cannot usually be definitively identified from the observed data,
although the observed data may indicate plausible mechanisms (e.g. response
may be negatively correlated with age). Thus we will need to make an assump-
tion about the missingness mechanism in order to draw inference. The process
of making this assumption is quite separate from the statistical methods we use
for parameter estimation etc. Further, to the extent that the missing data mecha-
nism cannot be definitively identified from the data, we will often wish to check
the robustness of our inferences to a range of missingness mechanisms that are
consistent with the observed data. The reason this book focuses on the statisti-
cal method of MI is that it provides a computationally feasible approach to the
analysis for a wide range of problems under a range of missingness mechanisms.

We therefore begin with a typology for the mechanisms causing, or gener-
ating, the missing data. Later in this chapter we will see that consideration of
these mechanisms in the context of the analysis at hand clarifies the assumptions
under which a simple analysis, such as restriction to complete records, will be
valid. It also clarifies when more sophisticated computational approaches such as
MI will be valid and informs the way they are conducted. We stress again that
the mechanism causing the missing data can rarely be definitively established.
Thus we will often wish to explore the robustness of our inferences to a range
of plausible missingness mechanisms – a process we call sensitivity analysis .

From a general standpoint, missing data may cause two problems: loss of
efficiency and bias.

First, loss of efficiency, or information, is an inevitable consequence of miss-
ing data. Unfortunately, the extent of information loss is not directly linked to the
proportion of incomplete records. Instead it is intrinsically linked to the analysis
question. When crossing the road, the rear of the oncoming traffic is hidden from
view – the data are missing. However, these missing data do not bear on the
question at hand – will I make it across the road safely? While the proportion
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of missing data about each oncoming vehicle is substantial, information loss is
negligible. Conversely, when estimating the prevalence of a rare disease, a small
proportion of missing observations could have a disproportionate impact on the
resulting estimate.

Faced with an incomplete dataset, most software automatically restricts anal-
ysis to complete records. As we illustrate below, the consequence of this for loss
of information is not always easy to predict. Nevertheless, in many settings it
will be important to include the information from partially complete records. Not
least of the reasons for this is the time and money it has taken to collect even
the partially complete records. Under certain assumptions about the missingness
mechanism, we shall see that MI provides a natural way to do this.

Second, and perhaps more fundamentally, the subset of complete records may
not be representative of the population under study. Restricting analysis to com-
plete records may then lead to biased inference. The extent of such bias depends
on the statistical behaviour of the missing data. A formal framework to describe
this behaviour is thus fundamental. Such a framework was first elucidated in a
seminal paper by Rubin (1976). To describe this, we need some definitions.

1.4 Inferential framework and notation

For clarity we take a frequentist approach to inference. This is not essential
or necessarily desirable; indeed we will see that MI is essentially a Bayesian
method, with good frequentist properties. Often, as Chapter 2 shows, formally
showing these frequentist properties is most difficult theoretically.

We suppose we have a sample of n units, which will often be individuals, from
a population that for practical inferential purposes can be considered infinite. Let
Yi = (Yi,1, Yi,2, . . . , Yi,p)T denote the p variables we intended to collect from
the ith unit, i = 1 . . . , n. We wish to use these data to make inferences about a
set of p population parameters θ = (θ1, . . . , θp)T .

For each unit i = 1, . . . , n let Yi,O denote the subset of p variables that
are observed, and Yi,M denote the subset that are missing. Thus, for different
individuals, Yi,O and Yi,M may well be different subsets of the p variables. If
no data are missing, Yi,M will be empty.

Next, again for each individual i = 1, . . . , n and variable j = 1, . . . , p,
let Ri,j = 1 if Yi,j is observed and Ri,j = 0 if Yi,j is missing. Let
Ri = (Ri,1, . . . , Ri,p)T . Consistent with the definition of monotone missingness
patterns on p. 10, the pattern is monotone if the p variables can be re-ordered
so that for each unit i,

Ri,j = 0 �⇒ Ri,j ′ = 0 for j ′ = j + 1, . . . , p. (1.1)

The missing value mechanism is then formally defined as

Pr(Ri |Yi ), (1.2)


