

C Programming For Dummies®, 2nd Edition
Published by: John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030-5774, www.wiley.com
Copyright © 2021 by John Wiley & Sons, Inc., Hoboken,
New Jersey
Published simultaneously in Canada
No part of this publication may be reproduced, stored in
a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the
Publisher. Requests to the Publisher for permission
should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.
Trademarks: Wiley, For Dummies, the Dummies Man
logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered
trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. All other trademarks
are the property of their respective owners. John Wiley &
Sons, Inc. is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY:
THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY
DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE

http://www.wiley.com/
http://www.wiley.com/go/permissions

CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE
PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL
BE LIABLE FOR DAMAGES ARISING HEREFROM. THE
FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR
A POTENTIAL SOURCE OF FURTHER INFORMATION
DOES NOT MEAN THAT THE AUTHOR OR THE
PUBLISHER ENDORSES THE INFORMATION THE
ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER,
READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and
services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-
572-3993, or fax 317-572-4002. For technical support,
please visit https://hub.wiley.com/community/support/dummies.
Wiley publishes in a variety of print and electronic
formats and by print-on-demand. Some material included
with standard print versions of this book may not be
included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included
in the version you purchased, you may download this

https://hub.wiley.com/community/support/dummies#_blank

material at http://booksupport.wiley.com. For more
information about Wiley products, visit www.wiley.com.
Library of Congress Control Number: 2020945155
ISBN: 978-1-119-74024-7; 978-1-119-74025-4 (ebk); 978-
1-119-74026-1 (ebk)

http://booksupport.wiley.com/
http://www.wiley.com/

C Programming For
Dummies®
To view this book's Cheat Sheet,
simply go to www.dummies.com and
search for “C Programming For
Dummies Cheat Sheet” in the Search
box.

Table of Contents
Cover
Title Page
Copyright Page
Introduction

Why the C Language?
The C Programming For Dummies Approach
How This Book Works
Icons Used in This Book
Parting Thoughts

Part 1: The ABs of C
Chapter 1: A Quick Start for the Impatient

What You Need to Program
Command Prompt Programming
IDE Programming
Your First Program

http://www.dummies.com/
file:///tmp/calibre_5.42.0_tmp_4d__5vyp/p5dk7zx8_pdf_out/OPS/cover.xhtml

Chapter 2: The Programming Thing
The History of Programming
The Programming Process

Chapter 3: Anatomy of C
Parts of the C Language
Behold the Typical C Program

Part 2: C Programming 101
Chapter 4: Trials and Errors

Display Stuff on the Screen
More Text Output Nonsense

Chapter 5: Values and Simple Math
A Venue for Various Values
The Computer Does the Math

Chapter 6: A Place to Put Stuff
Values That Vary
Variable Madness!
Constants Always the Same

Chapter 7: Input and Output
Character I/O
Text I/O, but Mostly I

Chapter 8: Decision Making
What If?
Multiple Decisions
Multiple Comparisons with Logic
The Old Switch Case Trick
The Weird ?: Decision Thing

Chapter 9: Loops, Loops, Loops
A Little Déjà Vu
The Thrill of for Loops
The Joy of the while Loop
Loopy Stuff

Chapter 10: Fun with Functions
Anatomy of a Function
Functions and Variables
Constants of the Global Kind

Part 3: Build Upon What You Know
Chapter 11: The Unavoidable Math Chapter

Math Operators from Beyond Infinity
Math Function Mania
It’s Totally Random
The Holy Order of Precedence

Chapter 12: Give Me Arrays
Behold the Array
Multidimensional Arrays
Arrays and Functions

Chapter 13: Fun with Text
Character Manipulation Functions
String Functions Galore
Fun with printf() Formatting
Gently Down the Stream

Chapter 14: Structures, the Multivariable
Hello, Structure
Weird Structure Concepts

Chapter 15: Life at the Command Prompt
Conjure a Terminal Window
Arguments for the main() Function
Time to Bail

Chapter 16: Variable Nonsense
Variable Control
Variables, Variables Everywhere

Chapter 17: Binary Mania
Binary Basics

Bit Manipulation
The Joy of Hex

Part 4: The Advanced Part
Chapter 18: Introduction to Pointers

The Biggest Problem with Pointers
Sizing Up Variable Storage
The Hideously Complex Topic of Pointers

Chapter 19: Deep into Pointer Land
Pointers and Arrays
Strings Are Pointer-Things
Pointers in Functions

Chapter 20: Memory Chunks and Linked
Lists

Give Me Memory!
Lists That Link

Chapter 21: It’s About Time
What Time Is It?
Time to Program

Part 5: And the Rest of It
Chapter 22: Permanent Storage Functions

Sequential File Access
Random File Access

Chapter 23: File Management
Directory Madness
Fun with Files

Chapter 24: Beyond Mere Mortal Projects
The Multi-Module Monster
Other Libraries to Link

Chapter 25: Out, Bugs!
Simple Tricks to Resolve Problems
The Debugger

Improved Error Messages
Part 6: The Part of Tens

Chapter 26: Ten Common Boo-Boos
Conditional Foul-Ups
== v. =
Dangerous Loop Semicolons
Commas in for Loops
Missing break in a switch Structure
Missing Parentheses and Curly Brackets
Don’t Ignore a Warning
Endless Loops
scanf() Blunders
Streaming Input Restrictions

Chapter 27: Ten Reminders and
Suggestions

Maintain Good Posture
Use Creative Names
Write a Function
Work on Your Code a Little Bit at a Time
Break Apart Larger Projects into Several Modules
Know What a Pointer Is
Add Whitespace before Condensing
Know When if-else Becomes switch-case
Remember Assignment Operators
When You Get Stuck, Read Your Code Out Loud

Part 7: Appendices
Appendix A: ASCII Codes
Appendix B: Keywords
Appendix C: Operators
Appendix D: Data Types
Appendix E: Escape Sequences

Appendix F: Conversion Characters
Appendix G: Order of Precedence

Index
About the Author
Connect with Dummies
End User License Agreement

List of Tables
Chapter 3

TABLE 3-1 C Language Keywords
Chapter 4

TABLE 4-1: Escape Sequences
Chapter 5

TABLE 5-1: Basic Math Operators
Chapter 6

TABLE 6-1 Basic C Language Variable Types
TABLE 6-2 More C Language Data Types

Chapter 8
TABLE 8-1 C Language Comparison Operators
TABLE 8-2 Logical Comparison Operators

Chapter 11
TABLE 11-1 C Math Operators
TABLE 11-2 C Math Assignment Operators
TABLE 11-3 Common, Sane Math Functions

Chapter 13
TABLE 13-1 CTYPE Testing Functions
TABLE 13-2 CTYPE Manipulation Functions
TABLE 13-3 String Functions

Chapter 17
TABLE 17-1 Binary Groupings
TABLE 17-2 Powers of 2
TABLE 17-3 Binary Operators
TABLE 17-4 Hexadecimal Values

Chapter 19
TABLE 19-1 Pointers and Peekers In and Out of Parentheses
TABLE 19-2 Array Notation Replaced by Pointers
TABLE 19-3 Pointer Notation and Array Notation

Chapter 22
TABLE 22-1: Access Modes for the fopen() Function

Appendix G
TABLE G-1 Standard Operator Precedence
TABLE G-2 Pointers and Precedence

List of Illustrations
Chapter 1

FIGURE 1-1: The Code::Blocks workspace.
FIGURE 1-2: Program output.

Chapter 5
FIGURE 5-1: Matching printf() conversion characters and
arguments.

Chapter 11
FIGURE 11-1: Degrees and radians.

Chapter 12
FIGURE 12-1: Storing strings in a two-dimensional array.

Chapter 15
FIGURE 15-1: Text mode in a terminal window.
FIGURE 15-2: Setting command-line arguments in Code::Blocks.

Chapter 17

FIGURE 17-1: Base 2 values in a byte.
Chapter 18

FIGURE 18-1: How a structure fits in memory.
FIGURE 18-2: Variable locations in memory.
FIGURE 18-3: Using a pointer to read values.

Chapter 19
FIGURE 19-1: Filling an array by using a pointer.
FIGURE 19-2: How the ** thing works.

Chapter 20
FIGURE 20-1: A linked list in memory.
FIGURE 20-2: Removing an item from a linked list.
FIGURE 20-3: Adding an item to a linked list.

Chapter 24
FIGURE 24-1: Two source code files in the Code::Blocks IDE.

Chapter 25
FIGURE 25-1: The Compiler toolbar.
FIGURE 25-2: A breakpoint in the code.
FIGURE 25-3: Monitoring variable values.

Introduction
When I was in school, I'd open a new math textbook and
look in the back, marveling at the problems. Someday, I
thought, I would understand all this nonsense.
You should do that with this book right now: Open it up
to one of the final chapters. Look over the C
programming code and think to yourself, “Someday soon,
this will all make perfect sense to me.”
Say “Hello, world” to C Programming For Dummies, 2nd
Edition, the book that sets you on the path to become a
computer programmer. Once despised vermin, banished
to basement server rooms and suffering from a lack of
personal hygiene, programmers are now valued and
contributing members of society. Some are billionaires.
And they all started their careers by learning to
program.
The C language lets you master a number of electronic
gizmos. You can craft your own programs, dictating your
every whim and desire to computers, tablets, and cell
phones. The electronics dutifully obey. Given the
information offered in this book, you can pass that
programming class, impress your friends, be admired by
Hollywood, or even start your own software company.
Truly, learning to program is a worthy investment of your
time.
This book helps make learning how to program
understandable and enjoyable. You don’t need any
programming experience — you don’t even need to buy
new software. You just need the desire to program in C
and the ability to have fun while doing so.

Why the C Language?
An argument surfaces every few years that learning C is
a road to nowhere. Newer, better programming
languages exist, and it’s far better to learn them than to
waste time learning C.
Poppycock.
C continues to dominate the charts for best and most
useful programming languages, often beating out the
newer languages the cool programmers use. Further, C
is like the Latin of computer languages: Just about every
Johnny-come-lately programming language uses C
syntax. C keywords and even certain functions find their
way into other popular languages, from C++ to Java to
Python to whatever the latest, trendy language might be.
My point is that once you learn C programming, all those
other programming languages come easy. In fact, many
of the books that teach those other languages often
assume that you know a little C before you start out. This
assumption is frustrating for a beginner — but not when
you already know C.
So ignore the lofty pundits and know-it-all poohbahs. C is
still relevant. Programming for microcontrollers,
operating systems, and major software packages is still
done using good ol’ C. You are not wasting your time.

The C Programming For
Dummies Approach

As a programmer, I’ve toiled through many programming
books. I know what I really don’t like to see, and,
lamentably, I see it often — that is, where the author

writes pages-long code or boasts about what he knows,
impressing his fellow nerds and not really teaching
anything. Too much of this type of training exists, which
is probably why you’ve picked up this book.
My approach here is simple: Short programs. To-the-
point demonstrations. Lots of examples. Plenty of
exercises.
The best way to learn something is by doing it. Each
concept presented in this book is coupled with sample
code. The listings are short enough that you can quickly
type them in — and I recommend that you do so. You can
then build and run the code to see how things work. This
immediate feedback is not only gratifying, it’s also a
marvelous learning tool.
Sample programs are followed by exercises you can try
on your own, testing your skills and expanding your
knowledge. Suggested answers to the exercises and all
the source code can be found on this book’s companion
website:

https://c-for-dummies.com/cprog

https://c-for-dummies.com/cprog

How This Book Works
This book teaches the C programming language. It starts
out by assuming that you know little to nothing about
programming, and it finishes by covering some of the
more advanced C operations.
To program in C, you need a computer. This book makes
no assumptions about the computer you select: It can be
a Windows PC, a Macintosh, or a Linux system. You can
choose to use an integrated development environment
(IDE) such as Code::Blocks, or you can compile and run
the sample programs at a command prompt.
This book also wastes no time, getting you started
immediately in Chapter 1. Nothing is introduced without
a full explanation first. Due to the nature of
programming, I’ve made a few exceptions; they’re
carefully noted in the text. Otherwise, the book flows
from front to back, which is how best to read this book.
C language keywords and functions are shown in italic
text, as in printf() and break. Some keywords, such as for
and if, may make the sentence read in a goofy way, which
is why those words are shown in italic.
Filenames and variable names are shown in monofont
type, such as program.exe and loop.
If you need to type something, that text is shown in bold.
For example, “Type the blorfus command” means that
you should type blorfus at the keyboard. You're directed
when to press the Enter key, if at all.
When working numbered steps, text to type appears in
regular (roman) type:

3. Type exit and press the Enter key.

You type the word exit and then press the Enter key.
Program samples are shown as snippets on the page,
similar to this one:

if(i == 1)
 printf("eye won");

You don’t need to type an example unless you’re directed
to do so.
Full program listings are shown and numbered in each
chapter; for example:

LISTING 1-1 The Code::Blocks Skeleton
#include <stdio.h>
#include <stdlib.h>

int main()
{
 printf("Hello world!\n");
 return(0);
}

Because of this book’s margins, text in a listing may
occasionally wrap, extending from one line to the next.
You do not need to split up your code in a similar
manner, and I remind you whenever such a thing occurs.
The listings in this book don’t contain line numbers, but
your text editor might. This book references the sample
code listings by using the line numbers, which you can
also use in your editor to examine the code.
Exercises are numbered by chapter and then
sequentially. So the third exercise in Chapter 13 is
Exercise 13-3. You’re directed in the text to work an
exercise. Here’s an example:
Exercise 1-1: Type the source code from Listing 1-1 into
your editor. Save it under the filename ex0101.c. Build and
run.

Answers for all exercises can be found on the web:
https://c-for-dummies.com/cprog

Go to this web page if you want to copy-and-paste the
source code as well.

Icons Used in This Book

 This icon flags information worthy enough to
remember. Though I recommend remembering as
much as you can, these icons flag the stuff you just
can’t forget.

 A tip is a suggestion, a special trick, or something
super fancy to help you out.

 This icon marks something you need to avoid. It’s
advice that could also be flagged with a Tip or
Remember icon but has dire consequences if
ignored.

 Face it: All of programming is technical. I reserve
the use of this icon for extra-technical tidbits, asides,
and anecdotes. Call it “nerd stuff.”

Parting Thoughts

https://c-for-dummies.com/cprog/

I enjoy programming. It’s a hobby, and I find it incredibly
relaxing, frustrating, and rewarding. I assume that you
share these feelings, though you may also be a
struggling student or someone who wants a career.
Regardless, enjoy programming. If you can imagine the
program you want to write on a screen, you can make it
happen. It may not happen as fast as you like, but it can
happen.
Please work the exercises in this book. Try some on your
own, variations on a theme. Continue working at
problems until you solve them. The amazing thing about
programming is that no single, absolutely correct way to
do something exists. Anytime you try, you’re learning.
If possible, find a programming friend who can help you.
Don’t make them do the work or explain how things run,
but rely on them as a resource. Programming can be a
solo thing, but it’s good to occasionally commiserate with
others who also program in C — or in any language.
This book has a few companion websites. The primary
one is found here:

https://c-for-dummies.com/cprog

You can also check out my C programming blog, which is
updated every Saturday with new lessons and offers a
monthly Exercise challenge:

https://c-for-dummies.com/blog

The publisher also features a companion website, which
I’m obliged to mention here, though it’s not updated as
frequently as my own site. Visit www.dummies.com and type
C programming into the search box to find this book’s
support page and other goodies.
For more help, or just to say hi, you can send me email at

dan@c-for-dummies.com

https://c-for-dummies.com/cprog/
https://c-for-dummies.com/blog/
http://www.dummies.com/

I’m happy to hear from you, though I won’t write code
for you. I also cannot explain university assignments. (I
don’t do B-trees. No one does.) And if you have any
questions specific to this book — especially any errors or
typos — feel free to pass them along.
Enjoy your C programming!

Part 1
The ABs of C

IN THIS PART …
Get started with C coding
Work through your very first program
Learn how programming works
Discover the parts of the C language
Craft a basic C skeleton

Chapter 1
A Quick Start for the

Impatient
IN THIS CHAPTER

 Reviewing software requirements
 Programming at the command prompt
 Using an IDE
 Creating a command prompt program
 Working in Code::Blocks
 Compiling a program

You’re most likely eager to get started programming in
C. I shan’t waste your time.

 If you already have a compiler or an IDE set up
and are ready to go, skip to Chapter 2.

What You Need to Program
The two most important things you need to begin your
programming adventure are

A computer
Access to the Internet

The computer is your primary tool for writing and
compiling code. Yes, even if you’re writing a game for the

Xbox, you need a computer to be able to code. The
computer can be a PC or a Macintosh. The PC can run
Windows or Linux.
Internet access is necessary to obtain the programming
software. You need a text editor to write the code and a
compiler to translate the code into a program. The
compiler generally comes with other tools you need,
such as a linker and a debugger. All these tools are found
at no cost on the Internet.
The software tools offer two approaches to
programming: command line and IDE.
If you want to learn C programming as I did back in the
dark ages, you use a terminal window and traditional
command-line tools: editor, compiler, and linker. The
process is fast, but complicated because you’re using
text mode commands. Still, it offers a spiritual
connection with those who built the foundations upon
which the computer industry roosts.
The most common way to craft code, however, is to
obtain an integrated development environment — called
an IDE by the cool kids. It combines all the tools you
need for programming into one compact, terrifying, and
intimidating unit.
Don’t freak! The terms compiler, linker, debugger, and
terrifying are all defined in Chapter 2.

Command Prompt
Programming

To re-create the environment where the C language was
born, use a Unix or Linux terminal window running a
shell program such as bash. This environment is

available to all major computing platforms, and the
programming tools used are reliable and well-
documented. Programming at the command prompt
earns you a nerd merit badge and the admiration of your
peers.
For Windows 10, open the Microsoft Store app and
install Ubuntu, a free Linux shell. Ensure that you follow
the directions to install the Windows Subsystem for
Linux, which is an extra step you’ll probably miss.
For Linux, you’re ready to go: Open a terminal window to
access the shell.
For Mac OS X, use the Terminal app. I also recommend
obtaining the Homebrew package manager. Visit
https://brew.sh for directions. Homebrew allows you to
install programming tools not available to OS X.
For an editor, you can use any text mode editor available
at the command prompt, such as vi or emacs. You can
also “mix it up” and use a window-based editor. I’m fond
of using the Windows version of the VIM editor while I
simultaneously work at the command prompt in an
Ubuntu terminal window.
A C compiler comes native to a Unix/Linux command
prompt. The standard version is cc or gcc, but I
recommend that you use the shell’s package manager to
acquire the LLVM clang compiler. In Ubuntu Linux for
Windows 10, type this command to install clang:

sudo apt-get install clang

Type your account password to initiate the process. To
verify the installation, type

clang --version

Various Linux distros offer similar package managers,
which you can use to obtain an editor and the clang

https://brew.sh/

compiler.

The VIM editor can be obtained from vim.org.

 Your choice to use the command prompt means
you’re taking on an extra layer of complexity when it
comes to programming. I find it fast and enjoyable,
but if you believe it to be too much, especially when
first learning the C language, rely instead upon an
IDE, as covered in the next section.

IDE Programming
Plenty of programming IDEs are available for your C
coding pleasure. On the Mac, use Xcode, which you can
install from the App Store. For Windows and Linux, I
recommend obtaining the Code::Blocks IDE, which is
found at codeblocks.org. You can choose any other IDE you
prefer, but Code::Blocks for Windows is fairly stable and
comes with everything you need — providing that you
install the correct version.

Installing Code::Blocks
The Code::Blocks website will doubtless be altered over
time, so follow these general steps to install the IDE and
confirm that the C compiler is accessible:

1. On the main Code::Blocks website page, click
the Downloads link.

2. Click the binary release link.
The “binary release” means you’re installing a
runnable program, not source code or something
equally strange.

https://www.vim.org/
http://codeblocks.org/

3. Choose the proper installation program for your
computer’s operating system.
For Windows 10, I recommend that you choose the
installation with the text mingw-setup appended. For
example:

codeblocks-20.03mingw-setup.exe

The 20.03 part of the filename is the release number,
which will change in the future. The mingw-setup choice
means you're downloading both the IDE and the
MinGW compiler.

 For Linux, click the link to install the proper
version for your distro, but keep in mind that
Code::Blocks might be more easily acquired by using
the Linux GUI package/software manager.

4. Open the downloaded archive to extract the
Code::Blocks IDE installer.
In Windows, you see a User Account Control warning
when you open the archive. Click Yes to proceed with
installation.

5. Run the installation program.
Perform a default installation; you need not customize
anything.

6. Choose to run Code:Blocks: Click the Yes button.
Code::Blocks appears, showing its splash screen.
Don’t start coding now. Instead, confirm the
compiler’s installation:

7. Choose Settings, Compiler.
The Compiler Settings dialog box appears.

8. With Global Compiler Settings chosen on the
left, click the Toolchain Executables tab on the

right side of the dialog box.
9. Ensure that the Compiler’s Installation Directory

text box is filled.
In a default confirmation, the following pathname is
listed:

C:\Program Files (x86)\CodeBlocks\MinGW

If the text box is blank, use the Browse button (three
dots to the right of the text box) to locate the MinGW
installation directory.

10. Confirm that gcc.exe is set in the Compiler text
box.
If not, click the Browse button (three dots) to locate
the gcc.exe program, installed in the MinGW\bin
directory by default.

11. Close the Compiler Settings dialog box; click OK.

Installation is complete. I recommend you close the
Code::Blocks window. Finish the installation program as
well.

Touring the Code::Blocks workspace
Figure 1-1 illustrates the Code::Blocks workspace, which
is the official name of the massive mosaic of windows
and toolbars you see arranged on the screen.

FIGURE 1-1: The Code::Blocks workspace.

On your computer, as well as in Figure 1-1, locate the
following parts of the workspace:
Toolbars: These messy strips, adorned with various
command buttons, cling to the top of the Code::Blocks
window. The toolbars can be rearranged or hidden, so
don't mess with them until you get comfy with the
interface.
Management: The pane on the left side of the
workspace features four tabs, though you may not see all
four at one time. The window provides a handy oversight
of your programming endeavors.
Status bar: At the bottom of the screen, you see
information about the project, editor, and other activities
that take place in Code::Blocks.

