

Table of Contents
Cover
Title Page
Introduction

What Does This Book Cover?
Reader Support for This Book

Getting Started
Installing Go
Choosing an Editor
Installing Protocol Buffer Toolchain
Installing Docker Desktop
Guide to the Book
Go Refresher
Summary

CHAPTER 1: Writing Command-Line Applications
Your First Application
Writing Unit Tests
Using the Flag Package
Improving the User Interface
Updating the Unit Tests
Summary

CHAPTER 2: Advanced Command-Line Applications
Implementing Sub-commands
Making Your Applications Robust
Summary

CHAPTER 3: Writing HTTP Clients

file:///tmp/calibre_5.42.0_tmp_872h7g4q/qc0bxae4_pdf_out/OPS/cover.xhtml

Downloading Data
Deserializing Received Data
Sending Data
Working with Binary Data
Summary

CHAPTER 4: Advanced HTTP Clients
Using a Custom HTTP Client
Customizing Your Requests
Implementing Client Middleware
Connection Pooling
Summary

CHAPTER 5: Building HTTP Servers
Your First HTTP Server
Setting Up Request Handlers
Testing Your Server
The Request Struct
Attaching Metadata to a Request
Processing Streaming Requests
Streaming Data as Responses
Summary

CHAPTER 6: Advanced HTTP Server Applications
The Handler Type
Sharing Data across Handler Functions
Writing Server Middleware
Writing Tests for Complex Server Applications
Summary

CHAPTER 7: Production-Ready HTTP Servers
Aborting Request Handling

Server-Wide Time-Outs
Implementing Graceful Shutdown
Securing Communication with TLS
Summary

CHAPTER 8: Building RPC Applications with gRPC
gRPC and Protocol Buffers
Writing Your First Service
A Detour into Protobuf Messages
Multiple Services
Error Handling
Summary

CHAPTER 9: Advanced gRPC Applications
Streaming Communication
Receiving and Sending Arbitrary Bytes
Implementing Middleware Using Interceptors
Summary

CHAPTER 10: Production-Ready gRPC Applications
Securing Communication with TLS
Robustness in Servers
Robustness in Clients
Connection Management
Summary

CHAPTER 11: Working with Data Stores
Working with Object Stores
Working with Relational Databases
Summary

APPENDIX A: Making Your Applications Observable
Logs, Metrics, and Traces

Emitting Telemetry Data
Summary

APPENDIX B: Deploying Applications
Managing Configuration
Distributing Your Application
Deploying Server Applications
Summary

Index
Copyright
Dedication
About the Author
About the Technical Editor
Acknowledgments
End User License Agreement

List of Tables
Chapter 1

Table 1.1: Parsing of command-line arguments via
flag

List of Illustrations
Chapter 2

Figure 2.1: The main application looks at the
command-line arguments and inv...
Figure 2.2: The main package implements the root
command. A sub-command is i...

Chapter 5

Figure 5.1: Request processing by an HTTP server
Figure 5.2: Any package can register a handler
function with the DefaultServ...
Figure 5.3: Each incoming request is handled by a
new goroutine.
Figure 5.4: A context is created for every incoming
request and destroyed wh...
Figure 5.5: From left to right: An incoming HTTP
request triggers a long-run...

Chapter 6
Figure 6.1: Request processing by an HTTP server
when using a custom handler...
Figure 6.2: Request processing by an HTTP server
when using an http.HandlerF...
Figure 6.3: Request processing by an HTTP server
when using a wrapped ServeM...
Figure 6.4: Request processing by an HTTP server
when using multiple middlew...

Chapter 7
Figure 7.1: Aborting the request processing when
the time-out handler has ki...
Figure 7.2: The different time-outs that play a role
when handling an HTTP r...
Figure 7.3: Interaction between the Shutdown() and
ListenAndServe() methods...

Chapter 8
Figure 8.1: Functioning of an RPC-based service
architecture

Figure 8.2: Parts of a protobuf language
specification
Figure 8.3: Creating the gRPC server with the Users
service
Figure 8.4: Directory structure of the Users service
Figure 8.5: Comparison of a real network listener
with one created using buf...

Chapter 9
Figure 9.1: Streaming communication pattern
Figure 9.2: Protobuf oneof field and the equivalent
generated Go type
Figure 9.3: Interceptors and streaming
communication

Chapter 10
Figure 10.1: Functioning of an RPC-based service
architecture

Chapter 11
Figure 11.1: Architecture of the example scenario
Figure 11.2: Creating a bucket in MinIO
Figure 11.3: Entity relationship diagram for the
package server database

NOTE A glossary of relevant terms is available for
free download from the book's web page:
https://www.wiley.com/go/practicalgo.

https://www.wiley.com/go/practicalgo

Practical Go
Building Scalable Network and Non-
Network Applications

Amit Saha

Introduction
Google announced the Go programming language to the
public in 2009, with the version 1.0 release announced in
2012. Since its announcement to the community, and the
compatibility promise of the 1.0 release, the Go language
has been used to write scalable and high-impact software
programs ranging from command-line applications and
critical infrastructure tools to large-scale distributed
systems. The Go language has made a huge contribution to
the growth of a number of modern software success
stories. For a number of years, my personal interest in Go
has been due to its, for the lack of a better word, boring
nature—that's what I like about it. It felt like it combined
the power of the second programming language I learned,
C, with the batteries-included approach of another favorite
language of mine, Python. As I have written more programs
using the Go language, I have learned to appreciate its
focus on providing all the necessary tools and features to
write production-quality software. I have often found
myself thinking, “Will I be able to implement this failure-
handling pattern in this application?” Then I look at the
standard library package documentation, and the answer
has always been a resounding “Yes!” Once you have
grasped the fundamentals of Go, with almost zero effort on
your part as the software developer, the result is a highly
performant application out of the box.
My goal in this book is to showcase the various features of
the Go language and the standard libraries (along with a
few community-maintained packages) by developing
various categories of applications. Once you have refreshed
or learned the language fundamentals, this book will help
you take the next step. I have adopted a writing style where

the focus is on using various features of the language and
its libraries to solve the particular problem at hand—one
that you care about.
You will not find a detailed walk-through of a language
feature or every feature of a certain package. You will learn
just enough to build a command-line tool, a web
application, or a gRPC application. I focus on a strictly
chosen subset of the fundamental building blocks for such
applications to provide a compact and actionable guide.
Hence, you may find that the book doesn't cover the more
higher-level use cases that you may want to learn about.
That is intentional, as the implementation of those higher-
level use cases is often dependent on domain-specific
software packages, and hence no single book can do justice
to recommending one without missing out on another. I
also strive to use standard library packages as far as
possible for writing the applications in the book. This is
again done to ensure that the learning experience is not
diluted. Nonetheless, I hope that the building blocks you
learn about in the book will provide you with a solid
foundation to leverage higher-level libraries to build your
applications.

What Does This Book Cover?
This book teaches you concepts and demonstrates patterns
to build various categories of applications using the Go
programming language. We focus on command-line
applications, HTTP applications, and gRPC applications.
The Getting Started chapter will help you set up your Go
development environment, and it lays down some
conventions for the rest of the book.
Chapter 1 and Chapter 2 discuss building command-line
applications. You will learn to use the standard library
packages to develop scalable and testable command-line
programs.
Chapter 3 and Chapter 4 teach you how to build
production-ready HTTP clients. You will learn to configure
time-outs, understand connection pooling behavior,
implement middleware components, and more.
Chapters 5 through 7 discuss building HTTP server
applications. You will learn how to add support for
streaming data, implement middleware components, share
data across handler functions, and implement various
techniques to improve the robustness of your applications.
Chapters 8 through 10 delve deep into building RPC
applications using gRPC. You will learn about Protocol
Buffers, implement various RPC communication patterns,
and implement client-side and server-side interceptors to
perform common application functionality.
In Chapter 11, you will learn to interact with object stores
and relational database management systems from your
applications.
Appendix A briefly discusses how you can add
instrumentation into your applications.

Appendix B provides some guidelines around deploying
your applications.
Each group of chapters is mostly independent from the
other groups. So feel free to jump to the first chapter of a
group; however, there may be references to a previous
chapter.
Within each group, however, I recommend reading the
chapters from beginning to end, as the chapters within a
group build upon the previous chapter. For example, if you
are keen to learn more about writing HTTP clients, I
suggest reading Chapter 3 and Chapter 4 in that order.
I also encourage you to write and run the code yourself as
you work through the book and to attempt the exercises as
well. Writing the programs yourself in your code editor will
build that Go muscle, as it certainly did for me while
writing the programs in the book.

Reader Support for This Book
You can find links to the source code and resources related
to the book at https://practicalgobook.net. The code from the
book is also posted at https://www.wiley.com/go/practicalgo.
If you believe that you've found a mistake in this book,
please bring it to our attention. At John Wiley & Sons, we
understand how important it is to provide our customers
with accurate content, but even with our best efforts an
error may occur. To submit your possible errata, please
email it to our Customer Service Team at
wileysupport@wiley.com with the subject line “Possible Book
Errata Submission.”

https://practicalgobook.net/
https://www.wiley.com/go/practicalgo
https://wileysupport@wiley.com/

Getting Started
To start off, we will install the necessary software needed
for the rest of the book. We will also go over some of the
conventions and assumptions made throughout. Finally, I
will point out key language features you will use in the
book and resources to refresh your knowledge about them.

Installing Go
The code listings in this book work with Go 1.16 and above.
Follow the instructions at https://go.dev/learn/ to install the
latest version of the Go compiler for your operating system.
It usually involves downloading and running a graphical
installation process for Windows or macOS. For Linux, your
distribution's package repository may contain the latest
version already, which means that you can use your
package manager to install the Go compiler as well.
Once you have it installed, no further configuration is
necessary to run the programs that you will write
throughout the book. Verify that you have everything set up
correctly by running the command go version from your
terminal program. You should see an output telling you
which Go version is installed and the operating system and
architecture. For example, on my MacBook Air (M1), I see
the following:
$ go version
go version go1.16.4 darwin/arm64

If you can see an output like the above, you are ready to
continue with the next steps.

Choosing an Editor

https://go.dev/learn/

If you don't yet have a favorite Go editor/integrated
development environment (IDE), I recommend Visual
Studio Code (https://code.visualstudio.com/download). If you
are a Vim user, I recommend the vim-go extension
(https://github.com/fatih/vim-go).

Installing Protocol Buffer Toolchain
For some chapters in the book, you will need the Protocol
Buffers (protobuf) and gRPC tools for Go installed. You will
install three separate programs: the protobuf compiler,
protoc, and the Go protobuf and gRPC plug-ins, protoc-gen-go
and protoc-gen-go-grpc, respectively.

Linux and macOS
To install the compiler, run the following steps for Linux or
macOS:

1. Download the latest release (3.16.0 at the time of this
book's writing) file from
https://github.com/protocolbuffers/protobuf/releases,
corresponding to your operating system and
architecture. Look for the files in the Assets section.
For example, for Linux on a x86_64 system, download
the file named protoc-3.16.0-linux-x86_64.zip. For
macOS, download the file named protoc-3.16.3-osx-
x86_64.zip .

2. Next, extract the file contents and copy them to your
$HOME/.local directory using the unzip command: $ unzip
protoc-3.16.3-linux-x86_64.zip -d $HOME/.local.

3. Finally, add the $HOME/.local/bin directory to your $PATH
environment variable: $ export
PATH="$PATH:$HOME/.local/bin" in your shell's initialization

https://code.visualstudio.com/download
https://github.com/fatih/vim-go
https://github.com/protocolbuffers/protobuf/releases

script, such as $HOME/.bashrc for Bash shell and .zshrc for
Z shell.

Once you have completed the preceding steps, open a new
terminal window, and run the command protoc --version :
$ protoc --version
libprotoc 3.16.0

If you see output like the one above, you are ready to move
on to the next step.
To install the protobuf plug-in for Go, protoc-gen-go (release
v1.26), run the following command from a terminal
window:
$ go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.26

To install the gRPC plug-in for Go, protoc-gen-go-grpc
(release v1.1) tool, run the following command:
$ go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@v1.1

Then add the following to your shell's initialization file
($HOME/.bashrc or $HOME/.zshrc) :
$ export PATH="$PATH:$(go env GOPATH)/bin"

Open a new terminal window, and run the following
commands:
$ protoc-gen-go --version
protoc-gen-go v1.26.0
$ protoc-gen-go-grpc --version
protoc-gen-go-grpc 1.1.0

If you see an output like above, the tools have been
installed successfully.

Windows

NOTE You will need to open a Windows
PowerShell window as an administrator to run the
steps.

To install the protocol buffers compiler, run the following
steps:

1. Download the latest release (3.16.0 at the time of this
book's writing) file from
https://github.com/protocolbuffers/protobuf/releases,
corresponding to your architecture. Look for a file
named protoc-3.16.0-win64.zip in the Assets section.

2. Then create a directory where you will store the
compiler. For example, in C:\Program Files as follows: PS
C:\> mkdir 'C:\Program Files\protoc-3.16.0' .

3. Next, extract the downloaded .zip file inside that
directory. Run the following command while you are
inside the directory where you downloaded the .zip file:
PS C:\> Expand-Archive.\protoc-3.16.0-win64\ -
DestinationPath 'C:\Program Files\protoc-3.16.0 ’.

4. Finally, update the Path environment variable to add
the above path: PS C:\>
[Environment]::SetEnvironmentVariable("Path", $env:Path +
";C:\Program Files\protoc-3.16.0\bin", "Machine").

Open a new PowerShell window, and run the command
protoc --version :
$ protoc --version
libprotoc 3.16.0

If you see an output like the one above, you are ready to
move on to the next step.

https://github.com/protocolbuffers/protobuf/releases

To install the protobuf compiler for Go, protoc-gen-go tool
(release v1.26), run the following command from a terminal
window:
C:\> go install google.golang.org/protobuf/cmd/protoc-gen-
go@v1.26

To install the gRPC plug-in for Go, protoc-gen-go-grpc
(release v1.1) tool, run the following command:
C:\> go install google.golang.org/grpc/cmd/protoc-gen-go-
grpc@v1.1

Open a new Windows PowerShell Window, and run the
following commands:
$ protoc-gen-go --version
protoc-gen-go v1.26.0
$ protoc-gen-go-grpc --version
protoc-gen-go-grpc 1.1.0

If you see an output like the one above, the tools have been
installed successfully.

Installing Docker Desktop
For the last chapter in the book, you will need the ability to
run applications in software containers. Docker Desktop
(https://www.docker.com/get-started) is an application that
allows us to do that. For macOS and Windows, download
the installer from the above website corresponding to your
operating system and architecture, and follow the
instructions to complete the installation.
For Linux, the installation steps will vary depending on
your distribution. See
https://docs.docker.com/engine/install/#server for detailed
steps for your specific distribution. I also recommend that
for ease of use (not recommended for production

https://www.docker.com/get-started
https://docs.docker.com/engine/install/#server

environments), you configure your docker installation to
allow non-root users to run containers without using sudo .
Once you have followed the installation steps for your
specific operating system, run the following command to
download a docker image from Docker Hub and run it to
ensure that the installation has been successfully
completed:
$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
109db8fad215: Pull complete
Digest: sha256:0fe98d7debd9049c50b597ef1f85b7c1e8cc81f59c8d
623fcb2250e8bec85b38
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be
working correctly.
..

That completes our software installation for the book. Next,
we will quickly cover some conventions used throughout
the book.

Guide to the Book
In the following sections, you will learn various bits and
pieces of information that will help you get the most out of
the book. First, I discuss the choice of the module path for
the code listings.

Go Modules
In this book, all applications will start by initializing a
module as the first step. This will translate to running the
go command, go mod init <module path>. Throughout the
book, I have used a “placeholder” module path, which is
github.com/username/<application-name>. Thus, in applications

http://github.com/username/%3Capplication-name%3E

where we have written our module to consist of more than
one package, the import path looks like this:
github.com/username/<application-name>/<package>.
You can use these module paths if you are not planning to
share these applications. If you plan to share your
applications, or develop them further, you are encouraged
to use your own module path, which is pointing to your own
repository, likely a Git repository hosted on
https://bitbucket.org, https://github.com or https://gitlab.com.
Simply substitute username by your own username in the
repository hosting service. It's also worth noting that the
code repository for the book,
https://github.com/practicalgo/code, contains the module path
as github.com/practicalgo/code/<chap1>/<application-name>, in
other words, an actual path that exists rather than a
placeholder path.

Command Line and Terminals
You will be required to execute command-line programs
throughout the book. For Linux and macOS, the default
terminal program running your default shell is sufficient.
For Windows, I assume that you will be using the Windows
PowerShell terminal instead of the default command-line
program. Most of the command-line executions are shown
as executed on a Linux/macOS terminal, indicated by the $
symbol. However, you also should be able to run the same
command on Windows. Wherever I have asked you to
execute a command to create a directory or copy a file, I
have indicated the commands for both Linux/macOS and
Windows, where they are different.

Terms
I have used some terms throughout the book that may be
best clarified here to avoid ambiguity and set the right

http://github.com/username/%3Capplication-name%3E/%3Cpackage%3E
https://bitbucket.org/
https://github.com/
https://gitlab.com/
https://github.com/practicalgo/code
http://github.com/practicalgo/code/%3cchap1%3e/%3capplication-name%3e

expectations.

Robustness and Resiliency
Both terms, robustness and resiliency, express the ability of
an application to handle unexpected scenarios. However,
these terms differ in their expected behavior under these
circumstances as compared to their normal behavior. A
system is robust if it can withstand unexpected situations
and continue to function to some degree. This will likely be
suboptimal behavior, as compared to normal behavior. On
the other hand, a system is resilient if it continues
exhibiting its normal behavior, potentially taking a finite
amount of time before being able to do so. I put forward
the following examples from the book to illustrate the
difference.
In Chapter 2, you will learn to enforce time-outs for
command-line application functionality that is executing a
user-specified program. By enforcing time-outs, we avoid
the scenario where the application continues to hang
indefinitely because of bad user output. Since we configure
an upper bound on how long we want to allow the user-
specified command to be executed, we will exit with an
error when this duration expires before the command could
be completed. This is not the normal behavior of the
application—that we should wait for the command to
complete—but this suboptimal behavior is necessary to
allow the application to recover from an unexpected
situation, such as the user-specified command taking
longer than expected. You will find similar examples
throughout, notably when sending or receiving network
requests in Chapters 4, 7, 10, and 11. We will refer to these
techniques as introducing robustness in our applications.
In Chapter 10, you will learn to handle transient failures in
your gRPC client applications. You will write your

applications in a manner in which they can tolerate
temporary failures that are likely to be resolved soon. We
refer to this as introducing resilient behavior in our
applications. However, we also introduce an upper time
limit, which we allow to resolve the potentially temporary
failure. If this time limit is exceeded, we consider that the
operation cannot be completed. Thus, we introduce
robustness as well.
To summarize, resiliency and robustness both aim to
handle unexpected situations in our applications, and this
book uses these terms to refer to such techniques.

Production Readiness
I use the term production readiness in the book as all steps
that you should think about as you develop your application
but before you deploy it to any kind of a production
environment. When the production environment is your
own personal server where you are the only user of your
application, the techniques that you will learn will likely be
sufficient. If the production environment means that your
application will perform critical functionality for your users,
then the techniques in this book should be the absolute
baseline and a starting point. Production readiness consists
of a vast body of often domain-specific techniques across
various dimensions—robustness and resiliency,
observability, and security. This book shows you how to
implement a small subset of these topics.

Reference Documentation
The code listings in the book use various standard library
packages and a few third-party packages. The descriptions
of the various functions and types are limited to the
contextual usage. Knowing where to look when you want to
find out more about a package or function is important to

get the most out of the book. The key reference
documentation for all standard library packages is
https://pkg.go.dev/std. When I import a package as net/http,
the documentation for that package will be found at the
path https://pkg.go.dev/net/http. When I refer to a function
such as io.ReadAll(), the function reference is the package
io 's documentation at https://pkg.go.dev/io.
For third-party packages, the documentation is available by
going to the address https://pkg.go.dev/<import path>. For
example, the Go gRPC package is imported as
google.golang.grpc. Its reference documentation is available
at https://pkg.go.dev/google.golang.org/grpc.

Go Refresher
I recommend going through the topics in “A Tour of Go,” at
https://tour.golang.org/list, to serve as a refresher of the
various features that we will be using to implement
programs in the book. These include for loops, functions,
methods, struct and interface types, and error values.
Additionally, I want to highlight the key topics that we will
use extensively, along with references to learn more about
them.

Struct Type
We will be using struct types defined by the standard
library and third-party packages, and we will also be
defining our own. Beyond defining objects of struct types,
we will be working with types that embed other types—
other struct types and interfaces. The section “Embedding”
in the “Effective Go” guide
(https://golang.org/doc/effective_go#embedding) describes this
concept. We will also be making use of anonymous struct
types when writing tests. This is described in this talk by

https://pkg.go.dev/std
https://pkg.go.dev/net/http
https://pkg.go.dev/io
https://pkg.go.dev/%3cimport%20path%3E
https://pkg.go.dev/google.golang.org/grpc
https://tour.golang.org/list
https://golang.org/doc/effective_go#embedding

Andrew Gerrand, “10 things you (probably) don't know
about Go”: https://talks.golang.org/2012/10things.slide#1.

Interface Type
To use the various library functions and to write testable
applications, we will be making extensive use of interface
types. For example, we will be making extensive use of
alternative types that satisfies the io.Reader and io.Writer
interfaces to write tests for applications that interface with
the standard input and output.
Learning to define a custom type that satisfies another
interface is a key step to writing Go applications, where we
plug in our functionality to work with the rest of the
language. For example, to enable sharing data across HTTP
handler functions, we will define our own custom type
implementing the http.Handler interface.
The section on interfaces in “A Tour of Go,”
https://tour.golang.org/methods/9, is useful to get a refresher
on the topic.

Goroutines and Channels
We will be using goroutines and channels to implement
concurrent execution in our applications. I recommend
going through the section on Concurrency in “A Tour of
Go”: https://tour.golang.org/concurrency/1. Pay special
attention to the example use of select statements to wait on
multiple channel communication operations.

Testing
We will be using the standard library's testing package
exclusively for writing all of the tests, and we will use Go
test to drive all of the test executions. We have also used
the excellent support provided by libraries such as
net/http/httptest to test HTTP clients and servers. Similar

https://talks.golang.org/2012/10things.slide#1
https://tour.golang.org/methods/9
https://tour.golang.org/concurrency/1

support is provided by gRPC libraries. In the last chapter,
we will use a third-party package,
https://github.com/testcontainers/testcontainers-go, to create
local testing environments using Docker Desktop.
In some of the tests, especially when writing command-line
applications, we have adopted the style of “Table Driven
Tests,” as described at
https://github.com/golang/go/wiki/TableDrivenTests, when
writing the tests.

Summary
In this introduction to the book, you installed the software
necessary to build the various applications to be used in the
rest of the book. Then I introduced some of the conventions
and assumptions made throughout the remainder of the
book. Finally, I described the key language features with
which you will need to be familiar to make the best use of
the material in the book.
Great! You are now ready to start your journey with
Chapter 1, where you will be learning how to build testable
command-line applications.

https://github.com/testcontainers/testcontainers-go
https://github.com/golang/go/wiki/TableDrivenTests

CHAPTER 1
Writing Command-Line Applications
In this chapter, you will learn about the building blocks of writing
command-line applications. You will use standard library
packages to construct command-line interfaces, accept user
input, and learn techniques to test your applications. Let's get
started!

Your First Application
All command-line applications essentially perform the following
steps:

Accept user input
Perform some validation
Use the input to perform some custom task
Present the result to the user; that is, a success or a failure

In a command-line application, an input can be specified by the
user in several ways. Two common ways are as arguments when
executing the program and interactively by typing it in. First you
will implement a greeter command-line application that will ask
the user to specify their name and the number of times they want
to be greeted. The name will be input by the user when asked,
and the number of times will be specified as an argument when
executing the application. The program will then display a
custom message the specified number of times. Once you have
written the complete application, a sample execution will appear
as follows:
$./application 6
Your name please? Press the Enter key when done.
Joe Cool
Nice to meet you Joe Cool
Nice to meet you Joe Cool
Nice to meet you Joe Cool

Nice to meet you Joe Cool
Nice to meet you Joe Cool
Nice to meet you Joe Cool

First, let's look at the function asking a user to input their name:
func getName(r io.Reader, w io.Writer) (string, error) {
 msg := "Your name please? Press the Enter key when done.\n"
 fmt.Fprintf(w, msg)

 scanner := bufio.NewScanner(r)
 scanner.Scan()
 if err := scanner.Err(); err != nil {
 return "", err
 }
 name := scanner.Text()
 if len(name) == 0 {
 return "", errors.New("You didn't enter your name")
 }
 return name, nil
}

The getName() function accepts two arguments. The first
argument, r, is a variable whose value satisfies the Reader
interface defined in the io package. An example of such a
variable is Stdin, as defined in the os package. It represents the
standard input for the program—usually the terminal session in
which you are executing the program.
The second argument, w, is a variable whose value satisfies the
Writer interface, as defined in the io package. An example of such
a variable is the Stdout variable, as defined in the os package. It
represents the standard output for the application—usually the
terminal session in which you are executing the program.
You may be wondering why we do not refer to the Stdin and
Stdout variables from the os package directly. The reason is that
doing so will make our function very unfriendly when we want to
write unit tests for it. We will not be able to specify a customized
input to the application, nor will we be able to verify the
application's output. Hence, we inject the writer and the reader
into the function so that we have control over what the reader, r,
and writer, w, values refer to.

The function starts by using the Fprintf() function from the fmt
package to write a prompt to the specified writer, w. Then, a
variable of Scanner type, as defined in the bufio package, is
created by calling the NewScanner() function with the reader, r.
This lets you scan the reader for any input data using the Scan()
function. The default behavior of the Scan() function is to return
once it has read the newline character. Subsequently, the Text()
function returns the read data as a string. To ensure that the
user didn't enter an empty string as input, the len() function is
used and an error is returned if the user indeed entered an
empty string as input.
The getName() function returns two values: one of type string and
the other of type error. If the user's input name was read
successfully, the name is returned along with a nil error.
However, if there was an error, an empty string and the error is
returned.
The next key function is parseArgs(). It takes as input a slice of
strings and returns two values: one of type config and a second of
type error :
type config struct {
 numTimes int
 printUsage bool
}

func parseArgs(args []string) (config, error) {
 var numTimes int
 var err error
 c := config{}
 if len(args) != 1 {
 return c, errors.New("Invalid number of arguments")
 }

 if args[0] == "-h" || args[0] == "--help" {
 c.printUsage = true
 return c, nil
 }

 numTimes, err = strconv.Atoi(args[0])
 if err != nil {
 return c, err
 }
 c.numTimes = numTimes

 return c, nil
}

The parseArgs() function creates an object, c, of config type to
store this data. The config structure is used for in-memory
representation of data on which the application will rely for the
runtime behavior. It has two fields: an integer field, numTimes,
containing the number of the times the greeting is to be printed,
and a bool field, printUsage, indicating whether the user has
specified for the help message to be printed instead.
Command-line arguments supplied to a program are available via
the Args slice defined in the os package. The first element of the
slice is the name of the program itself, and the slice os.Args[1:]
contains the arguments that your program may care about. This
is the slice of strings with which parseArgs() is called. The
function first checks to see if the number of command-line
arguments is not equal to 1, and if so, it returns an empty config
object and an error using the following snippet:
if len(args) != 1 {
 return c, errors.New("Invalid number of arguments")
}

If only one argument is specified, and it is -h or -help, the
printUsage field is specified to true and the object, c, and a nil
error are returned using the following snippet:
if args[0] == "-h" || args[0] == "-help" {
 c.printUsage = true
 return c, nil
}

Finally, the argument specified is assumed to be the number of
times to print the greeting, and the Atoi() function from the
strconv package is used to convert the argument—a string—to its
integer equivalent:
numTimes, err = strconv.Atoi(args[0])
if err != nil {
 return c, err
}

