Program with
Assembly

Foundational Learning for
New Programmers

Jonathan Bartlett

Apress:

Learn to Program with
Assembly

Foundational Learning for New
Programmers

Jonathan Bartlett

Apress’

Learn to Program with Assembly: Foundational Learning for New Programmers

Jonathan Bartlett
Tulsa, OK, USA

ISBN-13 (pbk): 978-1-4842-7436-1 ISBN-13 (electronic): 978-1-4842-7437-8
https://doi.org/10.1007/978-1-4842-7437-8

Copyright © 2021 by Jonathan Bartlett

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Sitraka Rakotoarivelo on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7437-8

Dedicated to Dale and Cindy Hanchey. Learning from
their wisdom set me up for a career full of success.

Table of Contents

About the AUROFcccciicmmmiimrinn s XV
About the Technical ReVIEWETccssessssssssnsssassssnsssansssassssasssansssassssssssansssansssnnnsas xvii
Chapter 1: Introduction..........ccccmiiisemmmninssssnmmmssssnmmmsssnmesssssssass s 1
1.1 The PUrP0OSE O the BOOK........ccveererrereriererenesseresessssessessessesassessessesssssssessesasssssessesaesssssnsessees 1
1.2 WO IS ThiS BOOK FOI?.......eecceetrsceccre s 2
1.3 Why Learn Assembly LANGUAGE?ccccuererninienienesinsesess s s sesse s sssssssessessessssessesseens 2
1.4 A Note t0 NEeW Programmers..........ccocoerenerencsnsesessesesssessssssessesessssesessesesssssssssssssssssssssssssnens 4
1.5 Types of ASSEMDIY LANGUAGEcccrrrerrrenmrrenerrssesessessssesessssesessesessssessssssesssssssssssssssssssssssssnnns 5
1.6 Structure of TRiS BOOKccoveieriiierisesinesese e sn s s s e s sessesssssnens 6
Chapter 2: The Truth About COMPURErsS........ccrssemmssmmmssmmsnsmsssssssssssssssssssasssnsssansnsnss 9
2.1 What COMPULErS Can DOccvcereveiirierereses s ssssessessessessssessessessessssessessesssssssessessesssnsssessens 9
2.2 InStructing @ COMPULETcvecerereereeererereesessere s ses e s saesas e ssesresas e saesaesaesassessesaesasssnsesseses 10
2.3 Basic Computer Organization...........ccccuceverrnnneniesnsinsesse s s ssessssessesse s 11
2.4 How Computers SEe Data ..o s se e 13
2.5 It’s Not What You Have, 'S HOW YOU USE [.......cceceeveeririerseerererensee e vesessse e ssesesssesnesaennas 15
2.6 Referring 10 MEMOIYcoveeiicrcrse e 16
2.7 The Structure 0f the CPU..........cccccirrniccir s 18
2.8 The FEtCh-EXECULE CYCIB.....ccvereereeererrereesessere s sessesessesaesas e ssessesaesessessesssssssessesaessssessessees 20
2.9 AdAING CPU COIES ...ccveerrrerirsererieesisessssesessesessssesessesessesessssestssesessssessssesessessssssesssssssssesssssnens 21
2.10 A Note About Memory Visualizations............ccccuvvninnnnnnnnsnnness s ens 22
Part I: Assembly Language BasiCSccccuumssssmmnmmmssssssnsnmssssssssnsnsssssssssnsnnnssans 23
Chapter 3: Your First Program.........cccccuussemmmmmsssnmnmmsssssssmssssssssssssssssnssssssssnssssssnnnsnsss 25
3.1 Building a Simple Assembly Language Programcoucvnennesenssesssesssessssssssssessssenens 25
3.2 Line-DY-LINE ANAIYSIS......cccivrerrererrrsersersersessssessessessssessessessssssssssessessessssessessesssssssessesssssssesseses 27

TABLE OF CONTENTS

3.3 The Meaning 0f the COUEccvvererrrrrrerere s e sa s saesae s e e sne s 29
3.4 Stepping Through YOUr Program ... sessssesessesessssesssssssssesessenens 32
(= (1L N 32
Chapter 4: Registers and Simple Arithmeticccoccerrinssmnnnnnssssnnnnsssnsssm.. 33
4.1 Simple Arithmetic INStruCtiONS........ccuciericrrr e ——— 33
4.2 REQISTEr LAYOULSceveerrecressesesrese s sessesesss s sesss e ssesesss e sesssssssssessssssesssssssssssssssssnsssnsenens 36
4.3 The General-PurpoSe REJISTENSccovererinernserrnesnsese s se s s se e e ssssessssenens 38
4.4 Writing Binary NUMDEISccvererrcrcere st ss e s sa s ssesae s se e nne s 39
4.5 Playing with the REgISTErScccviiiiiiicrrie e e 40
o= (11 N 43
Chapter 5: Comparison, Branching, and LOOPINGcccrrssssmnnrmssssnssssssssnssssssssssnssss 45
5.1 The %rip Register and the jmp INStruction ... 45
5.2 Conditional Jumping and the %eflags RegiSter.........ccoovrerrrrrererese e 49
5.3 COMPANISONS ...c.veiiirerieriesissese st e s s e e s e e s e b b e e e bR e e et R R e e e e e R e 53
5.4 Other Conditional INSTrUCHIONS.......c.cccviererisere s 54
5.5 A Note About Looping and Branching in Assembly Language.........ccccvereererenserseresessensensenns 56
EXBICISES w..vvucierisissrire iR 57
Chapter 6: Working with Data in Memoryccconnsemnmmmssssnsmnsssssnssmssssssssssssssnssnss 59
6.1 Adding Fixed-Length Data Sections t0 Programsccccoevvvvrrerennsensensessssessessesessssessessenes 59
6.2 Memory AddresSing MOUEScccccvvrerininnnene s s 62
6.3 General Addressing Mode SYNTAXcccorererrrrnnererese e 67
6.4 More ADdreSSing MOUESccveeerrrrererererenere s s sensnnens 72
(S (11T 74
Chapter 7: Data ReCOrdS.......ccummmmsmsmsmsmsmsmsmsmsmsmssasasasasas 75
7.1 Laying Out Data RECOIUS.......ccouvrererererrneseresesrs s s ss e s ses s e ssssssnnsanens 75
7.2 Creating Constants With .@QU.......cucverirrrrrrr s s 77
7.3 Splitting UP YOUI PrOQIaMccccieveeierierseressessessessessssessessessessssessessessssessessesssssssessessesssssnsessees 79
7.4 Sharing Data with Another Program ... s sesesseens 82

TABLE OF CONTENTS

7.5 Changing the Data Record LayOUL..........ccoevrreriererensenseressssensesessessssessessesssssssessessesssssssessenes 83
7.6 Storing Character Data............ccoccrninnennnsr s st 85
7.7 ENAIANNESS......eceeeeeeeeeriecrenee s ae s e e e e e s ae e e e ne s e e nnnnens 89
7.8 Including Strings in Data RECOIUS........cccoerererrererererere s 94
oS (11 LT 98
Chapter 8: Signed Numbers and Bitwise Operations........occceeemmmrrsssssssssssssssssssssssns 99
8.1 Decimal, Binary, Hexadecimal, and Octal NUMDErscccocvvvvrenrincnininnnsenenevs e 99
8.2 Representing Signed INTEJEIS......ccvvvrerierererierere s sere s s e s ss s e saesae e s e saesnes 101
8.3 Additional Flags for Signed INTEOErScivvrvrreriererreriereses s s s e ssssessessessesessessesses 103
8.4 BIgUEr INTEYEIScoceeecieiesir et p e e b e e nnan 104
8.5 Division and MultipliCation..........ccoucvirininnsn s 105
8.6 Looking at INdividual BitS.........c.ceeeeerererenerensesesesesesesessesessese s e sessesessesesessesenns 106
8.7 Numbers With DECIMAIS........cccvivrerrrrerrrisernesrse e sr e 108
EXBICISES weuveuerreserersesessesessesesesse e s e e se s e s e e e e e e e ne e R e e e e nne e n e nr s 109
Chapter 9: More Instructions You Should Knowcccccussseemmmmsssssnnsssssssnsssssssnnnss 111
9.1 More JUmP INSTIUCHIONScccevererirsere e a e s e 111
9.2 Bit ManipUIALION........ccoriiriee s 112
9.3 BasiC LOGIiC FUNCHIONSccocvereirsire e 113
Tz VL TR (0] = O RS 115
9.4 Managing Status FIAQS ..o s 116
9.5 Memory Block and String OPerationsccoveeeererrnsesenenesese s sessesenns 117
Copying BIOCKS Of MEMOTYccoerreeirereerreseresse s s ssesis 117
Comparing BIOCKS Of MEIMOIYccvrererenerinsesesese s s se s ses e s e ssnnes 118
Scanning BIOCKS OF MEMOIY.........ccovirerrnererenereseresesese e s se s se e sesseenns 118
Finding the Length of @ SINg ..o s 119
9.6 The No-Operation INSTrUCTION.........ccccvcrirnirrr s 120
9.7 Instruction Families and Instruction Naming..........c.ccoouvevmennnncnnesnesensse e sessesenns 120
EXEICISES .euviuerreerrrseessesessese s s s s e s e bbb e e ne R R e e e R nr s 121

vii

TABLE OF CONTENTS

Part ll: Operating System BasSiCSccceurrmmssssmnnmrssssssssssssssssssssnsessssssnnnsssssans 123
Chapter 10: Making System Calls........ccccccumrmssnnnnmmssssnnnmsssssssssssssssnssssssssssssssssnnnss 125
10.1 THE KBIMEL.....ceeeceeeece e 125
10.2 Making @ System Call ... st snens 126
10.3 Getting the UniX TIMe.......ccoveeeeece e 127
10.4 WIIting QUIPULcoveeeeeeees et 129
10.5 Learning More SyStem CallSccccvverernrnieniennninsenese s sessesessssessessesssssssessessesssssssesaens 131
10.6 Going Beyond System CallSccccvvererrnrenieniernnensensesesessessesessssessessesssssssessessesssssssesaens 132
EXBICISES ..uvviueieserisisssse st 132
Chapter 11: The Stack and Function Calls.........ccccssemmrrmsssnnnnmmssssnnnsssssssnsssssssnnns 133
11.1Imagining the STACK.........ccovieric e 133
11.2 The ComMPUEEr STACK........ccciirrir e 134
11.3 The Importance of the Stack.........cccrrriniinsr 136
11.4 Reserving Space 0N the STACK........c.ccovererinernsesnsesese s s senns 137
T1.5 FUNCLIONS ..ottt 137
11.6 Function Calling CONVENTIONS........ccccvvererrrnenreressssssese s sessessessessssessessesssssssessessesssssssessens 138
Preservation 0f REQISTEIScvvverievirieriere e s s s se e s sae e nnes 139
Passing INPUL PAFAMETELSccverererieriererirsesese s sessesse e sessessessessssessesaesssssssessesasssssessesnes 139
Returning OUtPUL Parameters........coveriererinnenseresissessesessesessessessessssessessessssessessesasssssessesnes 140
Saving Data on the STACKccevvvriererrsrere s se e nne 140
Invoking and Returning with call and ret.........cccoevrvririennrnr s 143
AlIgning the STACKccecviereririrrere e s a e se e s a e e nnen 143
MOIE COMPIEX CASES ...cuerverreererserrererseressessssessessessesessessessessssessessessssessessessensssessesssssssessesses 144

11.7 Writing @ Simple FUNCHONccovvrcerere st sse s sse e s sse s sas e ssesnens 144
11.8 Calling the Function from Another Language.........ccccvverererrerreresessessessessssessessessessssessensens 146
11.9 Writing Factorial @s @ FUNCHON ... 146
11.10 Using .equ to Define Stack Frame OffSEtsc.cccorerrnscrnncnenneses s 149
(S (1L 150

viil

TABLE OF CONTENTS

Chapter 12: Calling Functions from Libraries........ccmmmmmmsnmmmmmsssnnmmmsssssmsssssnns 151
12.1 Linking with STatic LIDFariescuvvrerrenrnre s ses e se s sessesens 151
12.2 Linking With LIDraries ... sssese s s s ssssessessesssssssesnens 152
12.3 Using the Standard C Library Entry point...........ccovvorenrnncnnncnneses s 153
12.4 WOrking With Fil@S........ccoueeiienerisernsesrnessssse s s s sssssse s sessssenns 154
12.5 Using stdout and STinccocvevrinininnnrre s s saens 158
12.6 Reading Data from @ Filec.ccovvvvrierevnrirrere s sessessessessssesesse e sessessessessssessesnens 160
12.7 Finding the FUNctions YOU Want ...t es e s e e sne e saenns 161

(=T (1 163

Chapter 13: Common and Useful Assembler Directivescceerssssnnsrsssssnnssssssnnnnss 165
13.1 Reserving Space for Data ... 165
13.2 Code and Data AlIgNMENT............ccvrerrereree s 166
13.3 Other Sections and Section DIr€CHIVES..........cvvrerrrrerenesersse s 167
13.4 Local and GIobal VaIUES ... s 168
13.5 INCIUdiNg OthEr COUE........coervererrererrerereree e e e s s e se s e s s e e s e saesaese s e saesaesa e e naenaees 169
B B0 a1 o) 1 T 0o 170

(=T (1L 171

Chapter 14: Dynamic Memory Allocationccccsrusssnsnmssssssssssssssssssssssssssssssssnnnss 173
T4.1 VIFEUAL MEMOTY ... e ne e e 173
14.2 Memory Layout 0f @ LINUX PrOCESSccoerrerererrmrenesersesesensesesesessesessesesessesessssessesesessesenns 174
14.3 Allocating Additional MEMOTYccoucvvererinernsessese s sessssenns 176
14.4 Writing Your Own malloc Implementation.........coccvvvvrienninieniennsensense s sessesessessssesesaens 179
14.5 The mmap SyStEM Callccccevevririererirrerrerere s s e s s ssese s saesaessssessesaees 184

EXBICISES ...vvueuccserisise e p e p e 185

Chapter 15: Dynamic LinKingccueceummmmssnmmmmsssssnnmssnnnnss 187
15.1 Linking t0 @ Shared LIDIary..........ccccerenrnnrnsesne e seseses s sessesessesesessesenns 188
15.2 HOW the LOAAEI WOTKScceeeereecrercrereserre e se s s s 190
15.3 Building a Basic Shared LiDrary ..o 192
15.4 Position-Independent COUE..........civrririnnininen e s e e s sessessesaens 194

ix

TABLE OF CONTENTS

Referencing the .data SECHIONccvcvvererrirrer e 194
Referencing Externally Defined Data...........cccucerveninininneni s ssessens 195

15.5 Calling frOM G ..o e s e e e e 196
15.6 SKIPPING The PLT ..ot s e e s st 197
15.7 Position-Independent EXecCUtabIes.........ccccvvrriinnncnie s sesessens 198
15.8 Force-Feeding Functions to the Executables...........ccccvvrinininnsnnnnne s 199
15.9 Loading Libraries ManUally..........cccccveerrernnenieniernnsssensesessssessessessssessessesssssssessessesssssssessens 200
EXBICISES wouvviucuicririsisss s 201
Part lll: Programming Language TOPICS .uuuusesssrsssssssnsnssssssssnnsnnssssssnnnsnssssnns 203
Chapter 16: Basic Language Features Represented in Assembly Language........ 205
16.1 GIODAI VAri@DIESccoveeeeeeeererir e 206
16.2 LOCAI VAADIES ... s 206
16.3 Conditional StateMENTS.........cccverernrerrrrere e 207
T6.4 LOOPS ..eeveceererieesiese s s s s s s s e s sr e n e s s n e e a e s e e R e e e R e R e e e e Re e Re e e e rennenRenaran 208
16.5 Function Calls and Default ValUES...........cccccrverriinnnininisse s 209
16.6 Overloaded FUNCHIONScooriiiinsns s 210
16.7 EXception HANAIINGcccooeviriere s rer e s s e s s e e s s se s sn e s s s s s snesnenaeens 211
16.8 Tail-Call EiminN@tion ..o 214
16.9 Reading Assembly Language Output from GCCcccvvvrrienriesenesernsesese e 216
(S (1L 220
Chapter 17: Tracking Memory AlIOCAtioNSccceeeeemmmmmsssssssssssssnsssssssssssssssssnnnnnss 221
17.1 MEMOIY POOIS ... e s ne s 221
17.2 Reference COUNTINGcoivvrceriererirserere e s sse e e s sse s ses e sse s sss e s e ssesnesessesaessesssnsnsesnens 226
17.3 Garbage COlIECTION........cvvierierererer e re s sa e s aesae e s saesne e e e naennens 229
17.4 Adding FINALIZEIS......cccoeericircirere s s r s s s 231
(=T (1L 232
Chapter 18: Object-Oriented Programmingcccusesmsssmsesssssssssssssssssssssssssssanssssas 233
18.1 ENCAPSUIALION ... e s e 234
18.2 POIYMOIPRISIN ...t nr s 235

TABLE OF CONTENTS

18.3 INNEIEANCE ... e e 243
18.4 Runtime Type INfOormation ..o enens 245
18.5 DUCK TYPING..cuiiiiiiiiiricrerirsirse st se e s s s et e s s s b e b nne 246
18.6 General CoNSIAErationsS...........cvveerrrerererereserrsse s e s 246
EXBICISES .uvuereeuererseesseerre s s e se e e s s se s e s s s e e e e s e s e e e e e e R e 247
Chapter 19: Conclusion and Acknowledgments.........cccccuusmmmnmmssssnnnmssssssnsmsssssnnns 249
Part IV: APPeNdiXeSccerrrrsssssmsnmmssssssnnnnmsssssssnsnssssssssnsnnsssssssnnnnnessssssnnnnssssnns 251
Appendix A: Getting Set Up with DOCKEr......cccsursssummmmmssssnnnmmssssnsnssssssssnssssssnnnssssnnns 253
Appendix B: The Command LiNeccccumummssmnnmmmsssssnmmssssssnssssssssssssssssssssssssssssssssnns 257
B.1 Why Use the COmMMANM LiNEcccoververernnerrereresessese s sessessesessssessessessessssessessesssssssessens 257
B.2 Starting the CommaNd LiNEccvvvveriererenrerrenersesessesessesessessessessssessessesssssssessessessssessesaens 258
B.3 Navigating Your Computer Using the Command Lineccccoceerierrnccrnvcnenienenescrensenenns 260
B.4 RUNNING PrOQramScoiiiiiincre s s s st stsss s st saesnesssnessesnens 261
B.5 The ENVIFONMENT ... 262
B.6 EAItiNG FIlESccceeeeerrecrisesise e 263
B.7 Other Modifications t0 YOUr COMPULETccucriereininiene e sessese s se s e ssssessesaens 263
Appendix C: Debugging with GDB.........ccccussemmmmmsssnsnmmsssssnmmssssssnmsssssssssesssssssssssnns 265
[T 1 1 T0] R 265
C.2 Stepping Through COdE........cccvreirerrrrcrr e sa e 266
C.3 Managing Breakpoints ... st se s s s s snesnes 267
C.4 Printing VAIUEScerveeerceree e se e se s s sss s e e 268
Appendix D: Nasm (Intel) Assembly Language SyntaX......csusssssssssssssssssssssnsnsnsass 2N
D.1 CapitaliZationccccveverenrerirenerese e 271
D.2 Register Naming and Immediate-Mode PrefiXesccvevvvvrvrieriesnsensensesesessessesessssensenaens 271
D00 T=T 14 To 0 (o T OO 272
D.4 Specifying Memory Addressing MOUES........c.ccvvvrneninnnrinsesnesene s sessesens 272
D.5 Specifying Operand SizZeS ... e e 272

xi

TABLE OF CONTENTS

Appendix E: Common x86-64 INStructionsc..cccemmmsssmnnmnssssnsnsssssssssssssssssssssssnns 275
E.1 Data Moving INSTrUCLIONScccceviiiicrcresr e 275
E.2 Arithmetic INSTFUCTIONS........coceeeeec e e 276
E.3 Stack INSIUCLIONScccrireereer s 276
E.4 Comparison, Branching, and Looping INSTruCtions...........cccuevnenenesenssenssessssesesesesessesenns 277
E.5 Status Flag Manipulation INSTrUCHiONScccvrnininin s 277
E.B Bit OPEratioNnsScccceveereririeriereresesseresesssses e ssessesesessesaesassessesaessssessesnessssessesaessesssssnsesnens 278
E.7 Invocation-Oriented INSTrUCHONS.........ccco v 279
E.8 String and Memory BIOCK INSTrUCHIONS.........cccvriincn e 279
E.9 SSE INSIFUCTIONS......ceeecrercrireerie e s 280
E.10 Miscellaneous INSTIUCLIONSccoiveerrnenerrenmrnsesesesese s se s sessesenns 282

Appendix F: Floating-Point NUMDBErs.......c.ccccimnnmmmmmmnmssnmmmmsssssnmmssssssmmssssnmsnsans 283
L I 5 1T (0] OSSN 284
F.2 Working With SSE2 REJISTEISceevurrerrerrerrenerreressssessessessesessessessessssessessessessssessessesssssssessens 285
F.3 Moving Whole REJISTEISccccverirriircresis s ss s ss s s s se e s ssessssssnesnens 286
F.4 Floating-Point Numbers and Function Callsccccvvninnnninieninnnsnese e sesessens 287
F.5 Floating-Point Arithmetic Operations...........ccouorvrrnrereresesnse s 287
F.6 VECTOr OPErationsccceviiinierieie sttt st s st s s st 289

Appendix G: The Starting State of the Stack..........cccccunemmmnnnemnmnnnennnnnssssnmnne. 293

Appendix H: ASCII, Unicode, and UTF-8cccccussuemmmmssssnnnmmssssssnssssssssnsssssssnnssssnnns 295
0 U oo R 295
H.2 Unicode Encodings and UTF-8..........ccccuvirininininnninsessee s e ssessssssesessessssssessessenns 296
H.3 Some Weird BitS 0f UTF-8........cccoovieimrririnnecsesesss s sssssesesssssssas 297
H.4 Final Thoughts 0n UNICOUE ..o st se e snens 297
H.5 AN ASCHI TADIEcocueueeccresssssssss s sss s se e et ns e en 297

Appendix I: Optimizationccccccnmnmmmmmmnssssssnnmerm i ———————————— 299
LT AIGNMENT ... e e e e e e e e 300
I 0 U T 0= T 13T OO 300
B0 T 1T 1 o SRR 301

xii

TABLE OF CONTENTS

1.4 Instruction Caching and Branch PrediCtion..........coecvvvevevnsniennesssessesse s sessessessessssessensens 302
1.5 Choosing Instructions and REgISIErS ... s 303
1.6 FUMhEr RESOUICES......cocciuerriirere st b e 303
Appendix J: A Simplified Garbage Collectorccccussmmmmmssssnnnmmssssnsssssssssnssssssnns 305
Appendix K: Going to an Even Lower Level.........ccccuunmmmmmmmmnmnnnnsssssssssnnmmssssssssssnnns 319
K1 InStruction FOrMats.........covviviiiinn sttt se s snens 319
O Ty 0] 1 OSSN 321
INAEX . eeitiiisnnnnnrasssnnnnnssssnnnnnssssnnnnessssnnnnessssnnnsessssnnnnessssnnnnessssnnnessssnnnnsssssnnnnessssnnnnnssss 323

xiii

About the Author

Jonathan Bartlett is a software developer, researcher, and
writer. His first book, Programming from the Ground Up,
has been required reading in computer science programs
from DeVry to Princeton. He has been the sole or lead
author for eight books on topics ranging from computer
programming to calculus. He is a Senior Software Research
and Development Engineer for Specialized Bicycle

Components with a focus on cross-team and cross-platform

integration work.

About the Technical Reviewer

Paul Cohen joined Intel Corporation during the very early days of the x86 architecture,
starting with the 8086, and retired from Intel after 26 years in sales/marketing/
management. He is currently partnered with Douglas Technology Group, focusing on
the creation of technology books on behalf of Intel and other corporations. Paul also
teaches a class that transforms middle- and high-school students into real, confident
entrepreneurs, in conjunction with the Young Entrepreneurs Academy (YEA), and is a
traffic commissioner for the city of Beaverton, Oregon, and on the board of directors of

multiple nonprofit organizations.

Xvii

CHAPTER 1

Introduction

1.1 The Purpose of the Book

Have you ever wondered how your computer works? I mean, how it really works,
underneath the hood? I've found that many people, including professional computer
programmers, actually have no idea how computers operate at their most fundamental
level.

You need to read this book whether or not you ever plan on writing assembly
language code. If you plan on programming computers, you need to read this book
in order to demystify the operation of your most basic tool—the processor itself. I've
worked with a lot of programmers over the years. While you can do good work only
knowing high-level languages, I have found that there is a glass ceiling of effectiveness
that awaits programmers who haven’t learned the machine’s own language.

Learning assembly language is about learning how the processor itself thinks about
your code. It is about gaining the mind of the machine. Even if you never use assembly
language in practice, the depth of understanding you will receive by learning assembly
language will make your time and effort worthwhile. You will understand at a more
visceral level the various trade-offs that are made with different programming languages
and why certain high-level operations may be faster than others and get an overall sense
of what your computer is really doing.

Additionally, while the practical uses of assembly language are getting fewer and
further between, there are still many places where assembly language knowledge
is needed. Compiler writers, kernel developers, and high-performance library
implementers all utilize assembly language to some degree and probably always will.
Additionally, embedded developers, because of resource constraints, often program in
assembly language as well.

© Jonathan Bartlett 2021
J. Bartlett, Learn to Program with Assembly, https://doi.org/10.1007/978-1-4842-7437-8_1

https://doi.org/10.1007/978-1-4842-7437-8_1#DOI

CHAPTER 1 INTRODUCTION

1.2 Who Is This Book For?

This book is for programmers at any level. This book should work as your first or your
fortieth programming book. Some later chapters will assume some familiarity with
various programming languages, but the core content is written so that anyone can pick
it up and read it.

I generally assume some working knowledge of Linux and the command
line. However, if you haven’t used the command line, Appendix B will give a brief
introduction.

If you don’t use Linux as your primary operating system, that’s okay, too. I've built a
Docker image that is customized to work with this book, and Appendix A will help you
get started using it.

You only need to know the basics—how to run programs on the command line, how
to edit text files, etc. If you have done any work at all on the command line (or have read
and worked through Appendix B), you probably know everything that you need to get
started. If you haven't, there are numerous tutorials on the Internet about getting started
on the command line. You don’t need to be an advanced systems administrator. If you
know how to change location, edit files, and create directories, that’s all the skills you
actually need.

1.3 Why Learn Assembly Language?

In the modern age of modern programming languages where a single line of code can
replace hundreds of lines of assembly language, why bother to study assembly language
at all? The fact is assembly language is how your computer runs. Any good craftsman
knows how their tools work, and computer programming is no different. Knowing your
tools helps you get the most out of them.

The biggest advantage is one that is hard to point to concretely—it is simply
understanding how the pieces fit together. Some people are perfectly happy not knowing
how the tools that they work with actually function. However, those people often wind
up being mystified by certain problems and then have to go to someone who actually
knows how these tools function to figure it out. Knowing assembly language makes you
the guru who understands how everything fits together.

Of course, there are also more practical reasons I can point to. Understanding
how many security exploits work relies on understanding how the computer is

CHAPTER 1 INTRODUCTION

actually operating. So, if your goal is to do computer security work, in order to actually
understand how hackers are manipulating the system, you have to know how the system
works in general.

Some people learn assembly language so that they can make faster programs. While
modern optimizing compilers are really great at making fast assembly language, since
they are computer programs, they can only operate according to fixed rules and axioms.
Human creativity, however, allows for the creation of new ideas which go beyond what
computers are programmed to do.!

There are other cases where assembly language is actually simpler for programming.
For many embedded processors and applications, programming in a high-level language
is actually harder than just programming in assembly language directly. If you are doing
low-level work with hardware working with individual bits and bytes, then assembly
language oftentimes winds up being more straightforward and easy to program in than a
high-level language.?

There are also many areas of modern programming on standard computers which
must happen in assembly language, or at least require a background knowledge of it.
Compilers, new programming languages, operating system code, drivers, and other
system-level features all require either direct assembly language programming or a
background knowledge of it.

Again, I will say that, for me, the greatest benefit of learning assembly language
programming is simply gaining a better mental model for what is happening in the
computer when I'm programming. When people describe security exploits, I can
understand what they are talking about. When people describe why some programming
feature “costs” too much in terms of execution speed, I have a mental framework to
understand why. When low-level issues arise, I have a feel for what sorts of things might
be causing problems.

!The optimal methodology is actually to combine both humans and computers and let the
computer apply the fixed rules and let human creativity see where they can improve upon them.
2Note that most embedded processors will use a different assembly language than the one in
this book. Nevertheless, I think that you will find learning the assembly language that is on your
own computer beneficial and that most of the ideas transfer easily to other processors, even
if the instructions are a little different. Embedded processors come with a whole host of their
own difficulties, so having mastery of assembly language in general before trying to program an
embedded processor is definitely worthwhile.

CHAPTER 1 INTRODUCTION

1.4 A Note to New Programmers

If you are reading this book and you are new to programming, I want to offer a special
word to you. While I think you have made a good choice using this book to learn
programming, I want you to know that it may not be as exciting as other programming
languages. Reading this book will help you to gain the understanding of the processor to
make you great at programming. Because you know all the things the computer is doing
under the hood, you will have insights when doing more exciting types of programming
that others won’t have.

However, assembly language itself is not incredibly exciting to write. You are
literally doing everything by hand, so even doing simple things tends to take a long
time. The purpose of higher-level programming languages is to speed up the process
of writing code. What I don’t want you to do is to read this book and then think, “Oh

'IY

my! Programming takes so much work!” Remember, most of us got into this business
to automate things, and that includes automating the task of programming. Many
experienced programmers can pack a lot of juice into even a single line of code in

a high-level language.

If you don’t know, programming languages are generally grouped into “high-
level” and “low-level” languages. Higher-level languages are focused more on making
code that matches more closely the problem you are trying to solve, while lower-level
languages are focused on making code that more closely follows the computer’s own
mode of operation. Assembly language is the almost-lowest-level language there is. The
instructions in assembly language exactly match the instructions that the processor
executes. The only thing lower than assembly language is writing machine opcodes (see
Appendix K if that is of interest to you). As you will see, computers translate everything
into numbers. That includes your programs. However, it would be hard to read and
manipulate a program if it were just numbers. Therefore, almost everyone writes the
actual code in assembly language and then uses a program (called an assembler) to
translate that into machine code. Assembly language is basically human-readable
machine code.

That is why I say that learning assembly language will give you insight into
the operation of the computer. Unlike other programming languages, when you
learn assembly language, you are learning to program the computer on its own
level. I've generally found that it is somewhat dangerous to automate a process you
don’t understand, especially for someone who is trying to be an expert. An expert
mathematician will certainly use software to aid their thinking, but only because they

4

CHAPTER 1 INTRODUCTION

know what the software is automating. An expert race car driver will certainly use their
car’s steering system to maneuver, but they will still know how the car is operating
underneath. This helps them understand how decisions they make at the wheel will
affect various system components such as the tread on the tires or gasoline usage. As a
casual driver, these things aren’t important to me, so my understanding generally stops
at the steering wheel and the gas tank. However, if I planned on being a performance
race car driver, even if I never maintained the car myself, even if | had a whole crew that
did that for me, I would still be well served to understand the car at its deepest level in
order to get the most out of it at critical junctures.

Different people have different ideas, but, if you are willing, I definitely suggest
starting with assembly language. It will cause you to think differently about problems
and computers and ultimately will shape your thinking to more closely match what is
required for effective computer programming.

1.5 Types of Assembly Language

Note that there is not a single type of machine language for all computers, although
most PCs share the same machine language. Machine languages are usually divided

up by instruction set architecture (ISA). The ISA refers to the set of instructions that
are allowed by the computer. Many, many different computers share the same ISA,
even when built by different manufacturers. Almost all modern PCs use the x86-64 ISA
(sometimes referred to as AMDG64). Older PCs use the x86 ISA (this is the 32-bit version
of x86-64). Many cell phones use a variation of the ARM ISA. Finally, some older game
consoles (and really old Macs) use the PowerPC ISA. Many other ISAs exist, but are
usually restricted to chips that have very specialized uses, such as in embedded devices.

The ISA covered in this book is the x86-64 ISA. This was developed by AMD as a
64-bit extension to the 32-bit x86 ISA developed by Intel. It is now standard in PC-based
systems and most servers.

In addition, since assembly language uses human-readable symbols that translate
into machine code, different groups have implemented assembly language using
different syntaxes. There is no difference in the final machine code, but the different
syntaxes have different looks. The two main syntaxes are NASM syntax (sometimes
called Intel syntax) and AT&T (sometimes called GAS) syntax. Again, there is no
difference in functionality, only in look. We will use AT&T syntax here, because this is
the syntax used both in the Linux kernel and as the default syntax by the GNU Compiler

CHAPTER 1 INTRODUCTION

Collection (GCC) toolchain. If you need to use NASM syntax for some reason, a quick
translation guide between the two syntaxes is available in Appendix D.

Finally, different operating systems utilize the chips in different ways. The focus here
will be on 64-bit Linux-based operating systems. You will need to be running a 64-bit
Linux-based operating system to use this book. However, as noted, if you are not on
Linux, you can use the Docker setup in Appendix A to run a compatible Linux instance
inside a 64-bit Mac or a 64-bit PC.

1.6 Structure of This Book

This book is arranged into three basic parts. This chapter and the next are introductory
material before the main parts of the book. They are here to get you started, but are not
really about how to program in assembly language.

Part I of the book focuses on the basics of assembly language itself. The programs
are not very exciting, because assembly language itself doesn’t do much except move
data around and process it. Because we are limiting ourselves to assembly language
itself, the results of these programs are always numbers. However, the simple nature
of the programs will help you get a good feel for assembly language and how it works
before trying more complicated things such as input/output. New instructions will still
be provided in subsequent parts of the book, but you should have a pretty good feel for
assembly language by the time you finish this part of the book. Additionally, most of
what you learn in this part is transferable to any other operating system running on a
CPU with the x86-64 instruction set.

Part IT of the book goes into detail on how programs interact with the operating
system. This includes things like displaying to the screen, reading and writing files, and
even a bit of user input. It also includes some system management features, such as how
to interact with system libraries and how to request more memory from the operating
system. This part is very specific to the Linux operating system. While most operating
systems provide similar facilities, the specifics of how to use them are unique to the
particular operating system you are using.

Part III of the book discusses how programming languages get implemented at the
lowest level. Being an introductory book, the goal here isn’t to teach you the best way to
implement programming languages, but rather to give you a feel for the kinds of things
that the computer is doing under the hood in various programming languages. How
would someone implement feature X, Y, or Z? If modern programming languages amaze

6

CHAPTER 1 INTRODUCTION

and mystify you, Part III should help to make them less enigmatic. Part Il is not about a
particular programming language, but will guide you through various types of language
features that you may find in any number of programming languages.

If this is your first book on computer programming, my recommendation is to
stop after Part Il and then come back and read Part III after you have gained some
experience with other programming languages. This will provide the needed context for
understanding Part III of the book.

Part IV of the book has several appendixes that cover various topics that are
important to know, but don’t quite fit anywhere within the main text. As you are
interested, take a look at the appendixes to find short introductions to various topics.

The best way to learn programming is by doing. I would suggest programming every
example written in the text yourself to make sure that you fully understand what is
occurring. Additionally, every chapter ends with a list of exercises. Those exercises are
intended to help you make practical use of what you know and give you experience in
thinking about programming on the assembly language level.

CHAPTER 2

The Truth About Computers

I'm going to now share with you the shocking truth about computers—computers are
really, really stupid. Many people get enamored with these devices and start to believe
things about computers that just aren’t true. They may see some amazing graphics, some
fantastic data manipulation, and some outstanding artificial intelligence and assume
that there is something amazing happening inside the computer. In truth, there is
something amazing, but it isn’t the intelligence of the computer.

2.1 What Computers Can Do

Computers can actually do very few things. Now, the modern computer instruction set
is fairly rich, but even as the number of instructions that a computer knows increases
in abundance, these are all primarily either (a) faster versions of something you could
already do, (b) computer security related, or (c) hardware interface related. Ultimately,
as far as computational power goes, all computers boil down to the same basic
instructions.

In fact, one computer architecture, invented by Farhad Mavaddat and Behrooz
Parham, only has one instruction, yet can still do any computation that any other
computer can do.!

So what is it that computers can do computationally? Computers can

e Do basic integer arithmetic

¢ Do memory access

! For those curious, the instruction is “subtract and branch if negative.” If you don’t know
what that means, it will make a lot more sense by the time you finish this book. If you want
to know more about this computer, the paper is “URISC: The Ultimate Reduced Instruction
Set Computer” in the Journal of Electrical Engineering Education, volume 25. These sorts of
computers are known today as OISC systems (“one instruction set computers”).

© Jonathan Bartlett 2021
J. Bartlett, Learn to Program with Assembly, https://doi.org/10.1007/978-1-4842-7437-8_2

https://doi.org/10.1007/978-1-4842-7437-8_2#DOI

CHAPTER 2 THE TRUTH ABOUT COMPUTERS

e Compare values

o Change the order of instruction execution based on a previous
comparison

If computers are this limited, then how are they able to do the amazing things that
they do? The reason that computers can accomplish such spectacular feats is that these
limitations allow hardware makers to make the operations very fast. Most modern
desktop computers can process over a billion instructions every second. Therefore, what
programmers do is leverage this massive pipeline of computation in order to combine
simplistic computations into a masterpiece.

However, at the end of the day, all that a computer is really doing is really fast
arithmetic. In the movie Short Circuit, two of the main characters have this to say about
computers—“It’s a machine... It doesn’t get happy. It doesn’t get sad. It doesn’t laugh
at your jokes. It just runs programs.” This is true of even the most advanced artificial
intelligence. In fact, the failure to understand this concept lies at the core of the present
misunderstanding about the present and future of artificial intelligence.?

2.2 Instructing a Computer

The key to programming is to learn to rethink problems in such simple terms that they
can be expressed with simple arithmetic. It is like teaching someone to do a task, but
they only understand the most literal, exact instructions and can only do arithmetic.

There is an old joke about an engineer whose wife told him to go to the store. She said,
“Buy a gallon of milk. If they have eggs, get a dozen.” The engineer returned with 12 gallons
of milk. His wife asked, “Why 12 gallons?” The engineer responded, “They had eggs.” The
punchline of the joke is that the engineer had over-literalized his wife’s statements. Obviously,
she meant that he should get a dozen eggs, but that requires context to understand.

The same thing happens in computer programming. The computer will hyper-literalize
every single thing you type. You must expect this. Most bugs in computer programs come
from programmers not paying enough attention to the literal meaning of what they are
asking the computer to do. The computer can’t do anything except the literal meaning.

2For more information about this issue, see Erik Larson’s book, The Myth of Artificial Intelligence:
Why Computers Can’t Think the Way We Do. I've also written about this some—see my article
“Why I Doubt That AI Can Match the Human Mind,” available at https://mindmatters.
ai/2019/02/why-i-doubt-that-ai-can-match-the-human-mind/.

10

https://mindmatters.ai/2019/02/why-i-doubt-that-ai-can-match-the-human-mind/
https://mindmatters.ai/2019/02/why-i-doubt-that-ai-can-match-the-human-mind/

CHAPTER 2 THE TRUTH ABOUT COMPUTERS

Learning to program in assembly is helpful because it is more obvious to the
programmer the hyper-literalness of how the computer will interpret the program.
Nonetheless, when tracking down bugs in any program, the most important thing to do
is to track what the code is actually saying, not what we meant by it.

Similarly, when programming, the programmer has to specify all of the possible
contingencies, how to check for them, and what should be done about them. Imagine we
were programming a robot to shop for us. Let us say that we gave it the following program:

1. Go to the store.
2. Ifthe store has corn, buy the corn and return home.

3. Ifthe store doesn’t have corn, choose a store that you haven’t
visited yet and repeat the process.

That sounds pretty specific. The problem is, what happens if no one has corn? We
haven’t specified to the robot any other way to finish the process. Therefore, if there was
a corn famine or a corn recall, the robot will continue searching for a new store forever
(or until it runs out of electricity).

When doing low-level programming, the consequences that you have to prepare for
multiply. If you want to open a file, what happens if the file isn’t there? What happens if
the file is there, but you don’t have access to it? What if you can read it but can’t write to
it? What if the file is across a network, and there is a network failure while trying to read it?

The computer will only do exactly what you tell it to. Nothing more, nothing less.
That proposition is equally freeing and terrifying. The computer doesn’t know or care if
you programmed it correctly, but will simply do what you actually told it to do.

2.3 Basic Computer Organization

Before we go further, I want to be sure you have a basic awareness of how a computer is
organized conceptually. Computers consist of the following basic parts:

o The CPU (also referred to as the processor or microprocessor)
e Working memory

o Permanent storage

o Peripherals

e System bus

11

CHAPTER 2 THE TRUTH ABOUT COMPUTERS

Let’s look at each of these in turn.

The CPU (central processing unit) is the computational workhorse of your computer.
The CPU itself is divided into components, but we will deal with that in Section 2.7. The
CPU handles all computation and essentially coordinates all of the tasks that occur in
a computer. Many computers have more than one CPU, or they have one CPU that has
multiple “cores,” each of which is more or less acting like a distinct CPU. Additionally,
each core may be hyperthreaded, which means the core itself to some extent acts as
more than one core. The permanent storage is your hard drive(s), whether internal or
external, plus USB sticks, or whatever else you store files on. This is distinct from the
working memory, which is usually referred to as RAM, which stands for “random access
memory.”® The working memory is usually wiped out when the computer gets turned off.

Everything else connected to your computer gets classified as a peripheral.
Technically, permanent storage devices are peripherals, too, but they are sufficiently
foundational to how computers work I treated them as their own category. Peripherals
are how the computer communicates with the world. This includes the graphics card,
which transmits data to the screen; the network card, which transmits data across the
network; the sound card, which translates data into sound waves; the keyboard and
mouse, which allow you to send input to the computer; etc.

Everything that is connected to the CPU connects through a bus, or system bus.
Buses handle communication between the various components of the computer, usually
between the CPU and other peripherals and between the CPU and main memory.

The speed and engineering of the various computer buses is actually critical to the
computer’s performance, but their operation is sufficiently technical and behind the
scenes that most people don’t think about it. The main memory often gets its own bus
(known as the front-side bus) to make sure that communication is fast and unhindered.

Physically, most of these components are present on a computer’s motherboard,
which is the big board inside your desktop or laptop. The motherboard often has other
functions as well, such as controlling fans, interfacing with the power button, etc.

31t’s called random access memory because you can easily access any given part of the memory.
This was in comparison to disks or tape, in which you had to physically move the read/write
head to the right spot before you could read the data. Modern solid state drives are essentially
random access as well, but we still use the term RAM to refer to the main memory, not the disks.

12

CHAPTER 2 THE TRUTH ABOUT COMPUTERS

2.4 How Computers See Data

As mentioned in the introduction, computers translate everything into numbers.

To understand why, remember that computers are just electronic devices. That is,
everything that happens in a computer is ultimately reducible to the flow of electricity.
In order to make that happen, engineers had to come up with a way to represent things
with flows of electricity.

What they came up with is to have different voltages represent different symbols.
Now, you could do this in a lot of ways. You could have 1 volt represent the number 1,

2 volts represent the number 2, etc. However, devices have a fixed voltage, so we would
have to decide ahead of time how many digits we want to allow on the signal and be sure
sufficient voltage is available.

To simplify things, engineers ultimately decided to only make two symbols. These
can be thought of as “on” (voltage present) and “off” (no voltage present), “true”
and “false,” or “1” and “0.” Limiting to just two symbols greatly simplifies the task of
engineering computers.

You may be wondering how these limited symbols add up to all the things we store in
computers. First, let’s start with ordinary numbers. You may be thinking, if you only have
“0” and “1,” how will we represent numbers with other digits, like 23? The interesting
thing is that you can build numbers with any number of digits. We use ten digits (0-9),
but we didn’t have to. The Ndom language uses six digits. Some use as many as 27.

Since the computer uses two digits, the system is known as binary. Each digit in the
binary system is called a bit, which simply means “binary digit.” To understand how to
count in binary, let’s think a little about how we count in our own system, decimal. We
start with 0, and then we progress through each symbol until we hit the end of our list of
symbols (i.e., 9). Then what happens? The next digit to the left increments by one, and
the ones place goes back to zero. As we continue counting, we increment the rightmost
digit over and over, and, when it goes past the last symbol, we keep flipping it back to
zero and incrementing the next one to the left. If that one flips, we again increment the
one to the left of that digit, and so forth.

Counting in binary is exactly the same, except we just run up against the end of our
symbol list much more quickly. It starts at 0, then goes to 1, and then, hey, we are at the
end of our symbols! So that means that the number to the left gets incremented (there
is always imaginary zeroes to the left of the digits we have) and our rightmost digit flips

13

CHAPTER 2 THE TRUTH ABOUT COMPUTERS
back to zero. So that means that after 0 and 1 is 10! So, counting in binary looks like this
(the numbers on the left are the equivalent decimal numbers):

0.0

1.1

2. 10 (we overflowed the ones position, so we increment the next
digit to the left and the ones position starts over at zero)

3.11

4. 100 (we overflowed the ones position, so we increment the next
digit to the left, but that flips that one to zero, so we increment

the next one over)
5.101
6.110
7.111
8. 1000
9.1001
10. 1010
11.1011
12.1100

As you can see, the procedure is the same. We are just working with fewer symbols.

Now, in computing, these values have to be stored somewhere. And, while in our
imagination, we can imagine any number of zeroes to the left (and therefore our system
can accommodate an infinite number of values), in physical computers, all of these
numbers have to be stored in circuits somewhere. Therefore, the computer engineers
group together bits into fixed sizes.

A byte is a grouping of 8 bits together. A byte can store a number between 0 and 255.
Why 255? Because that is the value of 8 bits all set to “1”: 11111111.

Single bytes are pretty limiting. However, for historic reasons, this is the way that
computers are organized, at least conceptually. When we talk about how many gigabytes
of RAM a computer has, we are asking how many billions (giga-) of bytes (groups of 8
bits together) the computer has in its working memory (which is what RAM is).

14

CHAPTER 2 THE TRUTH ABOUT COMPUTERS

Most computers, however, fundamentally use larger groupings. When we talk about
a 32-bit or a 64-bit computer, we are talking about how the number of bits that the
computer naturally groups together when dealing with numbers. A 64-bit computer,
then, can naturally handle numbers as large as 64 bits. This is a number between 0 and
18,446,744,073,709,551,615.

Now, ultimately, you can choose any size of number you want. You can have bigger
numbers, but, generally, the processor is not predisposed to working with the numbers
in that way. What it means to have a 64-bit computer is that the computer can, in a
single instruction, add together two 64-bit numbers. You can still add 64-bit numbers
with a 32-bit or even an 8-bit computer; it just takes more instructions. For instance, on
a 32-bit computer, you could split the 64-bit number up into two pieces. You then add
the rightmost 32 bits and then add the leftmost 32 bits (and account for any carrying
between them).

Note that even though computers store numbers as bits, we rarely refer to the
numbers in binary form unless we have a specific reason. However, knowing that they
are bits arranged into bytes (or larger groupings) helps us understand certain limitations
of computers. Oftentimes, you will find values in computing that are restricted to the
values 0-255. If you see this happen, you can think, “Oh, that probably means they are
storing the value in a single byte.”

2.5 It’s Not What You Have, It’s How You Use It

So, hopefully by now you see how computers store numbers. But don’t computers store
all sorts of other types of data, too? Aren’t computers storing and processing words,
images, sounds, and, for that matter, negative or even non-integer numbers?

This is true, but it is storing all of these things as numbers. For instance, to store
letters, the letters are actually converted into numbers using ASCII (American Standard
Code for Information Interchange) or Unicode codes (which we will discuss more later).
Each character gets a value, and words are stored as consecutive values.

Images are also values. Each pixel on your screen is represented by a number
indicating the color to display. Sound waves are stored as a series of numbers.

So how does the computer know which numbers are which? Fundamentally,
the computer doesn’t. All of these values look exactly the same when stored in your
computer—they are just numbers.

15

CHAPTER 2 THE TRUTH ABOUT COMPUTERS

What makes them letters or numbers or images or sounds is how they are used. If I
send a number to the graphics card, then it is a color. If add two numbers, then they are
numbers. If I store what you type, then those numbers are letters. If I send a number to
the speaker, then it is a sound. It is the burden of the programmer to keep track of which
numbers mean which things and to treat them accordingly.

This is why files have extensions like .docx, .png, .mov, or .x1sx. These extensions
tell the computer how to interpret what is in the file. These files are themselves just long
strings of numbers. Programs simply read the filename, look at the extension, and use
that to know how to use the numbers stored inside.

There’s nothing preventing someone from writing a program that takes a word
processing file and treating the numbers as pixel colors and sending them to the screen
(it usually looks like static) or sending them to the speakers (it usually sounds like
static or buzzing). But, ultimately, what makes computer programs useful is that they
recognize how the numbers are organized and treat them in an appropriate manner.

If this sounds complicated, don’t worry about it. We will start off with very simple
examples in the next chapter.

What'’s even more amazing, though, is that the computer’s instructions are
themselves just numbers as well. This is why your computer’s memory can be used to
store both your files and your programs. Both are just special sequences of numbers, so
we can store them all using the same type of hardware. Just like the numbers in the file
are written in a way that our software can interpret them, the numbers in our programs
are written in a special way so that the computer hardware can interpret them properly.

2.6 Referring to Memory

Since a computer has billions of bytes of memory (or more), how do we figure out which
specific piece of memory we are referring to? This is a harder question than it sounds
like. For the moment, I will give you a simplified understanding which we will build
upon later on.

Have you ever been to a post office and seen an array of post-office boxes? Or been to
a bank and seen a whole wall of safety deposit boxes? What do they look like?

Usually, each box is the same size, and each one has a number on it. These numbers
are arranged sequentially. Therefore, box 2345 is right next to box 2344. I can easily find
any box by knowing the number on the outside of the box.

16

