
Learn to
Program with
Assembly

Foundational Learning for
New Programmers
—
Jonathan Bartlett

Learn to Program with
Assembly

Foundational Learning for New
Programmers

Jonathan Bartlett

Learn to Program with Assembly: Foundational Learning for New Programmers

ISBN-13 (pbk): 978-1-4842-7436-1 ISBN-13 (electronic): 978-1-4842-7437-8
https://doi.org/10.1007/978-1-4842-7437-8

Copyright © 2021 by Jonathan Bartlett

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Sitraka Rakotoarivelo on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub. For more detailed information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Jonathan Bartlett
Tulsa, OK, USA

https://doi.org/10.1007/978-1-4842-7437-8

Dedicated to Dale and Cindy Hanchey. Learning from
their wisdom set me up for a career full of success.

v

About the Author ���xv

About the Technical Reviewer ���xvii

Table of Contents

Chapter 1: Introduction��� 1

1.1 The Purpose of the Book ... 1

1.2 Who Is This Book For? ... 2

1.3 Why Learn Assembly Language? .. 2

1.4 A Note to New Programmers... 4

1.5 Types of Assembly Language .. 5

1.6 Structure of This Book .. 6

Chapter 2: The Truth About Computers ��� 9

2.1 What Computers Can Do ... 9

2.2 Instructing a Computer ... 10

2.3 Basic Computer Organization.. 11

2.4 How Computers See Data ... 13

2.5 It’s Not What You Have, It’s How You Use It ... 15

2.6 Referring to Memory ... 16

2.7 The Structure of the CPU ... 18

2.8 The Fetch-Execute Cycle ... 20

2.9 Adding CPU Cores ... 21

2.10 A Note About Memory Visualizations ... 22

Part I: Assembly Language Basics ��� 23

Chapter 3: Your First Program �� 25

3.1 Building a Simple Assembly Language Program .. 25

3.2 Line-by-Line Analysis .. 27

vi

3.3 The Meaning of the Code .. 29

3.4 Stepping Through Your Program ... 32

Exercises ... 32

Chapter 4: Registers and Simple Arithmetic �� 33

4.1 Simple Arithmetic Instructions .. 33

4.2 Register Layouts ... 36

4.3 The General-Purpose Registers .. 38

4.4 Writing Binary Numbers .. 39

4.5 Playing with the Registers .. 40

Exercises ... 43

Chapter 5: Comparison, Branching, and Looping ��� 45

5.1 The %rip Register and the jmp Instruction ... 45

5.2 Conditional Jumping and the %eflags Register .. 49

5.3 Comparisons ... 53

5.4 Other Conditional Instructions... 54

5.5 A Note About Looping and Branching in Assembly Language ... 56

Exercises ... 57

Chapter 6: Working with Data in Memory �� 59

6.1 Adding Fixed-Length Data Sections to Programs ... 59

6.2 Memory Addressing Modes .. 62

6.3 General Addressing Mode Syntax ... 67

6.4 More Addressing Modes ... 72

Exercises ... 74

Chapter 7: Data Records ��� 75

7.1 Laying Out Data Records ... 75

7.2 Creating Constants with .equ .. 77

7.3 Splitting Up Your Program ... 79

7.4 Sharing Data with Another Program ... 82

Table of ConTenTs

vii

7.5 Changing the Data Record Layout ... 83

7.6 Storing Character Data .. 85

7.7 Endianness .. 89

7.8 Including Strings in Data Records ... 94

Exercises ... 98

Chapter 8: Signed Numbers and Bitwise Operations �� 99

8.1 Decimal, Binary, Hexadecimal, and Octal Numbers .. 99

8.2 Representing Signed Integers ... 101

8.3 Additional Flags for Signed Integers ... 103

8.4 Bigger Integers ... 104

8.5 Division and Multiplication .. 105

8.6 Looking at Individual Bits .. 106

8.7 Numbers with Decimals .. 108

Exercises ... 109

Chapter 9: More Instructions You Should Know ��� 111

9.1 More Jump Instructions .. 111

9.2 Bit Manipulation .. 112

9.3 Basic Logic Functions ... 113

Scanning for Bits ... 115

9.4 Managing Status Flags ... 116

9.5 Memory Block and String Operations ... 117

Copying Blocks of Memory .. 117

Comparing Blocks of Memory ... 118

Scanning Blocks of Memory .. 118

Finding the Length of a String ... 119

9.6 The No-Operation Instruction .. 120

9.7 Instruction Families and Instruction Naming .. 120

Exercises ... 121

Table of ConTenTs

viii

Part II: Operating System Basics �� 123

Chapter 10: Making System Calls ��� 125

10.1 The Kernel ... 125

10.2 Making a System Call ... 126

10.3 Getting the Unix Time .. 127

10.4 Writing Output ... 129

10.5 Learning More System Calls ... 131

10.6 Going Beyond System Calls .. 132

Exercises ... 132

Chapter 11: The Stack and Function Calls ��� 133

11.1 Imagining the Stack .. 133

11.2 The Computer Stack .. 134

11.3 The Importance of the Stack ... 136

11.4 Reserving Space on the Stack .. 137

11.5 Functions .. 137

11.6 Function Calling Conventions .. 138

Preservation of Registers .. 139

Passing Input Parameters ... 139

Returning Output Parameters .. 140

Saving Data on the Stack .. 140

Invoking and Returning with call and ret... 143

Aligning the Stack ... 143

More Complex Cases ... 144

11.7 Writing a Simple Function ... 144

11.8 Calling the Function from Another Language .. 146

11.9 Writing Factorial as a Function ... 146

11.10 Using .equ to Define Stack Frame Offsets .. 149

Exercises ... 150

Table of ConTenTs

ix

Chapter 12: Calling Functions from Libraries ��� 151

12.1 Linking with Static Libraries ... 151

12.2 Linking with Libraries ... 152

12.3 Using the Standard C Library Entry point .. 153

12.4 Working with Files ... 154

12.5 Using stdout and stdin .. 158

12.6 Reading Data from a File .. 160

12.7 Finding the Functions You Want .. 161

Exercises ... 163

Chapter 13: Common and Useful Assembler Directives ��������������������������������������� 165

13.1 Reserving Space for Data ... 165

13.2 Code and Data Alignment .. 166

13.3 Other Sections and Section Directives .. 167

13.4 Local and Global Values .. 168

13.5 Including Other Code ... 169

13.6 Annotating Code .. 170

Exercises ... 171

Chapter 14: Dynamic Memory Allocation ��� 173

14.1 Virtual Memory .. 173

14.2 Memory Layout of a Linux Process ... 174

14.3 Allocating Additional Memory ... 176

14.4 Writing Your Own malloc Implementation ... 179

14.5 The mmap System Call ... 184

Exercises ... 185

Chapter 15: Dynamic Linking ��� 187

15.1 Linking to a Shared Library ... 188

15.2 How the Loader Works .. 190

15.3 Building a Basic Shared Library .. 192

15.4 Position-Independent Code ... 194

Table of ConTenTs

x

Referencing the .data Section ... 194

Referencing Externally Defined Data ... 195

15.5 Calling from C ... 196

15.6 Skipping the PLT ... 197

15.7 Position-Independent Executables .. 198

15.8 Force-Feeding Functions to the Executables .. 199

15.9 Loading Libraries Manually ... 200

Exercises ... 201

Part III: Programming Language Topics ��� 203

Chapter 16: Basic Language Features Represented in Assembly Language �������� 205

16.1 Global Variables .. 206

16.2 Local Variables .. 206

16.3 Conditional Statements ... 207

16.4 Loops .. 208

16.5 Function Calls and Default Values ... 209

16.6 Overloaded Functions ... 210

16.7 Exception Handling ... 211

16.8 Tail-Call Elimination .. 214

16.9 Reading Assembly Language Output from GCC .. 216

Exercises ... 220

Chapter 17: Tracking Memory Allocations ��� 221

17.1 Memory Pools ... 221

17.2 Reference Counting .. 226

17.3 Garbage Collection .. 229

17.4 Adding Finalizers ... 231

Exercises ... 232

Chapter 18: Object-Oriented Programming �� 233

18.1 Encapsulation ... 234

18.2 Polymorphism ... 235

Table of ConTenTs

xi

18.3 Inheritance .. 243

18.4 Runtime Type Information ... 245

18.5 Duck Typing ... 246

18.6 General Considerations ... 246

Exercises ... 247

Chapter 19: Conclusion and Acknowledgments ��� 249

Part IV: Appendixes �� 251

 Appendix A: Getting Set Up with Docker��� 253

 Appendix B: The Command Line ��� 257

 B.1 Why Use the Command Line ... 257

 B.2 Starting the Command Line .. 258

 B.3 Navigating Your Computer Using the Command Line .. 260

 B.4 Running Programs .. 261

 B.5 The Environment ... 262

 B.6 Editing Files .. 263

 B.7 Other Modifications to Your Computer .. 263

 Appendix C: Debugging with GDB ��� 265

 C.1 Starting GDB ... 265

 C.2 Stepping Through Code ... 266

 C.3 Managing Breakpoints .. 267

 C.4 Printing Values .. 268

 Appendix D: Nasm (Intel) Assembly Language Syntax ��� 271

 D.1 Capitalization .. 271

 D.2 Register Naming and Immediate-Mode Prefixes .. 271

 D.3 Operand Order .. 272

 D.4 Specifying Memory Addressing Modes ... 272

 D.5 Specifying Operand Sizes ... 272

Table of ConTenTs

xii

 Appendix E: Common x86-64 Instructions ��� 275

 E.1 Data Moving Instructions .. 275

 E.2 Arithmetic Instructions .. 276

 E.3 Stack Instructions ... 276

 E.4 Comparison, Branching, and Looping Instructions .. 277

 E.5 Status Flag Manipulation Instructions .. 277

 E.6 Bit Operations ... 278

 E.7 Invocation-Oriented Instructions ... 279

 E.8 String and Memory Block Instructions .. 279

 E.9 SSE Instructions .. 280

 E.10 Miscellaneous Instructions ... 282

 Appendix F: Floating-Point Numbers �� 283

 F.1 History ... 284

 F.2 Working with SSE2 Registers .. 285

 F.3 Moving Whole Registers .. 286

 F.4 Floating-Point Numbers and Function Calls .. 287

 F.5 Floating-Point Arithmetic Operations ... 287

 F.6 Vector Operations .. 289

 Appendix G: The Starting State of the Stack ��� 293

 Appendix H: ASCII, Unicode, and UTF-8 �� 295

 H.1 Unicode ... 295

 H.2 Unicode Encodings and UTF-8 .. 296

 H.3 Some Weird Bits of UTF-8 ... 297

 H.4 Final Thoughts on Unicode ... 297

 H.5 An ASCII Table ... 297

 Appendix I: Optimization �� 299

 I.1 Alignment ... 300

 I.2 Data Caching .. 300

 I.3 Pipelining ... 301

Table of ConTenTs

xiii

 I.4 Instruction Caching and Branch Prediction .. 302

 I.5 Choosing Instructions and Registers ... 303

 I.6 Further Resources .. 303

 Appendix J: A Simplified Garbage Collector ��� 305

 Appendix K: Going to an Even Lower Level ��� 319

 K.1 Instruction Formats ... 319

 K.2 Electronics .. 321

 Index ��� 323

Table of ConTenTs

xv

About the Author

Jonathan Bartlett is a software developer, researcher, and

writer. His first book, Programming from the Ground Up,

has been required reading in computer science programs

from DeVry to Princeton. He has been the sole or lead

author for eight books on topics ranging from computer

programming to calculus. He is a Senior Software Research

and Development Engineer for Specialized Bicycle

Components with a focus on cross-team and cross-platform

integration work.

xvii

About the Technical Reviewer

Paul Cohen joined Intel Corporation during the very early days of the x86 architecture,

starting with the 8086, and retired from Intel after 26 years in sales/marketing/

management. He is currently partnered with Douglas Technology Group, focusing on

the creation of technology books on behalf of Intel and other corporations. Paul also

teaches a class that transforms middle- and high-school students into real, confident

entrepreneurs, in conjunction with the Young Entrepreneurs Academy (YEA), and is a

traffic commissioner for the city of Beaverton, Oregon, and on the board of directors of

multiple nonprofit organizations.

1
© Jonathan Bartlett 2021
J. Bartlett, Learn to Program with Assembly, https://doi.org/10.1007/978-1-4842-7437-8_1

CHAPTER 1

Introduction
1.1 The Purpose of the Book
Have you ever wondered how your computer works? I mean, how it really works,

underneath the hood? I’ve found that many people, including professional computer

programmers, actually have no idea how computers operate at their most fundamental

level.

You need to read this book whether or not you ever plan on writing assembly

language code. If you plan on programming computers, you need to read this book

in order to demystify the operation of your most basic tool—the processor itself. I’ve

worked with a lot of programmers over the years. While you can do good work only

knowing high-level languages, I have found that there is a glass ceiling of effectiveness

that awaits programmers who haven’t learned the machine’s own language.

Learning assembly language is about learning how the processor itself thinks about

your code. It is about gaining the mind of the machine. Even if you never use assembly

language in practice, the depth of understanding you will receive by learning assembly

language will make your time and effort worthwhile. You will understand at a more

visceral level the various trade-offs that are made with different programming languages

and why certain high-level operations may be faster than others and get an overall sense

of what your computer is really doing.

Additionally, while the practical uses of assembly language are getting fewer and

further between, there are still many places where assembly language knowledge

is needed. Compiler writers, kernel developers, and high-performance library

implementers all utilize assembly language to some degree and probably always will.

Additionally, embedded developers, because of resource constraints, often program in

assembly language as well.

https://doi.org/10.1007/978-1-4842-7437-8_1#DOI

2

1.2 Who Is This Book For?
This book is for programmers at any level. This book should work as your first or your

fortieth programming book. Some later chapters will assume some familiarity with

various programming languages, but the core content is written so that anyone can pick

it up and read it.

I generally assume some working knowledge of Linux and the command

line. However, if you haven’t used the command line, Appendix B will give a brief

introduction.

If you don’t use Linux as your primary operating system, that’s okay, too. I’ve built a

Docker image that is customized to work with this book, and Appendix A will help you

get started using it.

You only need to know the basics—how to run programs on the command line, how

to edit text files, etc. If you have done any work at all on the command line (or have read

and worked through Appendix B), you probably know everything that you need to get

started. If you haven’t, there are numerous tutorials on the Internet about getting started

on the command line. You don’t need to be an advanced systems administrator. If you

know how to change location, edit files, and create directories, that’s all the skills you

actually need.

1.3 Why Learn Assembly Language?
In the modern age of modern programming languages where a single line of code can

replace hundreds of lines of assembly language, why bother to study assembly language

at all? The fact is assembly language is how your computer runs. Any good craftsman

knows how their tools work, and computer programming is no different. Knowing your

tools helps you get the most out of them.

The biggest advantage is one that is hard to point to concretely—it is simply

understanding how the pieces fit together. Some people are perfectly happy not knowing

how the tools that they work with actually function. However, those people often wind

up being mystified by certain problems and then have to go to someone who actually

knows how these tools function to figure it out. Knowing assembly language makes you

the guru who understands how everything fits together.

Of course, there are also more practical reasons I can point to. Understanding

how many security exploits work relies on understanding how the computer is

Chapter 1 IntroduCtIon

3

actually operating. So, if your goal is to do computer security work, in order to actually

understand how hackers are manipulating the system, you have to know how the system

works in general.

Some people learn assembly language so that they can make faster programs. While

modern optimizing compilers are really great at making fast assembly language, since

they are computer programs, they can only operate according to fixed rules and axioms.

Human creativity, however, allows for the creation of new ideas which go beyond what

computers are programmed to do.1

There are other cases where assembly language is actually simpler for programming.

For many embedded processors and applications, programming in a high-level language

is actually harder than just programming in assembly language directly. If you are doing

low-level work with hardware working with individual bits and bytes, then assembly

language oftentimes winds up being more straightforward and easy to program in than a

high-level language.2

There are also many areas of modern programming on standard computers which

must happen in assembly language, or at least require a background knowledge of it.

Compilers, new programming languages, operating system code, drivers, and other

system-level features all require either direct assembly language programming or a

background knowledge of it.

Again, I will say that, for me, the greatest benefit of learning assembly language

programming is simply gaining a better mental model for what is happening in the

computer when I’m programming. When people describe security exploits, I can

understand what they are talking about. When people describe why some programming

feature “costs” too much in terms of execution speed, I have a mental framework to

understand why. When low-level issues arise, I have a feel for what sorts of things might

be causing problems.

1 The optimal methodology is actually to combine both humans and computers and let the
computer apply the fixed rules and let human creativity see where they can improve upon them.

2 Note that most embedded processors will use a different assembly language than the one in
this book. Nevertheless, I think that you will find learning the assembly language that is on your
own computer beneficial and that most of the ideas transfer easily to other processors, even
if the instructions are a little different. Embedded processors come with a whole host of their
own difficulties, so having mastery of assembly language in general before trying to program an
embedded processor is definitely worthwhile.

Chapter 1 IntroduCtIon

4

1.4 A Note to New Programmers
If you are reading this book and you are new to programming, I want to offer a special

word to you. While I think you have made a good choice using this book to learn

programming, I want you to know that it may not be as exciting as other programming

languages. Reading this book will help you to gain the understanding of the processor to

make you great at programming. Because you know all the things the computer is doing

under the hood, you will have insights when doing more exciting types of programming

that others won’t have.

However, assembly language itself is not incredibly exciting to write. You are

literally doing everything by hand, so even doing simple things tends to take a long

time. The purpose of higher-level programming languages is to speed up the process

of writing code. What I don’t want you to do is to read this book and then think, “Oh

my! Programming takes so much work!” Remember, most of us got into this business

to automate things, and that includes automating the task of programming. Many

experienced programmers can pack a lot of juice into even a single line of code in

a high- level language.

If you don’t know, programming languages are generally grouped into “high-

level” and “low-level” languages. Higher-level languages are focused more on making

code that matches more closely the problem you are trying to solve, while lower-level

languages are focused on making code that more closely follows the computer’s own

mode of operation. Assembly language is the almost-lowest-level language there is. The

instructions in assembly language exactly match the instructions that the processor

executes. The only thing lower than assembly language is writing machine opcodes (see

Appendix K if that is of interest to you). As you will see, computers translate everything

into numbers. That includes your programs. However, it would be hard to read and

manipulate a program if it were just numbers. Therefore, almost everyone writes the

actual code in assembly language and then uses a program (called an assembler) to

translate that into machine code. Assembly language is basically human-readable

machine code.

That is why I say that learning assembly language will give you insight into

the operation of the computer. Unlike other programming languages, when you

learn assembly language, you are learning to program the computer on its own

level. I’ve generally found that it is somewhat dangerous to automate a process you

don’t understand, especially for someone who is trying to be an expert. An expert

mathematician will certainly use software to aid their thinking, but only because they

Chapter 1 IntroduCtIon

5

know what the software is automating. An expert race car driver will certainly use their

car’s steering system to maneuver, but they will still know how the car is operating

underneath. This helps them understand how decisions they make at the wheel will

affect various system components such as the tread on the tires or gasoline usage. As a

casual driver, these things aren’t important to me, so my understanding generally stops

at the steering wheel and the gas tank. However, if I planned on being a performance

race car driver, even if I never maintained the car myself, even if I had a whole crew that

did that for me, I would still be well served to understand the car at its deepest level in

order to get the most out of it at critical junctures.

Different people have different ideas, but, if you are willing, I definitely suggest

starting with assembly language. It will cause you to think differently about problems

and computers and ultimately will shape your thinking to more closely match what is

required for effective computer programming.

1.5 Types of Assembly Language
Note that there is not a single type of machine language for all computers, although

most PCs share the same machine language. Machine languages are usually divided

up by instruction set architecture (ISA). The ISA refers to the set of instructions that

are allowed by the computer. Many, many different computers share the same ISA,

even when built by different manufacturers. Almost all modern PCs use the x86-64 ISA

(sometimes referred to as AMD64). Older PCs use the x86 ISA (this is the 32-bit version

of x86-64). Many cell phones use a variation of the ARM ISA. Finally, some older game

consoles (and really old Macs) use the PowerPC ISA. Many other ISAs exist, but are

usually restricted to chips that have very specialized uses, such as in embedded devices.

The ISA covered in this book is the x86-64 ISA. This was developed by AMD as a

64-bit extension to the 32-bit x86 ISA developed by Intel. It is now standard in PC-based

systems and most servers.

In addition, since assembly language uses human-readable symbols that translate

into machine code, different groups have implemented assembly language using

different syntaxes. There is no difference in the final machine code, but the different

syntaxes have different looks. The two main syntaxes are NASM syntax (sometimes

called Intel syntax) and AT&T (sometimes called GAS) syntax. Again, there is no

difference in functionality, only in look. We will use AT&T syntax here, because this is

the syntax used both in the Linux kernel and as the default syntax by the GNU Compiler

Chapter 1 IntroduCtIon

6

Collection (GCC) toolchain. If you need to use NASM syntax for some reason, a quick

translation guide between the two syntaxes is available in Appendix D.

Finally, different operating systems utilize the chips in different ways. The focus here

will be on 64-bit Linux-based operating systems. You will need to be running a 64-bit

Linux-based operating system to use this book. However, as noted, if you are not on

Linux, you can use the Docker setup in Appendix A to run a compatible Linux instance

inside a 64-bit Mac or a 64-bit PC.

1.6 Structure of This Book
This book is arranged into three basic parts. This chapter and the next are introductory

material before the main parts of the book. They are here to get you started, but are not

really about how to program in assembly language.

Part I of the book focuses on the basics of assembly language itself. The programs

are not very exciting, because assembly language itself doesn’t do much except move

data around and process it. Because we are limiting ourselves to assembly language

itself, the results of these programs are always numbers. However, the simple nature

of the programs will help you get a good feel for assembly language and how it works

before trying more complicated things such as input/output. New instructions will still

be provided in subsequent parts of the book, but you should have a pretty good feel for

assembly language by the time you finish this part of the book. Additionally, most of

what you learn in this part is transferable to any other operating system running on a

CPU with the x86-64 instruction set.

Part II of the book goes into detail on how programs interact with the operating

system. This includes things like displaying to the screen, reading and writing files, and

even a bit of user input. It also includes some system management features, such as how

to interact with system libraries and how to request more memory from the operating

system. This part is very specific to the Linux operating system. While most operating

systems provide similar facilities, the specifics of how to use them are unique to the

particular operating system you are using.

Part III of the book discusses how programming languages get implemented at the

lowest level. Being an introductory book, the goal here isn’t to teach you the best way to

implement programming languages, but rather to give you a feel for the kinds of things

that the computer is doing under the hood in various programming languages. How

would someone implement feature X, Y, or Z? If modern programming languages amaze

Chapter 1 IntroduCtIon

7

and mystify you, Part III should help to make them less enigmatic. Part III is not about a

particular programming language, but will guide you through various types of language

features that you may find in any number of programming languages.

If this is your first book on computer programming, my recommendation is to

stop after Part II and then come back and read Part III after you have gained some

experience with other programming languages. This will provide the needed context for

understanding Part III of the book.

Part IV of the book has several appendixes that cover various topics that are

important to know, but don’t quite fit anywhere within the main text. As you are

interested, take a look at the appendixes to find short introductions to various topics.

The best way to learn programming is by doing. I would suggest programming every

example written in the text yourself to make sure that you fully understand what is

occurring. Additionally, every chapter ends with a list of exercises. Those exercises are

intended to help you make practical use of what you know and give you experience in

thinking about programming on the assembly language level.

Chapter 1 IntroduCtIon

9
© Jonathan Bartlett 2021
J. Bartlett, Learn to Program with Assembly, https://doi.org/10.1007/978-1-4842-7437-8_2

CHAPTER 2

The Truth About Computers
I’m going to now share with you the shocking truth about computers—computers are

really, really stupid. Many people get enamored with these devices and start to believe

things about computers that just aren’t true. They may see some amazing graphics, some

fantastic data manipulation, and some outstanding artificial intelligence and assume

that there is something amazing happening inside the computer. In truth, there is

something amazing, but it isn’t the intelligence of the computer.

2.1 What Computers Can Do
Computers can actually do very few things. Now, the modern computer instruction set

is fairly rich, but even as the number of instructions that a computer knows increases

in abundance, these are all primarily either (a) faster versions of something you could

already do, (b) computer security related, or (c) hardware interface related. Ultimately,

as far as computational power goes, all computers boil down to the same basic

instructions.

In fact, one computer architecture, invented by Farhad Mavaddat and Behrooz

Parham, only has one instruction, yet can still do any computation that any other

computer can do.1

So what is it that computers can do computationally? Computers can

• Do basic integer arithmetic

• Do memory access

1 For those curious, the instruction is “subtract and branch if negative.” If you don’t know
what that means, it will make a lot more sense by the time you finish this book. If you want
to know more about this computer, the paper is “URISC: The Ultimate Reduced Instruction
Set Computer” in the Journal of Electrical Engineering Education, volume 25. These sorts of
computers are known today as OISC systems (“one instruction set computers”).

https://doi.org/10.1007/978-1-4842-7437-8_2#DOI

10

• Compare values

• Change the order of instruction execution based on a previous

comparison

If computers are this limited, then how are they able to do the amazing things that

they do? The reason that computers can accomplish such spectacular feats is that these

limitations allow hardware makers to make the operations very fast. Most modern

desktop computers can process over a billion instructions every second. Therefore, what

programmers do is leverage this massive pipeline of computation in order to combine

simplistic computations into a masterpiece.

However, at the end of the day, all that a computer is really doing is really fast

arithmetic. In the movie Short Circuit, two of the main characters have this to say about

computers—“It’s a machine… It doesn’t get happy. It doesn’t get sad. It doesn’t laugh

at your jokes. It just runs programs.” This is true of even the most advanced artificial

intelligence. In fact, the failure to understand this concept lies at the core of the present

misunderstanding about the present and future of artificial intelligence.2

2.2 Instructing a Computer
The key to programming is to learn to rethink problems in such simple terms that they

can be expressed with simple arithmetic. It is like teaching someone to do a task, but

they only understand the most literal, exact instructions and can only do arithmetic.

There is an old joke about an engineer whose wife told him to go to the store. She said,

“Buy a gallon of milk. If they have eggs, get a dozen.” The engineer returned with 12 gallons

of milk. His wife asked, “Why 12 gallons?” The engineer responded, “They had eggs.” The

punchline of the joke is that the engineer had over-literalized his wife’s statements. Obviously,

she meant that he should get a dozen eggs, but that requires context to understand.

The same thing happens in computer programming. The computer will hyper- literalize

every single thing you type. You must expect this. Most bugs in computer programs come

from programmers not paying enough attention to the literal meaning of what they are

asking the computer to do. The computer can’t do anything except the literal meaning.

2 For more information about this issue, see Erik Larson’s book, The Myth of Artificial Intelligence:
Why Computers Can’t Think the Way We Do. I’ve also written about this some—see my article
“Why I Doubt That AI Can Match the Human Mind,” available at https://mindmatters.
ai/2019/02/why-i-doubt-that-ai-can-match-the-human-mind/.

Chapter 2 the truth about Computers

https://mindmatters.ai/2019/02/why-i-doubt-that-ai-can-match-the-human-mind/
https://mindmatters.ai/2019/02/why-i-doubt-that-ai-can-match-the-human-mind/

11

Learning to program in assembly is helpful because it is more obvious to the

programmer the hyper-literalness of how the computer will interpret the program.

Nonetheless, when tracking down bugs in any program, the most important thing to do

is to track what the code is actually saying, not what we meant by it.

Similarly, when programming, the programmer has to specify all of the possible

contingencies, how to check for them, and what should be done about them. Imagine we

were programming a robot to shop for us. Let us say that we gave it the following program:

 1. Go to the store.

 2. If the store has corn, buy the corn and return home.

 3. If the store doesn’t have corn, choose a store that you haven’t

visited yet and repeat the process.

That sounds pretty specific. The problem is, what happens if no one has corn? We

haven’t specified to the robot any other way to finish the process. Therefore, if there was

a corn famine or a corn recall, the robot will continue searching for a new store forever

(or until it runs out of electricity).

When doing low-level programming, the consequences that you have to prepare for

multiply. If you want to open a file, what happens if the file isn’t there? What happens if

the file is there, but you don’t have access to it? What if you can read it but can’t write to

it? What if the file is across a network, and there is a network failure while trying to read it?

The computer will only do exactly what you tell it to. Nothing more, nothing less.

That proposition is equally freeing and terrifying. The computer doesn’t know or care if

you programmed it correctly, but will simply do what you actually told it to do.

2.3 Basic Computer Organization
Before we go further, I want to be sure you have a basic awareness of how a computer is

organized conceptually. Computers consist of the following basic parts:

• The CPU (also referred to as the processor or microprocessor)

• Working memory

• Permanent storage

• Peripherals

• System bus

Chapter 2 the truth about Computers

12

Let’s look at each of these in turn.

The CPU (central processing unit) is the computational workhorse of your computer.

The CPU itself is divided into components, but we will deal with that in Section 2.7. The

CPU handles all computation and essentially coordinates all of the tasks that occur in

a computer. Many computers have more than one CPU, or they have one CPU that has

multiple “cores,” each of which is more or less acting like a distinct CPU. Additionally,

each core may be hyperthreaded, which means the core itself to some extent acts as

more than one core. The permanent storage is your hard drive(s), whether internal or

external, plus USB sticks, or whatever else you store files on. This is distinct from the

working memory, which is usually referred to as RAM, which stands for “random access

memory.”3 The working memory is usually wiped out when the computer gets turned off.

Everything else connected to your computer gets classified as a peripheral.
Technically, permanent storage devices are peripherals, too, but they are sufficiently

foundational to how computers work I treated them as their own category. Peripherals

are how the computer communicates with the world. This includes the graphics card,

which transmits data to the screen; the network card, which transmits data across the

network; the sound card, which translates data into sound waves; the keyboard and

mouse, which allow you to send input to the computer; etc.

Everything that is connected to the CPU connects through a bus, or system bus.

Buses handle communication between the various components of the computer, usually

between the CPU and other peripherals and between the CPU and main memory.

The speed and engineering of the various computer buses is actually critical to the

computer’s performance, but their operation is sufficiently technical and behind the

scenes that most people don’t think about it. The main memory often gets its own bus

(known as the front-side bus) to make sure that communication is fast and unhindered.

Physically, most of these components are present on a computer’s motherboard,

which is the big board inside your desktop or laptop. The motherboard often has other

functions as well, such as controlling fans, interfacing with the power button, etc.

3 It’s called random access memory because you can easily access any given part of the memory.
This was in comparison to disks or tape, in which you had to physically move the read/write
head to the right spot before you could read the data. Modern solid state drives are essentially
random access as well, but we still use the term RAM to refer to the main memory, not the disks.

Chapter 2 the truth about Computers

13

2.4 How Computers See Data
As mentioned in the introduction, computers translate everything into numbers.

To understand why, remember that computers are just electronic devices. That is,

everything that happens in a computer is ultimately reducible to the flow of electricity.

In order to make that happen, engineers had to come up with a way to represent things

with flows of electricity.

What they came up with is to have different voltages represent different symbols.

Now, you could do this in a lot of ways. You could have 1 volt represent the number 1,

2 volts represent the number 2, etc. However, devices have a fixed voltage, so we would

have to decide ahead of time how many digits we want to allow on the signal and be sure

sufficient voltage is available.

To simplify things, engineers ultimately decided to only make two symbols. These

can be thought of as “on” (voltage present) and “off” (no voltage present), “true”

and “false,” or “1” and “0.” Limiting to just two symbols greatly simplifies the task of

engineering computers.

You may be wondering how these limited symbols add up to all the things we store in

computers. First, let’s start with ordinary numbers. You may be thinking, if you only have

“0” and “1,” how will we represent numbers with other digits, like 23? The interesting

thing is that you can build numbers with any number of digits. We use ten digits (0–9),

but we didn’t have to. The Ndom language uses six digits. Some use as many as 27.

Since the computer uses two digits, the system is known as binary. Each digit in the

binary system is called a bit, which simply means “binary digit.” To understand how to

count in binary, let’s think a little about how we count in our own system, decimal. We

start with 0, and then we progress through each symbol until we hit the end of our list of

symbols (i.e., 9). Then what happens? The next digit to the left increments by one, and

the ones place goes back to zero. As we continue counting, we increment the rightmost

digit over and over, and, when it goes past the last symbol, we keep flipping it back to

zero and incrementing the next one to the left. If that one flips, we again increment the

one to the left of that digit, and so forth.

Counting in binary is exactly the same, except we just run up against the end of our

symbol list much more quickly. It starts at 0, then goes to 1, and then, hey, we are at the

end of our symbols! So that means that the number to the left gets incremented (there

is always imaginary zeroes to the left of the digits we have) and our rightmost digit flips

Chapter 2 the truth about Computers

14

back to zero. So that means that after 0 and 1 is 10! So, counting in binary looks like this

(the numbers on the left are the equivalent decimal numbers):

0. 0

1. 1

2. 10 (we overflowed the ones position, so we increment the next

digit to the left and the ones position starts over at zero)

3. 11

4. 100 (we overflowed the ones position, so we increment the next

digit to the left, but that flips that one to zero, so we increment

the next one over)

5. 101

6. 110

7. 111

8. 1000

9. 1001

10. 1010

11. 1011

12. 1100

As you can see, the procedure is the same. We are just working with fewer symbols.

Now, in computing, these values have to be stored somewhere. And, while in our

imagination, we can imagine any number of zeroes to the left (and therefore our system

can accommodate an infinite number of values), in physical computers, all of these

numbers have to be stored in circuits somewhere. Therefore, the computer engineers

group together bits into fixed sizes.

A byte is a grouping of 8 bits together. A byte can store a number between 0 and 255.

Why 255? Because that is the value of 8 bits all set to “1”: 11111111.

Single bytes are pretty limiting. However, for historic reasons, this is the way that

computers are organized, at least conceptually. When we talk about how many gigabytes

of RAM a computer has, we are asking how many billions (giga-) of bytes (groups of 8

bits together) the computer has in its working memory (which is what RAM is).

Chapter 2 the truth about Computers

15

Most computers, however, fundamentally use larger groupings. When we talk about

a 32-bit or a 64-bit computer, we are talking about how the number of bits that the

computer naturally groups together when dealing with numbers. A 64-bit computer,

then, can naturally handle numbers as large as 64 bits. This is a number between 0 and

18,446,744,073,709,551,615.

Now, ultimately, you can choose any size of number you want. You can have bigger

numbers, but, generally, the processor is not predisposed to working with the numbers

in that way. What it means to have a 64-bit computer is that the computer can, in a

single instruction, add together two 64-bit numbers. You can still add 64-bit numbers

with a 32-bit or even an 8-bit computer; it just takes more instructions. For instance, on

a 32-bit computer, you could split the 64-bit number up into two pieces. You then add

the rightmost 32 bits and then add the leftmost 32 bits (and account for any carrying

between them).

Note that even though computers store numbers as bits, we rarely refer to the

numbers in binary form unless we have a specific reason. However, knowing that they

are bits arranged into bytes (or larger groupings) helps us understand certain limitations

of computers. Oftentimes, you will find values in computing that are restricted to the

values 0–255. If you see this happen, you can think, “Oh, that probably means they are

storing the value in a single byte.”

2.5 It’s Not What You Have, It’s How You Use It
So, hopefully by now you see how computers store numbers. But don’t computers store

all sorts of other types of data, too? Aren’t computers storing and processing words,

images, sounds, and, for that matter, negative or even non-integer numbers?

This is true, but it is storing all of these things as numbers. For instance, to store

letters, the letters are actually converted into numbers using ASCII (American Standard

Code for Information Interchange) or Unicode codes (which we will discuss more later).

Each character gets a value, and words are stored as consecutive values.

Images are also values. Each pixel on your screen is represented by a number

indicating the color to display. Sound waves are stored as a series of numbers.

So how does the computer know which numbers are which? Fundamentally,

the computer doesn’t. All of these values look exactly the same when stored in your

computer—they are just numbers.

Chapter 2 the truth about Computers

16

What makes them letters or numbers or images or sounds is how they are used. If I

send a number to the graphics card, then it is a color. If I add two numbers, then they are

numbers. If I store what you type, then those numbers are letters. If I send a number to

the speaker, then it is a sound. It is the burden of the programmer to keep track of which

numbers mean which things and to treat them accordingly.

This is why files have extensions like .docx, .png, .mov, or .xlsx. These extensions

tell the computer how to interpret what is in the file. These files are themselves just long

strings of numbers. Programs simply read the filename, look at the extension, and use

that to know how to use the numbers stored inside.

There’s nothing preventing someone from writing a program that takes a word

processing file and treating the numbers as pixel colors and sending them to the screen

(it usually looks like static) or sending them to the speakers (it usually sounds like

static or buzzing). But, ultimately, what makes computer programs useful is that they

recognize how the numbers are organized and treat them in an appropriate manner.

If this sounds complicated, don’t worry about it. We will start off with very simple

examples in the next chapter.

What’s even more amazing, though, is that the computer’s instructions are

themselves just numbers as well. This is why your computer’s memory can be used to

store both your files and your programs. Both are just special sequences of numbers, so

we can store them all using the same type of hardware. Just like the numbers in the file

are written in a way that our software can interpret them, the numbers in our programs

are written in a special way so that the computer hardware can interpret them properly.

2.6 Referring to Memory
Since a computer has billions of bytes of memory (or more), how do we figure out which

specific piece of memory we are referring to? This is a harder question than it sounds

like. For the moment, I will give you a simplified understanding which we will build

upon later on.

Have you ever been to a post office and seen an array of post-office boxes? Or been to

a bank and seen a whole wall of safety deposit boxes? What do they look like?

Usually, each box is the same size, and each one has a number on it. These numbers

are arranged sequentially. Therefore, box 2345 is right next to box 2344. I can easily find

any box by knowing the number on the outside of the box.

Chapter 2 the truth about Computers

