Alicia Valero · Antonio Valero · Guiomar Calvo

The Material Limits of Energy Transition: Thanatia

The Material Limits of Energy Transition: Thanatia

The Material Limits of Energy Transition: Thanatia

Alicia Valero Instituto CIRCE University of Zaragoza Zaragoza, Spain

Guiomar Calvo D Instituto CIRCE University of Zaragoza Zaragoza, Spain Antonio Valero D Instituto CIRCE University of Zaragoza Zaragoza, Spain

ISBN 978-3-030-78532-1 ISBN 978-3-030-78533-8 (eBook) https://doi.org/10.1007/978-3-030-78533-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Equilibrium thermodynamics is a revolutionary "young" science (it has only more than 170 years!) because it can change our understanding of planet Earth. It is a science that needs to be known by those who want to quantify the damage and degradation which humans are causing to the planet's capacity to support the human species. Engineers, physicists, chemists, geologists, environmentalists, ecologists, economists, forecasters and policymakers must learn from equilibrium thermodynamics and develop it further. This book focuses particularly on the abiotic (i.e. non-living) resources of our planet and on how they have been and will be affected by human behaviour.

Although this book presents a novel application of thermodynamics for assessing the Earth's mineral wealth, no expertise in the academic discipline of thermodynamics is required to understand the book's main message. A reader who is not well versed in thermodynamics can readily cherry-pick various parts of the individual chapters that (s)he finds illuminating.

Chapter 1 presents the context of the Earth's mineral resources and how this book proposes to assess their degradation.

Chapter 2 provides information on the extraction and use of energy and non-energy mineral resources from the past to the present. It focuses on key raw materials in the decarbonisation of the economy and describes some of the mineral criticality studies that currently exist.

While Chap. 2 focuses on economic demand, Chap. 3 addresses economic supply, analysing the availability of minerals on Earth. Besides, a description of the mining and refining processes of raw materials and the associated environmental and social impacts are presented.

After analysing mineral supply and demand, we outline in Chap. 4 the thermodynamic methodology proposed in this book. It describes a model of an economically degraded planet, Thanatia, used as a reference to assess the current state of mineral resources and their degradation velocity. In addition, the equations for calculating the exergy of mineral resources are provided, and thermodynamic rarity is proposed as an indicator of raw material criticality. Using the thermodynamic tools presented in Chap. 4, Chap. 5 quantifies the exergy degradation of mineral resources on the planet since 1900. Various minerals' peak-production rates are assessed via Hubbert curves traditionally applied to fossil fuels. The novelty brought is that these can be represented in the same graph, taking into account the quantity and the quality of the resources. A study is also carried out on the mineral exergy balance of various regions of the world. With this approach, it is possible to detect the enormous inequalities between exporting and importing countries immediately. Finally, a monetary assessment of the exergy replacement costs of raw materials is undertaken. The adoption of such an account future generations.

Chapter 6 focuses on assessing the potential raw material demand for the energy transition. Data are provided on the expected penetration of clean technologies, as well as on their material composition. Based on International Energy Agency or Greenpeace scenarios, the energy transition's exergy flows are analysed. It then becomes clear that there will be a shift from a dependence on fossil fuels to a multi-dependence on minerals, some of which very scarce, with extraction localised in only a few places of the world. Finally, some likely material bottlenecks in the development of clean technologies are identified.

Yet it is not only renewable energies that are mainly dependent on these scarce raw materials. So are new technologies that increasingly incorporate electrical and electronic components. Chapter 7 analyses these devices' thermodynamic rarity, focusing on probably the most resource-intensive technology: the vehicle.

Chapter 8 provides solutions to slow down the degradation of scarce mineral resources, showing how thermodynamics can help to manage the mineral wealth better. Thus, material substitution possibilities for various resource-intensive technologies are addressed. It also discusses the so-called circular economy and the thermodynamic limits it faces. Eco-design measures to increase the recoverability of raw materials at the end of life of products are also discussed. Finally, an insight into alternative mineral sources is presented: urban mining and asteroid mining.

We finally offer in Chap. 9 some reflections and conclusions drawn from our own research findings, claiming the need for a new humanism that cares about the future of the planet.

Here are some introductory remarks for readers versed in thermodynamics. Let us start with an example of the First Law of Thermodynamics: It is generally agreed that a calorie is a very small amount—just enough to raise the temperature of a gram of water by 1 °C. But if that gram of water were to carry a speed of 329 km/h, it would have the energy, now kinetic, of a calorie! This is surprising because we have not internalised the concept of energy. Moreover, we seem to associate energy with damage rather than heat. Yet in reality, a punch from a boxer can communicate less energy than a gentle caress. Numbers say nothing if they are not internalised. As Protagoras said, "man is the measure of all things", but be careful; the sense of physical damage is not an appropriate measure of deterioration.

Despite these paradoxes, we can make statistics and foresight studies also because energy is additive. We can add electrical energy to thermal energy and to any other energy manifestations without making mistakes, as long as we distinguish between primary and final energy.

However, what is no longer straightforward is to understand the second law of thermodynamics quantitatively. If energy is not lost, where does it go? We know that heat cools, metals rust, the wind stops, water rains, living beings age and die, and the planet degrades. But how fast does Earth degrade? And how fast does it regenerate? If the planet is finite, how long will it take until its exhaustion? And how can we stop this degradation? These are the questions that currently have no scientific answers. There are proclamations, considerations, predictions, but there is no quantitative science behind it. We need a transdisciplinary theory based on thermodynamic criteria, which goes beyond it. We need a science that builds ever more detailed statistics, even if these are initially based on imprecise and fuzzy but objective data, that serves as a rudder and thermometer of the damage inflicted by our civilisation on planet Earth.

From the second law, we know that sooner or later, all quality energy will become heat. Heat is the sink of all energies, so the energy we receive every day from the Sun moves the biosphere. Yet, unfortunately, humankind degrades natural resources faster than the Sun replenishes them. If any degradation can be measured with entropy, we need to focus on understanding what entropy is.

We can easily understand that if energy is conserved and hot bodies cool spontaneously, isolated systems tend to increase their entropy. Unfortunately, entropy has units of energy divided by temperature, making it complex to comprehend and impractical to use. First of all, entropy is not a property that behaves linearly like energy. Losing 1 °C at 5505 °C (i.e., at 5778 Kelvin, the equivalent temperature of solar radiation) is not the same as losing it at 27 °C (300 K) or losing it at -73 °C (200 K). In other words, entropy forces us to live with exponential behaviour, which is difficult to understand for those not used to mathematical thinking. On the other hand, using units such as kWh/K does not facilitate the quantitative explanation of the social consequences of degradation. Therefore, it is not surprising that entropy is often used as a metaphor, moving away from quantitative messages.

The solution to these issues comes with exergy. Exergy is more interesting than entropy because it simultaneously integrates the First Law of Thermodynamics, energy conservation, and the second, the entropy law. In other words, exergy simultaneously condenses information about energy and entropy. Mathematically, it has a straightforward formula: the change in energy minus the ambient temperature multiplied by the entropy change. Its generic formula is:

$$\mathbf{B} = \Delta \mathbf{E} - \mathbf{T}_0 \Delta \mathbf{S}$$

where B is the exergy, ΔE is the energy change with respect to the reference, T₀ is the absolute temperature of the reference and ΔS is the entropy change with respect to the reference. It is therefore easy to see that the exergy property integrates both energy and entropy. It is measured in energy units and is additive, which makes it much more practical and easy to understand. Technically, exergy measures the maximum work obtained from a system when it is brought into equilibrium with the environment. Alternatively, exergy represents the minimum work necessary to bring the system from equilibrium with the environment to a given alternative state.

Note that to define exergy, we have added a new concept, the reference environment, which can open up a new problem rather than providing a solution depending on how we see it. The reference environment is not originated from the convenience of calculations but from observing the physical behaviour of matter. It is the ground if we speak of a ball falling down, it is the absence of wind if we speak of the atmosphere, it is the diluted CO_2 in the environment if we speak of a fossil fuel that has been burned, it is rusted metal, it is a dilution of pollutants in the sea and the atmosphere, it is the unavoidable dispersion of materials throughout the crust, it is the irretrievable loss of natural resources, and it is death. It is Thanatia, a planet easily imaginable if we observe Nature's degradation, at temperature T_0 , slowly increasing if we do not stop climate change.

Thanatia's message flips the way the degradation of natural resources is perceived and assessed. Instead of moving from today to a defined temporal future, Thanatia's thinking suggests time to run backwards. If we accept an end, i.e., the finitude of resources, we can ask ourselves how fast we are approaching it. It is as if we had to take a flight at a fixed date and time. We organise our time backwards, we prepare the luggage, commutes, and all the necessary steps to arrive on time to take the plane. In short, it is forward vs. backward thinking. This change in thinking helps us to find a way to avoid any pessimistic future.

This is, dear reader, what this book is about. It shows that equilibrium thermodynamics can explain how relentless loss of the planet's mineral wealth—a loss which the energy transition will accelerate—can be assessed. However, now we are no longer talking about the equilibrium between bodies as classical thermodynamics does, but about the equilibrium between humans and the planet, which is why the word equilibrium thermodynamics takes on a new nuance. Perhaps to avoid confusion it should be called the thermodynamics of sustainability.

Our work on this topic started in 1998 with several papers and a book entitled "Desarrollo Económico y Deterioro Ecológico" (meaning "Economic Development and Ecological Deterioration"). After three Ph.D.s and more research papers, our studies led us in 2014 to write a book entitled, *Thanatia. The Destiny of the Earth's Mineral Resources. A Thermodynamic Cradle to Cradle Assessment.* Now, seven years later, after five additional Ph.D.s and more than 50 scientific papers, we present this new book, opening up new questions on a crucial issue for twentyfirst-century humankind: the conservation and rational management of the planet's mineral resources for future generations.

The authors thank the Spanish Ministry of Economy, Industry and Competitiveness for the funding received to write this book through Project ENE2017-85224-R.

Zaragoza, Spain

Alicia Valero Antonio Valero Guiomar Calvo

Contents

1			nis Book About?	1 11
2	The	Miner	al Voracity of Human Beings	13
	2.1		nd for Fossil Fuels	14
	2.2	Dema	nd for Minerals	16
	2.3	Some	Strategic Minerals for the Present and the Future	17
		2.3.1	A Classic: Gold	18
		2.3.2	Rare Earth and Other Essential Elements	19
		2.3.3	Technological Materials: Cobalt, Lithium, Niobium	
			and Tantalum	21
		2.3.4	Indium, Gallium and Tellurium: The New Horizons	
			of Photovoltaics	23
		2.3.5	Phosphorus: The Next Green Gold	23
	2.4	Miner	al Criticality	24
	Refe	erences		31
3	On	the Ava	ilability of Resources on Earth	33
	3.1	Resou	rce Classification	34
	3.2	Forma	ation and Availability of Fossil Fuels	36
	3.3	Forma	ation and Availability of Non-energy Minerals	39
	3.4	Miner	al Extraction and Processing	45
		3.4.1	Exploration and Research	46
		3.4.2	Development	47
		3.4.3	Exploitation: Extraction and Beneficiation	48
		3.4.4	Operation: Smelting and Refining	51
		3.4.5	Exploitation: Refined Hydrometallurgy	52
		3.4.6	Case Study: Copper Processing	54
		3.4.7	The Wheel of Metals	56
		3.4.8	Reclamation, Rehabilitation and Post-closure	58

	3.5	Environmental Impacts of Mining	58
	3.6	Social Impacts of Mining	63
	Refe	rences	64
4	The	(Thermodynamic) Value of Scarcity	67
1	4.1	The Life Cycle of Materials	67
	4.1	Thanatia	72
	4.2	Energy Needed to Extract Minerals from Thanatia	77
	4.4	Thermoeconomics, Exergy and Exergy Cost	81
	4.4 4.5		83
	4.5 4.6	Exergoecology	83 84
	4.0	Exergy of Mineral Resources	85
		4.6.1 Chemical Exergy	
		4.6.2 Concentration Exergy	86
		4.6.3 Comminution Exergy	89
	47	4.6.4 Exergy Contained in the Planet's Mineral Resources	90
	4.7	Exergy Replacement Costs	93
		4.7.1 Exergy Replacement Costs as an Indicator	0.0
		of the Physical Value of Resources	96
	1.0	4.7.2 Allocation of Costs in Mining and Metallurgy	99
	4.8	Thermodynamic Rarity	105
		4.8.1 Thermodynamic Rarity as an Indicator of Criticality	111
	D 6	4.8.2 The Need for "Recyclaiming"	113
	Refe	prences	116
5	The	rmodynamic Assessment of the Loss of Mineral Wealth	119
	5.1	Exergy Evolution of Global Historical Mineral Extraction	120
	5.2	Exergy Evolution of the Future Extraction of Minerals	127
	5.3	The Mineral Balance of Countries and Regions	135
		5.3.1 Spain and Colombia	136
		5.3.2 Latin America	139
		5.3.3 Europe	141
	5.4	Selling Cathedrals at Brick Price	143
	Refe	vrences	144
6	Mat	erial Limits of the Energy Transition	147
	6.1	The Paris Agreements and Climate Scenarios	147
	6.2	Generation of Energy from Renewable Sources	151
		6.2.1 Biomass	151
		6.2.2 Wind Power	153
		6.2.3 Hydroelectric Power	155
		6.2.4 Solar Energy	156
		6.2.5 Ocean Energy	159
		6.2.6 Geothermal Energy	162
		6.2.7 Summary of Renewable Energy Sources	163

	6.3	The El	ectric Vehicle	165
	6.4		ative Production of Low Carbon Technologies	167
	6.5		als for Low Carbon Technologies	169
	6.6		Flow Analysis of the Energy Transition Scenarios	175
	6.7	Minera	al Limits of the Energy Transition	180
				185
7			n Cost of Technologies	189
'	7.1		odynamic Rarity of Electrical and Electronic Devices	109
	7.1		odynamic Rarity of Vehicles	190
	7.2		f Mineral Wealth Associated with Vehicles	194 199
			I Mineral weath Associated with venicles	204
8		-	to the Future	207
	8.1		tution of Elements	208
		8.1.1	Electric Vehicles	209
		8.1.2	Renewable Energies	209
			Printed Circuit Boards	210
			Lighting	212
	8.2	The Ci	ircular Economy	213
	8.3		ling	215
	8.4		hermodynamic Impossibility of Closing Cycles: The	
			Economy	219
		8.4.1	Recovery of Valuable Metals in Vehicles	221
	8.5		esign Measures	225
		8.5.1	Eco-design Measures in Relation to Vehicles	227
	8.6		ative Sources on Earth: Urban Mining	231
	8.7	Alterna	ative Sources Beyond Earth: Asteroid Mining	235
	Refe	erences		239
9	Epil	ogue: F	or a New Humanism that Cares About the Future	
			et	243
	9.1	Reorie	nting Science and Technology of Materials	244
		9.1.1	Materials, a Global Responsibility	244
		9.1.2	Are There Technological Solutions?	245
	9.2	For a N	New Humanism	246
		9.2.1	A Quick Overview of the State of the Planet	
			in the Twenty-First Century	246
		9.2.2	Thanatia and Exponential Behaviour	247
		9.2.3	Youngsters or Mature?	249
		9.2.4	Thanatia and the Backwards Vision of the Future	249
		9.2.5	The Need for a Strategic Plan for the Planet	251
		9.2.6	A New Humanism	252
	Refe	rences		253

About the Authors

Alicia Valero studied chemical engineering at the University of Zaragoza (Spain), where she also completed a master's degree in energy efficiency and industrial ecology. In 2008, she obtained a European PhD from the University of Zaragoza. She is currently an associate professor in the Department of Mechanical Engineering (University of Zaragoza) and head of the industrial ecology group at the CIRCE Institute. Her research activity has focused on the exergy evaluation of the Earth's mineral capital, a subject in which she has been working for 15 years. She has received four international awards. She is the co-author of over 50 publications in scientific journals and book chapters and more than 60 communications to international congresses. She has participated in more than 30 national and international projects related to the study and optimisation of energy and materials. She belongs to various international experts' committees on raw materials.

Antonio Valero is the chair in thermal systems at the University of Zaragoza (Spain). He is the director and founder of the Research Centre for Energy Resources and Consumption (CIRCE Institute) belonging to the University of Zaragoza (Spain). Since 1986, when he published the general theory of exergy saving, he has developed various thermodynamic theories, including thermoeconomics and exergoecology, used for the optimisation and evaluation of natural resources. He has directed more than 35 Ph.D.s and has co-authored hundreds of scientific papers, book chapters and communications to conferences on these topics. He is a fellow member of the American Society of Mechanical Engineers. He received the ASME James H. Potter Gold Medal Award 1996 for advancing the theory of thermoeconomics to a new level, as well as the Stanislaw Ocheduszko Medal 2016 to distinguish his contributions to thermodynamics, among other international recognitions.

Guiomar Calvo graduated in geology from the University of Zaragoza (Spain) in 2010. She studied a master in introduction to research in geology (2011) and a master in eco-efficiency and industrial ecology (2013) at the same university. In 2016, she defended her doctoral thesis, entitled "Exergy assessment of mineral extraction, trade, and depletion", which consisted of the evaluation of mineral resources and mineral depletion from a thermodynamic point of view. She is the co-author of over 50 scientific papers, conference communications and book chapters, along with three dissemination books related to minerals. She has participated in various national and European research projects related to assessing and optimising raw material use. She has worked as a postdoctoral researcher at CIRCE Institute, where she has carried out the vast majority of her research activity. She has also worked as a lecturer at the International University of La Rioja (Spain).

List of Figures

Fig. 1.1	Ancient gold open-cast exploitation of the Roman Empire	•
F ' 1.0	of <i>Las Médulas</i> (Castilla y León, Spain)	2
Fig. 1.2	Engraving from the work of Georgius Agricola, De re	
	Metallica, published in 1577, representing gold extraction	
	techniques in Germany in the sixteenth century. The sluice	
	boxes ensured that gold, a denser material, accumulated	
	in the channels. There is also a person panning, a traditional	
	method still used in some places	3
Fig. 1.3	Some of the elements that are used to manufacture clean	
	technologies	5
Fig. 1.4	Global material extraction from 1900 to 2017 in billions	
	of tons	5
Fig. 1.5	Evolution of Earth Overshoot Day from 1970 to 2019	
	(Global Footprint Network: www.footprintnetwork.org)	8
Fig. 1.6	Conceptual hourglass of the passage from Gaia (our planet	
	today) to Thanatia (planet with dispersed and/or totally	
	consumed natural resources)	10
Fig. 2.1	Extraction of fossil fuels from 1900 to 2018. Data	
	in millions of tons of oil equivalent (Mtoe)	14
Fig. 2.2	Primary energy consumption in 2018 by type of energy	
	source	14
Fig. 2.3	Consumption and extraction of fossil fuels by country	
	in 2018	15
Fig. 2.4	Extraction of unconventional natural gas	16
Fig. 2.5	Primary extraction of mineral resources from 1900	
	to 2018. The effect on the industry of the 2008 crisis and its	
	subsequent recovery can clearly be observed	17

Fig. 2.6	Historical evolution of the gold price from 1900 to 2015	18
Fig. 2.7	Gold demand by sector (left) and gold extraction by region	
C .	during 2017 (right)	19
Fig. 2.8	Rare earth element extraction from 1900 to 2018 by country	20
Fig. 2.9	Luwowo coltan mine, located near Rubaya (the Democratic	
C .	Republic of the Congo). Luwowo is one of the mines in this	
	country that is certified by the International Conference	
	of the Great Lakes (ICGLR) that ensures that the extracted	
	coltan comes from conflict-free mines and that it meets	
	minimum social standards	22
Fig. 2.10	Periodic table where elements considered critical	
	to the European Union in the 2020 report are highlighted	30
Fig. 3.1	McKelvey classification of reserves and resources	34
Fig. 3.2	Proven fossil fuel reserves by country (data in percentage)	37
Fig. 3.3	Discoveries of oil and natural gas deposits in recent years	38
Fig. 3.4	Panoramic view of the Chuquicamata copper mine (Chile)	40
Fig. 3.5	Piles of salt in the Salar de Uyuni (Bolivia)	42
Fig. 3.6	Extraction data (2018), accumulated extraction (1900–	
	2018), known copper reserves and resources	43
Fig. 3.7	Summary of the life cycle of a mine	45
Fig. 3.8	Photograph of drops of native mercury in cinnabar,	
	Almadén (Castilla La Mancha, Spain)	47
Fig. 3.9	Photograph of one of the coal extraction fronts	
	of the Twentymile mine (USA). Longwall coal cutter	
	that gradually tears coal from the gallery wall; the material	
	falls on a conveyor belt responsible for moving the material	
	to the outside	49
Fig. 3.10	Foam generated at the top of flotation cells during copper	
	extraction at the Prominent Hill (Australia) plant	50
Fig. 3.11	Stainless steel cathodes where the copper will be deposited	
	during the refining process	52
Fig. 3.12	Leaching ponds at the Mopani Copper Mines copper mine	
	(Zambia)	53
Fig. 3.13	General pyrometallurgical process of copper	54
Fig. 3.14	General hydrometallurgical process for copper	56
Fig. 3.15	Wheel of metals showing the links between the different	
	elements	57
Fig. 3.16	Photograph of Río Tinto: the reddish colour of its	
	waters that gives it its name is due to the acid drainage	
	of the sulphide-rich soils in the area	60
Fig. 3.17	Large truck used to transport material from the mining	
	area of Cripple Creek (United States)	61

List of Figures

Fig. 4.1	Input and output flows typically considered in life cycle	(0)
E:- 4.2	assessment	69 70
Fig. 4.2	The life cycle of materials	70
Fig. 4.3	Closing the life cycle of materials: the analysis	72
F : 4.4	of cradle-to-grave and grave-to-cradle	72
Fig. 4.4	Simplified process of the steps necessary to manufacture	70
E. 4.5	gold cathodes from Thanatia	78
Fig. 4.5	Specific energy for the extraction of gold from Thanatia	00
F ' 1 C	according to the ore grade (in grams of gold per ton)	80
Fig. 4.6	Energy required to extract copper based on the ore grade	96
Fig. 4.7	Extraction in 2018, in tons (left) and in exergy replacement	
	costs, in Mtoe (right) of the main metallic (green)	07
F : 4.0	and industrial (pink) minerals	97
Fig. 4.8	Extraction in 2018 in mass (left) and in ERC (right)	00
F : 10	of minerals and fossil fuels	99
Fig. 4.9	Allocation of costs by different methods: tonnage, price	
	and exergy replacement costs for a porphyry copper, gold	
-	and silver deposit	104
Fig. 4.10	Comparison between the price (in \$/t) and ERC of copper	104
Fig. 4.11	Graphic definition of thermodynamic rarity	106
Fig. 4.12	Influence of extraction (or decrease in mining grade)	
	on thermodynamic rarity	106
Fig. 4.13	Periodic table where the thermodynamic rarity	
	of the elements has been represented with a colour code	111
Fig. 4.14	Thermodynamic rarity against the supply risk	
	and economic importance indicators of the European	
	Commission. The thermodynamic rarity values (GJ/t) are	
	placed on a logarithmic scale	112
Fig. 4.15	Exergy processes and costs involved in the production	
	and end of life of a product	113
Fig. 5.1	Extraction of five elements and minerals expressed in Mtoe	121
Fig. 5.2	Extraction of the rest of the elements and minerals	
	expressed in Mtoe	121
Fig. 5.3	Percentage of exhaustion of different elements based	
	on the resources known today and the cumulative	
	extraction from 1900 to 2018	124
Fig. 5.4	Global extraction of chromium from 1900 to 2018	126
Fig. 5.5	Bell shape of the Hubbert model for the extraction cycle	
	of any natural resource	127
Fig. 5.6	Bell shape of the Hubbert model for the extraction cycle	
	of any natural resource	130
Fig. 5.7	Hubbert peaks for different elements considering the total	
	resources available	131

Fig. 5.8	Different values for the Hubbert peak of lithium based on different resource data	133
Fig. 5.9	Different values for the Hubbert peak of phosphoric rock	155
Fig. 5.9	based on different resource data	134
Eig 5 10		154
Fig. 5.10	Sankey diagram with inputs and outputs for Spain for 2011.	127
E. 5.11	Data in tons (left) and exergy replacement costs (right)	137
Fig. 5.11	Sankey diagram with inputs and outputs for Colombia	120
	for 2011 (data in tons)	138
Fig. 5.12	Sankey diagram with inputs and outputs for Colombia	
	for 2011 (data on exergy replacement costs)	138
Fig. 5.13	Percentage of reserves and extraction in Latin	
	America with respect to the global total (2016)	139
Fig. 5.14	Exports from Latin America (LA-20 in the figure)	
	to the rest of the world regions for 2013 in exergy	
	replacement costs	140
Fig. 5.15	Sankey diagram with inputs and outputs of critical	
	minerals for the European Union for 2014 in mass (Mt,	
	left) and in thermodynamic rarity (Mtoe, right)	142
Fig. 5.16	Monetary costs of the mineral patrimony loss and GDP	
U	of the mining sector for Colombia (left) and Spain (right)	144
Fig. 6.1	Primary energy demand in the world by type of fuel	
8	and associated emissions for the three scenarios	149
Fig. 6.2	Evolution of CO_2 emissions for different scenarios. RTS:	112
1 15. 0.2	reference scenario; 2DS: scenario with a 50% probability	
	of limiting the temperature increase to 2 °C; B2DS:	
	scenario with a temperature rise of less than 2 °C. AE [R]:	
	100% renewable scenario in 2050	150
Eig 62		150
Fig. 6.3	Photograph of the Seguntor bioenergy plant, located	152
	in Sandakan (Malaysia)	
Fig. 6.4	Global production of biofuels	153
Fig. 6.5	Middelgrunden wind farm, located at sea, about 3.5 km	
	from Copenhagen (Denmark). This wind farm was built	
	in 2000, currently, the most prominent marine farm	
	in the world, boasting 20 turbines with a capacity of 40	
	MW (the distance between each wind turbine is about 180	
	m)	154
Fig. 6.6	Annual consumption of wind energy and installed capacity,	
	including on- and offshore	155
Fig. 6.7	Photograph taken from the Three Gorges Dam International	
	Space Station on the Yangtze River (China). This dam	
	was completed in 2006 and has a capacity of 22.5 GW.	
	The dam is about 2.3 km wide and about 185 m high	156

List of Figures

Fig. 6.8	Annual consumption of hydroelectric energy and installed capacity, including mixed installations	157
Fig. 6.9	Annual and accumulated installed capacity of solar	157
8. 012	photovoltaic in Europe and the rest of the world	158
Fig. 6.10	Annual and cumulative installed capacity of solar thermal	
0	energy in Europe and the rest of the world	158
Fig. 6.11	Aerial view of the PS10 and PS20 central tower solar	
0	thermal plants (Seville, Spain)	159
Fig. 6.12	Aerial view of the plant that harnesses the energy	
U	of the waves off the coast of Portugal	161
Fig. 6.13	Annual and cumulative installed capacity of wave energy	
U	in Europe and the rest of the world	161
Fig. 6.14	Annual and accumulated installed capacity of tidal energy	
C .	in Europe and the rest of the world	162
Fig. 6.15	Nesjavellir Geothermal Power Station (Iceland),	
	the second-largest power plant in the country. Every year it	
	produces about 120 MW of electrical energy in addition	
	to hot water	164
Fig. 6.16	Evolution of the installed capacity of the different	
	renewable energy sources	164
Fig. 6.17	Engraving of the electric tricycle invented by Gustave	
	Trouvé that appeared in the second volume of the book	166
Fig. 6.18	Evolution of total sales of electric vehicles worldwide	167
Fig. 6.19	Evolution of the annual and installed power of certain	
	renewable technologies, as well as sales and a total fleet	
	of vehicles. ICEV: internal combustion vehicles; BEV:	
	vehicles with electric batteries; PHEV: plug-in hybrid	
	electric vehicles	168
Fig. 6.20	Some of the materials required for the different types	
	of renewable energy	174
Fig. 6.21	Exergy flow based on the International Energy Agency's	
	2DS scenario for 2025, including mineral resources	176
Fig. 6.22	Exergy flow based on the International Energy Agency's	
	2DS scenario for 2050, including mineral resources	177
Fig. 6.23	Comparison of material requirements between the 2DS	
	and AE [R] scenario for 2025 and 2050 by demand	
	and by technology	179
Fig. 6.24	Percentage of demand for materials by technology	
	and by element with respect to the total accumulated	100
	demand from 2016 to 2050	182
Fig. 6.25	Summary of the type of risk that each element presents	10.1
	and in which technology it is mostly used	184
Fig. 7.1	Thermodynamic rarity of sales of a number of electrical	100
	and electronic devices in Germany in 2010	192

Fig. 7.2	Past and future evolution of the thermodynamic rarity of the vehicle	195
Fig. 7.3	Differences between weight (in kg) and thermodynamic	195
1 Ig. 7.5	rarity (in GJ) of different models of conventional	
	and electric vehicles. ICEV: internal combustion engine	
	vehicles; BEV_333: vehicle with a 3:3:3 NCM-type	
	lithium battery electric vehicle; BEV_622: 6:2:2	
	NCM-type lithium battery electric vehicle; BEV_811:	
	8:1:1 NCM-type lithium battery electric vehicle	196
Fig. 7.4	Metal composition in the percentage of the Seat León III	190
1 1g. 7.4	(730 kg)	197
Fig. 7.5	Classification of vehicle components according to their	1)/
1 Ig. 7.5	rarity (kJ) and intensity (kJ/g)	198
Fig. 7.6	Summary of the stages a vehicle goes through at the end	170
1 Ig. 7.0	of its useful life	200
Fig. 7.7	Out of every four vehicles entering the end of life stage,	200
1 15. 7.7	we only recover three in terms of thermodynamic rarity	203
Fig. 8.1	Motherboard of a laptop (Lifetec LT9303)	211
Fig. 8.2	Tantalum capacitor on a printed circuit board	211
Fig. 8.3	Pillars of the circular economy	214
Fig. 8.4	Historical production of primary and secondary aluminium	
1.8.011	(recycled)	216
Fig. 8.5	Summary of the recycling rates of some elements	
0	in the world	218
Fig. 8.6	Wheel of metals showing the difference in metallurgical	
U	processing of different base metals. The wheel shows	
	on green the elements that are usually recovered, in yellow	
	those that end in slags or alloys with some functionality	
	and in red those that are lost	222
Fig. 8.7	General exploded view of the dashboard of a vehicle	223
Fig. 8.8	Flowchart for non-ferrous metals	223
Fig. 8.9	Dashboard of a Seat León III whose disassembly would	
	lead to a greater recovery of the metals that compose it	229
Fig. 8.10	Rear screen cleaner motor of a Seat León III that could	
	easily be reused in new vehicles	230
Fig. 8.11	Urban mining and its connection with different	
	accumulations of materials in the technosphere	233
Fig. 8.12	Debris from the demolition of a building: various materials	
	that can be seen here could have a second life	234
Fig. 8.13	Wake left by the passage of a meteorite over Russia on 15	
	February 2013, which exploded over the city of Chelyabinsk	236

Fig. 8.14	Fragments of different sizes recovered from the meteorite	
	that exploded over Chelyabinsk (Russia) on 15 February	
	2013	236
Fig. 8.15	Images of the Psyche asteroid taken during the HARISSA	
	project, aimed at taking high-resolution images of different	
	asteroids	238

List of Tables

Table 2.1	List of critical minerals from different countries and main	
	producing country and extraction percentage of each	26
Table 3.1	World reserves and resources data for the main	
	non-energy minerals	44
Table 4.1	Energy consumption of the different stages to obtain gold	
	from Thanatia	79
Table 4.2	Standard chemical exergy of the different elements	87
Table 4.3	Thermodynamic properties of fossil fuels	88
Table 4.4	Exergy of concentration of different elements	88
Table 4.5	Exergy content of production in 2018 of the reserves	
	and resources of some of the most frequent minerals	91
Table 4.6	Exergy content of the extraction (E) and the proven	
	reserves (PRes) of fossil fuels by region. Data in Mtoe	92
Table 4.7	Average prices of certain elements for 1980 and 2006	
	(USGS) and exergy replacement costs (ERC)	101
Table 4.8	Allocation of costs based on the tonnage, price and exergy	
	replacement costs for porphyry copper (values in %)	102
Table 4.9	Allocation of costs based on tonnage, price and exergy	
	replacement costs for nickel and copper komatiites	
	(values in %)	102
Table 4.10	Allocation of costs based on tonnage, price and exergy	
	replacement costs for massive sulphides (values in %)	103
Table 4.11	Allocation of costs based on tonnage, price and exergy	
	replacement costs for PGE-gold placer deposits (values	
	in%)	103
Table 4.12	Concentration in Thanatia (x_c) , average concentration	
	in current mines (x_m) , energy associated	
	with the extraction and concentration process	
	(E_{min}) , energy associated with the beneficiation	
	process (E _{ben}), exergy replacement costs (ERC)	
	and thermodynamic rarity (R)	108
	• • • • • • • • • • • • • • • • • • •	

Table 4.13	List of elements considered critical combining thermodynamic rarity with supply risk and economic	
	importance of the European Commission (2014 report)	112
Table 5.1	Global depletion of the main mineral resources,	
	expressed in exergy terms and sorted in decreasing order	
	according to the loss of total mineral wealth (LMW)	122
Table 5.2	Hubbert peaks for the various elements	125
Table 6.1	Available potential of each energy and installed capacity	
	of 2018	165
Table 6.2	Composition of two models of wind turbines, onshore	
	and offshore (data in kg/MW)	170
Table 6.3	Some of the materials needed in a hydroelectric power	
	station (data in kg/MW)	170
Table 6.4	List of materials used in concentrated solar power (CSP)	
	(data in t/GW)	171
Table 6.5	Average quantities of some elements used in different	
	types of photovoltaic panels (data in t/GW)	171
Table 6.6	Average quantities of some elements used in solar	
	thermal power (kg/MW)	172
Table 6.7	Average quantities of some elements used in heat pumps	
	for geothermal energy (kg/MW)	172
Table 6.8	Average quantities of some of the elements present	
	in internal combustion vehicles (ICEVs), vehicles	
	with electric batteries (BEVs) and plug-in hybrid electric	
	vehicles (PHEVs)	173
Table 6.9	Quantities of some of the elements present in gas	
	and nuclear power plants	174
Table 6.10	List of defined risks and their corresponding definitions	183
Table 7.1	Composition of an iPhone 6 (16 GB) and market price	
	of each item	191
Table 7.2	Comparison between different types of light bulbs	193
Table 7.3	Number of vehicle parts that belong to each	
	of the categories	198
Table 7.4	List of 31 components identified as critical in the vehicle	199
Table 7.5	Downcycling of vehicle subsystems by mass	
	and thermodynamic rarity	203
Table 8.1	Summary of some of the elements used in different	
	technologies and possible substitutes	212
Table 8.2	Current recycling rates, annual growth and recycling	
	rates in 2050 to prevent annual demand from exceeding	
	annual production	219
Table 8.3	Data summary of the main selected car parts	222
Table 8.4	Summary of the recovery percentage of the non-ferrous	
	fraction	224

xxiv

Chapter 1 What Is This Book About?

Abstract Humankind has relied on the extraction of different raw materials for centuries, starting with iron, copper or gold to a large number of metals and fossil fuels currently used in multiple sectors, thanks to technological development. Still, this change has also led to other issues, such as increasing CO_2 at a global level and climate change. One way to mitigate these problems is to rely on renewable energy sources that use the Sun or wind to generate electricity instead of burning fossil fuels. However, these technologies need certain elements that are scarce on the planet or very complicated to extract. To assess our planet's mineral loss, in this book, we will use thermodynamics, specifically its second law, that will allow us to explain this degradation process physically. Using Thanatia as a baseline, a hypothetical land where all concentrated materials have been extracted and dispersed, and all the fossil fuels have been consumed, we can assess the cost of replacing minerals through a grave-to-cradle approach and combine it with the more traditional cradle-to-grave approach.

Everything around us is made up of minerals. Dozens of chemical elements are used in smartphones, household appliances, vehicles, concrete, paints, detergents, etc., that come from the extraction and processing of these minerals. We start from the advantage that the natural processes that have been taking place over millions of years on our planet have been concentrating these elements in the form of mineral deposits. Mining becomes then our primary source, from where we extract the minerals that we then use. Since these mines are not infinite, it is legitimate to ask what limitations may exist in the short, medium and long term.

The increase in population, globalisation and the change in consumption trends are causing the use of resources to increase dramatically every year. In fact, the primary extraction of quarry products, metallic minerals, fossil fuels and biomass increase year on year. On a limited planet, are we going to be able to maintain this pace forever? What consequences will this have on future generations and on the planet?

Historically, the extraction and use of raw materials have been closely linked to human development. We have gone from consuming about 3 kg of natural resources per inhabitant per day in prehistory to 44 kg in our current industrialised society

[©] The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 A. Valero et al., *The Material Limits of Energy Transition: Thanatia*, https://doi.org/10.1007/978-3-030-78533-8_1

(Friends of the Earth, 2009). Our prehistoric ancestors obtained mineral resources through surface collection, selecting those materials most suitable to serve as cutting tools, such as quartzite or flint. Other readily available materials have historically been used as cosmetics and for decorative purposes. The Egyptians used mixtures of oils with dust from the crushing of lead minerals, such as galena, and copper, such as malachite, among others, to make *kohl*, a thick black substance that they later applied to outline their eyes (Hallmann, 2009).

With the emergence of more complex societies, mining became much more relevant, using materials for own consumption and exchange. Different metals gradually gained more weight, including copper, bronze (an alloy of copper and tin), and gold, highly desired both for ornamentation and jewellery and for its economic value.

A well-known example globally is the ancient gold mine of *Las Médulas*, located in the province of León (Spain), considered the largest open-pit metal mine in the Roman Empire (Fig. 1.1). The exploitation was carried out by the force of water, with the method known as *ruina montium*. Water was channelled and accumulated at the top of the mountain and, as this water was released through steep galleries, and by the force of gravity, the mountain would erode, dragging the gold to the washing sites located at the bottom (Pérez García et al., 1998). It is estimated that the Romans were able to extract between five and seven tons of gold from this location, which has left as an inheritance the characteristic landscape that this area presents. Such is the value of this natural space that UNESCO included it as a World Heritage Site in 1997.

Fig. 1.1 Ancient gold open-cast exploitation of the Roman Empire of *Las Médulas* (Castilla y León, Spain). *Author* Rafael Ibáñez Fernández. GNU FDL. Wikimedia Commons

Historically, gold that appears in its native state has also been mined manually using pans. This technique, widespread in past centuries, consisted of using a pan filled with sand and immersed in water; through a series of circular movements, and due to the difference in density of the materials, the gold deposited at the bottom while the gravel was washed off (Fig. 1.2). This same technique was also used during the gold rush in the United States in the middle of the nineteenth century, along with the sluice boxes, where the material was washed. During this time, dry gold washing also became popular, driven by the lack of water in many regions. In this case, the mineral was deposited inside a conical wooden pan. Throwing the material into the air, lighter materials dispersed leaving the heavier ones at the container's bottom. However, as can be assumed, this was not a very effective method since only large gold nuggets could be recovered (Taylor Hansen, 2007). The use of pans and decantation in artisanal gold mining continues to this day.

The technological development that has taken place over the centuries has progressively increased the number of metals and other elements that are used, from just a few in the seventeenth century to practically all of those contained in the periodic

Fig. 1.2 Engraving from the work of Georgius Agricola, *De re Metallica*, published in 1577, representing gold extraction techniques in Germany in the sixteenth century. The sluice boxes ensured that gold, a denser material, accumulated in the channels. There is also a person panning, a traditional method still used in some places

table today. This is even more evident in the case of elements used in the energy sector (Zepf et al., 2014). Initially, the materials necessary to manufacture mills that harnessed the energy of the wind were few: chiefly iron, wood and stone; the same occurred with candles or oil lamps used for lighting. With the industrial revolution and the steam engine's invention, other elements were introduced in the energy sector: copper, tin, lead, manganese, etc., but they were still few in number. The appearance of motor vehicles changed the situation drastically again, increasing not only the consumption of fossil fuels but also that of other metals that until now had not been very useful.

Today, we use many elements in different applications that increase our convenience and comfort. For instance, in a smartphone, we can find several dozen elements of the periodic table, which include tin and indium oxide in the touchscreen and rare earth elements that produce the colours we see and, of course, lithium in batteries (Merchant, 2017).

Electricity generation is no exception either, since it requires large amounts of elements, some of them very valuable and scarce, to produce wind turbines, photovoltaic panels, etc. For example, to produce one gigawatt (GW) of electrical power equivalent to that which a natural gas-fired power plant could supply would require a total of 200 5-megawatt (MW) wind turbines or 1,000 1-megawatt (MW) wind turbines. This would imply the use of approximately 160,000 tons of steel, 2,000 of copper, 780 of aluminium, 110 of nickel, 85 of neodymium and 7 of dysprosium for its construction. These are not negligible amounts if it is estimated that in the future the energy produced by wind turbines in 2050 could be around 2,200 GW (International Energy Agency, 2019).

Worse still, as can be seen in Fig. 1.3, wind turbines are one of the renewable technologies that require the least variety of elements for their production, but others such as the electric car employ over 40 different elements, and that's before considering the rest of the necessary materials such as plastics, glass, polymers, etc. (Valero, 2018).

Considering the intense use of materials from clean technologies, will the deployment of renewable energy required to achieve the Paris Agreement goal (preventing Earth's temperature rise of over 2 °C before the end of the century) be possible? We want to move from a society based on non-renewable energy sources to one based on renewable sources. However, what has been rarely considered is that these technologies require a greater diversity of materials than conventional energy sources and that, in addition, they are highly voracious in many different elements.

As we currently know, society is completely dependent on many elements, almost all of which come from the primary extraction of certain minerals. In our society, no product exists that does not contain minerals or whose production does not directly involve minerals. Consequently, the global extraction of natural resources has increased exponentially, as can be seen in Fig. 1.4, and the same situation can be observed for other materials.

The amount of biomass that has been extracted, comparing 1900 and 2017 data, has increased fivefold, in the case of fossil fuels 15-fold, and by a factor of 43 and 65 in the case of metallic and construction minerals, respectively (International Resource

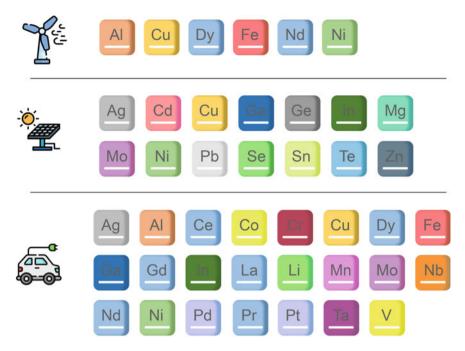


Fig. 1.3 Some of the elements that are used to manufacture clean technologies (Valero et al., 2018)

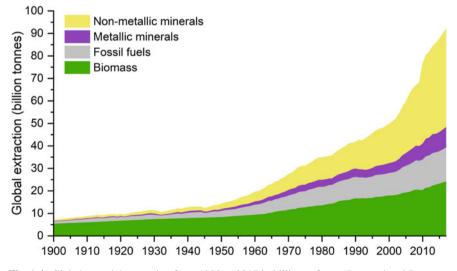


Fig. 1.4 Global material extraction from 1900 to 2017 in billions of tons (International Resource Panel, 2019)

Panel, 2019). In fact, so far in the twenty-first century (in the last 20 years) we have extracted almost the same amount of copper that was extracted in the entire twentieth century, and this same situation can be extrapolated to many other elements (USGS, 2018).

However, this extraction of raw materials is not equally distributed across the globe. In the case of mineral resources, it is geology that conditions the places where the elements have been concentrating over time. In Australia, for example, there are economically profitable deposits of practically all the elements, while in Spain, despite having a considerable amount of mineral deposits of different elements, only a few basic metals such as copper, lead or zinc can be economically extracted.

If we take as an example some of the elements that are most crucial to our economy, such as lithium, which is essential for electric car batteries, approximately 55% of the total global extraction originated in Australia in 2019. Another representative example of that same year are rare earth elements, used in many technological applications; in this case, China dominated the market with a global extraction quota of over 60% (USGS, 2020).

Furthermore, this unequal extraction of resources is associated with consumption that is also unevenly distributed. For example, in Europe, three times more resources are consumed than in Asia, and four times more than in Africa, and someone born in the United States consumes even more than an average European. For example, a child born in the USA in 2019 will, throughout their life (78.6 years), require a total of 9,129 kg of iron, 937 kg of primary aluminium, 444 kg of copper, 432 kg of lead, 211 kg of zinc, 13,693 kg of salt and 6,503 kg of phosphate rock, among many other elements, in addition to some 1,800 barrels of oil, 150 tons of coal and 7.7 million cubic meters of natural gas (Minerals Education Coalition, 2019). This implies that if all the inhabitants of the planet tried to live today as an average US citizen, we would need to multiply the current copper extraction by two to cover the demand of a single year and something similar would happen with the rest of the raw materials.

The exponential extraction of materials also entails an increase in the required energy dedicated to mining, which in turn can significantly impact the environment. According to studies by the International Energy Agency, the mining industry consumes between 8 and 10% of global energy. As an example of how intensive mining is in terms of energy use, each year, the Australian mining industry consumes as much electricity as Portugal, and if the cost of transport is also factored in, it is equal to the energy consumed in Spain. It is clear that there can be no materials without energy, but neither can there be energy without materials.

So, what does the future hold? Knowing the consumption of mineral resources in the past or the present is relatively simple: we resort to the mining statistics of the different countries to obtain approximate figures. However, of equal or greater importance is trying to predict what future behaviour will be to anticipate eventual shortage problems. To this end, different models have been created based on statistical calculations and trend analysis, among others. Some striking insights can be gleaned from these studies. In the case of silver, gold, copper or nickel, their demand is estimated to increase fivefold by 2050. Taken alone, this figure doesn't provide much value but compared to the known amount of these elements in mines today, it exceeds