
A Comprehensive Guide
to Success in the Software
Industry
 ―
Daniel Heller

Building
a Career in
Software

BUILDING A CAREER IN
SOFTWARE

A COMPREHENSIVE GUIDE TO SUCCESS
IN THE SOFTWARE INDUSTRY

Daniel Heller

Building a Career in Software: A Comprehensive Guide to Success in the

Software Industry

ISBN-13 (pbk): 978-1-4842-6146-0 ISBN-13 (electronic): 978-1-4842-6147-7
https://doi.org/10.1007/978-1-4842-6147-7

Copyright © 2020 by Daniel Heller

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Shiva Ramachandran
Development Editor: Matthew Moodie
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, New York, NY 100043. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.
com/9781484261460. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Daniel Heller
Denver, CO, USA

https://doi.org/10.1007/978-1-4842-6147-7

For my parents.

Contents

Part I: Career� 1
Chapter 1: The Big Picture � 3

Chapter 2: Landing Jobs � 9

Chapter 3: Learning and Growing � 29

Chapter 4: Changes� 39

Part II: Day to Day at the Office � � � � � � � � � � � � � � � � � � � 51
Chapter 5: Professional Skills � 53

Chapter 6: Working with Humans � 89

Chapter 7: Shining in an Engineering Organization � � � � � � � � � � � � � � � � 111

Chapter 8: Leading Others � 123

Chapter 9: Adversity� 137

Chapter 10: Professional Conduct� 145

Part III: Communication � 151
Chapter 11: A Holistic Look at Engineering Communication � � � � � � � � 153

Chapter 12: Technical Writing � 161

Chapter 13: Effective Email� 169

Chapter 14: Describing Problems and Asking Questions � � � � � � � � � � � � 185

Chapter 15: Public Speaking � 191

About the Author � vii

Acknowledgments �ix

Introduction �xi

vi

Part IV: Technical Skills � 193
Chapter 16: Professional-Grade Code � 195

Chapter 17: Debugging� 207

Chapter 18: Building for Reliability � 215

Chapter 19: Mastering the Command Line � 223

Chapter 20: Operating Real Software � 229

Index �241

Contents

About the Author
Daniel Heller is a Staff Software Engineer in Infrastructure at a San Francisco
based software company. In earlier lives, he has led reliability efforts on Uber
Eats, built monitoring systems at AppDynamics, helped port iOS to the
ARM64 architecture at Apple, directed the responses to dozens of high-
stakes production outages, and managed teams of up to 25 engineers.

Along the way, the author discovered a love of mentorship and had the good
fortune to mentor tens of talented engineers. Those engineers inspired him
with their hundreds of questions about career paths, technical trade-offs, and
day-to-day effectiveness; when a short blog post on those themes brought a
riot of responses about maturing professionals’ need for guidance, the author
set out to fill the gap with this book.

Acknowledgments
I’m in the debt of Simon Newton, Angie Zhu, and Dave Pacheco for their
encouragement to see this project through, their invaluable feedback on my
first draft, and everything I’ve learned from witnessing their excellence.

Thanks as well to my intrepid early readers, Syrie Bianco, Andrew Mains,
Carissa Blossom, Adam Cath, Marek Brysa, Dan Simmons, and Courtney
Ryan; their feedback made a difference.

Thanks to Prashant Varanasi and Akshay Shah for an impactful nudge to get
started at the beginning of the project.

By no means least, thanks to Matt Moodie and Shiva Ramachandran at Apress
for their wonderful insight in shaping this mass of text into a book.

Introduction
In the last three years, I’ve realized that software engineers are starved for
guidance about the professional world. I’ve spent those years working in a
large team filled with bright, motivated programmers in the early years of
their careers, and gradually, mentorship has come to be a huge part of my job.
Most strikingly, engineers have taken me aside again and again and again to ask
questions I recognize from the early, stressed-out days of my own career:

•	 Should I change jobs? Which job should I take?

•	 How do I grow as a technologist?

•	 What should I do when I don’t agree with the technical
decisions on my team?

•	 How can I make this meeting more effective?

•	 How should I prepare for my interview?

•	 How do I get promoted?

•	 How can I make this email better?

•	 How do I find a mentor?

•	 How do I mentor my junior colleague?

•	 What should I do when I’m on call and I don’t know how
to handle a problem?

•	 What areas should I focus on to be a better engineer?

•	 How do I deal with recruiters?

•	 …etc., etc., etc., etc., etc.

My colleagues’ tremendous appetite for guidance has shown me that there’s a
critical gap in today’s Computer Science education: young software engineers
enter the industry with excellent technical preparation, but no one has taught
them a darned thing about how to be a professional engineer—they have to
teach themselves, and inevitably the hard way.

This book aims to fill that void with a professional manual for the aspiring
software engineer, a guide to managers, role changes, professional technical
practices, technical communication, meetings, on-call, project management,
advancement, ongoing study, mentorship, compensation, and more.

xii

For my part, I’m a software engineer at a major software company. I’ve been
writing code and managing engineers for 12 years—I’ve worked at Apple,
Uber, AppDynamics, and Microsoft (as an intern), managed teams of over 20
people, interviewed literally hundreds of engineers and managers, and been
interviewed scores of times. I’ve written production JavaScript, Java, C++, Go,
C, and assembly, shipped code in the web browser and the kernel, and led the
responses to perhaps a hundred production outages. And I continue to do
those things today; I’m not a consultant or an “architect” but a regular working
coder, fixing bugs and debugging outages, trying to solve the toughest problems
I can find with my code and my insight, because I enjoy it and think I do it
reasonably well.

Most importantly for you, I’m not an especially gifted programmer; respectable
definitely, above average on my good days, but I’m nothing like a 10x coder.
So, I’ve made a fun and reasonably remunerative career on everything but
coding brilliance—discipline, study, communication, project management,
collaboration, prioritization, etc., etc., etc. This book will help you build your
career the same way.

Part 1 is about careers: hiring, compensation, and promotion work in tech
companies, how to best navigate those processes, and how to chart a course
for growth and advancement.

Part 2 is about the sundry nontechnical skills that help you get traction in
your daily work: project management, running meetings, working with your
boss and peers, recovering from mistakes, team citizenship, and many other
subjects I’ve found to challenge engineers in the workplace.

Part 3 goes deep on the single most important nontechnical skill for program-
mers: the sadly neglected art of engineering communication. It starts with a
holistic model of communicating at work, then moves on to practical treat-
ments of topics like technical writing, email, and asking effective questions.

Finally, Part 4 is technical; it covers a carefully curated selection of technical
subjects that I’ve found particularly difficult for new software engineers—the
kinds of issues that come up every day in software offices and never in soft-
ware classrooms.

This book strives to offer you the best possible returns on your time; it treats
a wide range of subjects with short, stand-alone sections friendly to random
access as well as cover-to-cover reading. I hope it will arm you with the tools
to steer your career with confidence, save you some or all of the mistakes
that taught me my lessons, and ultimately help you succeed as a professional
in software.

Introduction

PA RT

I

Career

© Daniel Heller 2020
D. Heller, Building a Career in Software, https://doi.org/10.1007/978-1-4842-6147-7_1

C H A P T E R

1

The Big Picture
 If You Only Take Away One Thing
Here’s the most important lesson in this whole book: you need to own your
own career, because no one else will guide you. Good mentorship can be
wonderful for the .01% of engineers who find it, but in all likelihood, you are
going to teach yourself 99% of everything you’ll learn as a professional; great
projects may fall into your lap once in a blue moon, but more often, you’ll
have to find your way to them yourself. Therefore, the most important tools
in your toolbox are going to be personal responsibility and initiative; those
qualities are what make you a trustworthy (and valued) professional, but also
how you grow and advance. We’ll discuss this principle in many contexts
throughout the book.

 What Is the Job?
Software engineers design, build, debug, and maintain software systems, which
is to say they write text that tells computers to do useful things. At the time
of this writing, these skills are some of the most sought-after in the global
economy.

This work can take many forms. Some engineers are generalists, with the
skills to make changes in almost any system, while some are specialists with
profound expertise in one area; some maintain and improve existing systems,
while some write new ones from scratch; some move from project to project,
getting things working and moving on, while others own and develop one
system for years. Some of us work at companies whose main product is

https://doi.org/10.1007/978-1-4842-6147-7_1#DOI

4

software, while others work on ancillary systems to help produce a non-
software product or service. Day to day, though, the foremost qualities of our
work are more or less the same:

•	 We write a lot of code.

•	 Almost as much, and sometimes more, we debug code
(analyze why things are going wrong).

•	 We work normal-ish hours (9–5 or 10–6), with extra
hours tacked on at more intense companies and an hour
lopped off here or there at slower shops.

•	 Collaboration is a big part of our jobs: we coordinate
with other engineers, product managers, customers,
operations teams, and etc., etc., etc.

•	 We write frequently for humans: design proposals, status
updates, defect postmortems.

 What It Means to Grow
Engineering is the enterprise of building and applying technology to solve
problems, and I find joy and comfort in the observation that whatever the
pros or cons of any one project, the world needs people who build things. My
definition of growth derives from this observation: if we exist to solve
problems, then growth is being able to solve more, tougher, and bigger
problems. We do so with a vector of skills built over time:

•	 Coding: Clarity, testing, documentation, discipline in
scope of diffs.

•	 Project management: Identifying dependencies,
updating stakeholders, tracking tasks.

•	 Communication: Clear emails, engaging presentations,
evangelizing our ideas.

•	 Personal organization and time management:
Not dropping balls, prioritizing effectively.

•	 Architecture: The macroscopic design of systems.

•	 Leadership/mentorship at a level appropriate to their
position.

•	 Emotional skills: Empathy, confidence, stress manage-
ment, work–life balance.

Chapter 1 | The Big Picture

5

Developing on each of those dimensions is certainly growth. And when we
apply those skills successfully, we enjoy four pleasing and necessary benefits:

•	 Money

•	 Respect

•	 Title (bureaucratic blessings)

•	 Fulfillment, pride, and a sense of purpose

Acquiring each of the above is satisfying and practically beneficial. All of the
preceding skills can be dissected in great detail, and much of this book does
exactly that. I ask you to remember, though, that everything derives from our
essential raison d’être as problem-solvers: the world needs problems solved,
so companies need engineers who can solve them, so our impact is the
foundation of our career progress.

 Ten Principles
I once gave up a team to a new manager. Reflecting on our time together, and
thinking about what I’d taught well and poorly as a manager, I wrote a short
essay about the most critical practices that I think lift a newly minted software
engineer from amateur to seasoned professional: the path from fixing bugs as
an “Engineer 1” to leading major projects as a “Senior Engineer.”

I was shocked by how strongly people responded to that little list of practices—
it seems to be a hard-to-find lesson. It still captures what I see as the most
important principles for personal growth and building a successful career, and
I’ll reproduce it here to set out the principles that thread through the more
specific advice later in the book. These are the most important lessons that I
wish I had learned years earlier than I did; I sure wish someone had sent it to
me when I was 22.

 1. Reason about business value: Reason like a
CEO. Understand the value of your work to your
company, and take responsibility for reasoning about
quality, feature richness, and speed. Your job isn’t just to
write code; your job is to make good decisions and help
your company succeed, and that requires understanding
what really matters.

 2. Unblock yourself: Learn to never, ever accept being
blocked; find a way by persuasion, escalation, or technical
creativity. Again, your job isn’t just to write the code and
wait for everything else to fall into place; your job is to
figure out how to create value with your efforts.

Building a Career in Software

6

 3. Take initiative: The most common misconception in
software is that there are grown-ups out there who are
on top of things. Own your team’s and company’s mission.
Don’t wait to be told; think about what needs doing and
do it or advocate for it. Managers depend on the creativity
and intelligence of their engineers, not figuring it all out
themselves.

 4. Improve your writing: Crisp technical writing eases
collaboration and greatly improves your ability to persuade,
inform, and teach. Remember who your audience is and
what they know, write clearly and concisely, and almost
always include a tl;dr above the fold.

 5. Own your project management: Understand the
dependency graph for your project, ensure key pieces
have owners, write good summaries of plans and status,
and proactively inform stakeholders of plans and progress.
Practice running meetings! All this enables you to take on
much bigger projects and is great preparation for
leadership.

 6. Own your education: Pursue mastery of your craft.
Your career should be a journey of constant growth, but
no one else will ensure that you grow. Find a way to make
learning part of your daily life (even 5 minutes/day); get
on mailing lists, find papers and books that are worth
reading, and read the manual cover to cover for
technologies you work with. Consistency is key; build
habits that will keep you growing throughout your career.

 7. Master your tools: Mastery of editor, debugger,
compiler, IDE, database, network tools, and Unix
commands is incredibly empowering and likely the best
way to increase your development speed. When you
encounter a new technology or command, go deeper
than you think you have to; you’ll learn tricks that will
serve you well again and again.

 8. Communicate proactively: Regular, well-organized
communication builds confidence and goodwill in
collaborators; knowledge-sharing creates an atmosphere
of learning and camaraderie. Share knowledge, and set a
regular cadence of informing stakeholders on project
goals, progress, and obstacles. Give talks and speak up
judiciously in meetings.

Chapter 1 | The Big Picture

7

 9. Find opportunities to collaborate: Good
collaboration both increases your leverage and improves
your visibility in your organization. Advancing your craft
as an engineer requires you to have an impact beyond the
code you write, and advancing your career requires, to a
certain degree, building a personal brand at your company.
Cross-functional projects and professional, respectful
collaboration are critical to both.

 10. Be professional and reliable: Think of yourself as a
professional, and act like one. Come to meetings on time
and prepared, then pay attention. Deliver what you say
you will, and communicate proactively when things go
wrong (they will). Keep your cool, and express objections
respectfully. Show your colleagues respect and
appreciation. Minimize your complaining; bring the people
around you up, not down. Everyone appreciates a true
professional; more importantly, it’s the right way to
behave.

 Your Relationship with Your Employer
Your company is your counterpart in a business transaction where you
exchange your valuable skills for their valuable money—your employer is not
your mother, your father, or your friend.

Like any firm doing business with another, your expectation should be that
your company will make every decision out of rational self-interest. This
profound truth has many important corollaries, foremost among them that

•	 Your company will never do anything for you out of
sentiment.

•	 Your company doesn’t owe you education, career
development, a raise, or a long-term guarantee of
employment.

•	 Everything your company does is business, not personal,
and you shouldn’t take it personally.

•	 You don’t owe your company your personal loyalty—
they certainly don’t see themselves as owing you any.

•	 When you want something from your employer, you
should approach it calmly, as a negotiation between two
businesses.

Building a Career in Software

8

None of these means you mistreat each other: like any two firms doing
business, you aim to build a trust that allows for a long-running and mutually
fruitful business relationship, and for both of you, building a good name as a
trustworthy partner keeps other doors open.

We should approach our relationships with our employers calmly, without a
sense of entitlement, aiming to follow our own ethics, firmly represent our
interests, and secure the most favorable, mutually beneficial relationship we
can. And if we can’t get what we want, we shouldn’t degrade ourselves by
whining—we should sell our skills elsewhere on more favorable terms or
accept our situations as the best available.

Chapter 1 | The Big Picture

© Daniel Heller 2020
D. Heller, Building a Career in Software, https://doi.org/10.1007/978-1-4842-6147-7_2

C H A P T E R

2

Landing Jobs
This chapter introduces hiring processes, interviews, and job offers—it aims
to demystify the intimidating but mostly predictable journey from the
wilderness to a job building software.

Many large tech companies’ hiring systems are approximately the same. End
to end, the process can take anywhere from < 1 week (for small startups
where every stakeholder can get in a room on 5 minutes’ notice) to multiple
months (Google is famous in Silicon Valley for processes of 4–8 weeks with
many stages of committee review). This section will outline the process, with
subsequent sections treating each area in detail.

Before we begin, I’ll note that smaller firms, especially early startups, often
work very differently—they’re much more likely to have informal, personality-
driven processes, perhaps as simple as a conversation or meal with the team.
Coding interviews are also anecdotally less prevalent outside of the United
States.

 The Recruitment Process
 Resume Review and Recruiter Phone Screen
A recruiter screens your resume or LinkedIn profile. If they like what they see,
they speak to you on the phone for 20–60 minutes, asking you questions
about your interests, experience, and job/salary expectations. The recruiter
then makes a decision about whether to pass a candidate on. They do not
have technical expertise (though a hiring manager will have given them some

https://doi.org/10.1007/978-1-4842-6147-7_2#DOI

10

keywords and context), so their decision is based on imperfect information,
even relative to everyone else. Nevertheless, they have considerable discretion
in whom to move forward with and whom to drop.

 Technical Phone Screen(s)
You do one to two technical phone screens, each 45–60 minutes, with
engineering managers and/or engineers. They ask you questions about your
experience and likely have you write code in a shared editor like CodePair (or
even a Google Doc).

 On-site Interviews
You go to a company’s office and do four to seven interviews of 45–60 minutes,
each with one to three engineers or managers. You write code (either on a
whiteboard or on a computer), design systems, and answer questions about
your experience and interests. In between, you have lunch with a team.

 Take-Home Coding Exercise
Not all companies use this stage. You’re given a coding problem to work on
for a few days on your own, then send the code to be reviewed by engineers.

 Decision
Either a hiring manager or a committee makes the decision about whether to
extend an offer. The committee may either be composed of interviewers and
a hiring manager or drawn from a central committee (famously the custom at
Google); generally, more senior/experienced committee members carry more
weight.

The hiring meeting often begins with a simultaneous “thumbs up” or “thumbs
down” from each committee member,1 followed by a discussion to try to
reach a consensus on whether to make a hire. The criteria are never objective
in the sense of being measurable by a machine—instead, each committee
member uses their intuition, sometimes against a written rubric of subjective
criteria.

1 Believed to reduce the risk that people will change their votes silently due to one strong
voice; I don’t think it does much.

Chapter 2 | Landing Jobs

11

 Offer and Negotiation
A company’s HR department and hiring manager (or in some cases, an
independent committee) craft an offer. The main parameters of the offer are

•	 Level/title

•	 Base compensation

•	 Equity compensation

•	 Signing bonus and relocation

•	 Start date

All of these parameters are determined by your experience and interview
performance (i.e., the company’s perception of how valuable your work will
be) and your competing offers, which they may try to match or beat.

 Referrals
Companies usually have internal systems for employees to refer others for
jobs; you may well be asked to refer others to your company or want to be
referred elsewhere.

A referral with a strong personal endorsement is a big deal—it bumps a
candidate to the head of the line at the screening stage, and if the referrer is
well-regarded, it can make the difference at decision time. A corollary is that
you should save your own strong referrals for people you trust—strong
endorsements for bad hires reflect badly on you.

More casual referrals can nudge a resume into view in “Resume Review,” but
that’s about it. I personally don’t love making them myself (there isn’t a lot of
upside), but they aren’t harmful if you’re clear about your confidence level: “I
know George from SprocketSoft; I didn’t work with him extensively, but he’s
very interested in WidgetSoft.”

 Resumes
Resume formatting is not, in my experience, “make or break” of anything in
tech—they can hurt a little, they can help a little, but the content speaks
much more than the format. Still, there’s no reason not to get them right.
Below are the most important points; follow them, edit, tinker, and when
you’re done, get a peer review, ideally from a senior engineer or manager with
interviewing experience. Let your friends, not a hiring manager, catch your
mistakes.

Building a Career in Software

12

 Section Order
Sections should be ordered as experience, then skills, then education, because
those are the priorities of hiring managers. That observation alone tells you
something about the importance of internships for a student: they (usually)
weigh more than coursework with hiring managers! If you’re early in your
career, you may elaborate more on your education (e.g., specific classes and
projects); as you mature in the industry, you’ll emphasize projects more and
schooling less. Lots of people include hobbies; I think they’re a nice-to-have
and can safely be skipped.

 Formatting
Resumes should be a single page. You can do it. If you are early in your career,
you absolutely do not need more than one; the second page just says “I take
myself too seriously” (hiring managers really will see it that way). Also, table
gridlines give an appearance of amateurism (I can’t exactly say why, but they
do).

 Tell a Story
Emphasize what you delivered, where you led, and the results your projects
yielded: managers like signs of autonomy and leadership. Never say
“Implemented features and bugfixes,” which is well-known to be the most
generic line ever added to an engineering resume; help the reader visualize
you solving a big problem or taking a project from conception to delivery, not
sitting passively at your desk waiting for someone to give you a bite-sized
task.

 Example
Below is an example of a junior engineer’s resume; it’s not a work of art, but
if you’re in doubt, you can copy this format.

Chapter 2 | Landing Jobs

13

 Passing Engineering Interviews
This section is a brief overview of how to pass software engineering interviews.
It will discuss what interviewers look for, what they’ll ask, how to prepare,
and how to behave during the interview. A later chapter will cover this subject

Building a Career in Software

14

from the interviewer’s perspective. Whole books have been written on this
subject, and as you look for your first job, you should read one (look at the
Appendix to this section).

 What They’re Looking For
Software engineering interviews usually look for two things: ability and
“culture fit.” As we’ll discuss in “Interviewing Software Engineers,” neither is
well understood, and neither is sought in a coherent way. However, you don’t
need to solve that problem for the industry: you need to pass interviews,
which you can easily do with preparation.

Hiring managers look for several dimensions of ability. They are, in roughly
decreasing order of priority

•	 Coding/debugging measured by coding on the fly in
interviews and sometimes by a take-home coding
problem

•	 Design/architecture measured by a design exercise in an
interview

•	 Communication measured by how clearly you express
your ideas in interviews

•	 Domain knowledge measured by factual questions and
design exercises

“Culture fit,” often and correctly maligned as a tool of conscious or
subconscious discrimination, usually means three things:

•	 Enthusiasm for the role

•	 Positive attitude and friendliness

•	 Whatever interviewers happen to like

All three are measured by questions about your interests and goals and by the
interviewers’ general sense of your attitude.

The relative weights of domain knowledge, culture fit, and “raw ability” (i.e.,
coding and debugging) vary considerably by company and interviewer, but by
and large, pure interview coding skill, that is, the ability to solve coding
problems on the fly while talking about what you’re doing in a pleasing way, is
priority #1 for junior hires, and as of this writing, many companies are willing
to give “smart people” a try at a specialization they haven’t practiced before.

Chapter 2 | Landing Jobs

15

 Acing Coding Interviews
For passing interviews, coding is king. That is to say, interview coding.
Programming interviews are a kind of sanitized, stylized coding, a performance
art where you have 30–60 minutes to solve a problem chosen by the
interviewer while talking through your work; there’s almost always some kind
of tricky algorithmic problem at the core of the question.

You should on no account confuse interview coding with the day-to-day work
of a software engineer, which is far messier, mostly driven by the behavior of
existing code, mostly about integrations and debugging, and almost never
about cracking a tricky algorithmic problem, which I personally do just a
couple of times per year.

On my bad days, I’m outraged by the lack of realism of coding problems and
the way they favor people who are blessed with the ability to be calm under
pressure and a gift for oratory, neither being skills that come up on a daily
basis when doing the real job. However, interviewers need to ask something,
and while these interviews may not be that realistic, they are reasonably easy
to prepare for; you should think of a coding interview as a performance art
that you can easily excel at with practice.

 Preparation
Here’s how you prepare for technical interviews, in decreasing priority order;
because coding interviews are fairly predictable, most engineers I know, no
matter how experienced, prepare roughly the same way:

•	 Solve a bunch of coding problems, with real code, to get
your brain in the groove of time-pressured problem-
solving. Sites like leetcode.com have large banks of
practice questions; question quality varies, but if you do
50 problems end to end, you’ll be more than ready.

•	 Study your CS fundamentals, especially linked lists, hash
tables, trees, sorting, and the (Big-O) analysis of the
memory and runtime of all of the above. Brush up on
dynamic programming if you’re feeling energetic.

•	 Brush up on the specific domain of the job you’re applying
for, and prepare to discuss the standard technologies
architectures in that space.

•	 Practice talking through what you’re doing to get used to
the performance aspect of interviewing; have a friend
grill you in a mock interview if you can.

Building a Career in Software

