Introducing
Distributed
Application
Runtime (Dapr)

Simplifying Microservices Applications
Development Through Proven and
Reusable Patterns and Practices

Radoslav Gatev

Foreword by Yaron Schneider,
Principal Software Engineer and Dapr co-founder,
Microsoft

APress

Introducing Distributed
Application Runtime
(Dapr)

Simplifying Microservices
Applications Development Through
Proven and Reusable Patterns
and Practices

Radoslav Gatev
Foreword by Yaron Schneider,
Principal Software Engineer and Dapr co-founder, Microsoft

Apress’

Introducing Distributed Application Runtime (Dapr): Simplifying Microservices
Applications Development Through Proven and Reusable Patterns and Practices

Radoslav Gatev
Gorna Oryahovitsa, Bulgaria

ISBN-13 (pbk): 978-1-4842-6997-8 ISBN-13 (electronic): 978-1-4842-6998-5
https://doi.org/10.1007/978-1-4842-6998-5

Copyright © 2021 by Radoslav Gatev

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484269978. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6998-5

To my girlfriend Desislava who supports me unconditionally.

Table of Contents

ADOUL the AUTNOKceeeeeeeeiieeeeeeesesssssssssss s s s s ssssssssssssnsssnsnnnnnsnnnnnnnnnnnnnnnnnnnnnnnnnns Xiii
About the TeChNICAl REVIEWETceeeeeeesssnsnnns XV
FOr@WOIdcoensnnnnnnnnnnnnnnnnnnnnssssnnsssssssssssnsnssssssssssssssnsssnssnsnsssssnssnnssnnnnssnnnnnnnnnnnnnnnn xvii
AcKkNOWIEdgmMENTScuuiiiissmmnmmsssssnnmmsssssnnsessssssnsessssnnnsesssssnnsessssnnnnsssssnnnnsssssnnnnssssnnns Xix
[0T LT3 (] | Xxi
Part I: Getting Started...........cccciminninemmmmmmmnnsesnmmmssssnssss s ———————— 1
Chapter 1: Introduction t0 MiCroOSErviCescuuummsmmmmmmmmrrsssssssssnsssssssssssssssssssnnnssssssssnss 3
A Brief History of SyStem DeSigncccecrvnernennneserese s ssssssens 3
HardWAare PrOQIESS.......ceoerrerresereresresesse e ssesess s e sss e s e s ssesessessessessssessssssssensssssssssesansnsesnens 4
SOTEWAIE PrOgIESS ...cueivevierirerererersessessessesessesse s sssses e ssesaesss e s e saesaesas e ssessesassessessesaesassessesaeses 5
MONOIITNIC ArCRITECTUIE .vviiveiv i e r s b s b e s s b e e s be e s e e s nn e s sannesannenans 6
Benefits of the MonolithiC ArChITECTUIEcvcveereeercreercrr e s err e e s e s ere s enne s 7
Drawbacks of the Monolithic ArChITECIUIEceeveveerceeiirc e e ree e er e ene s 8
MICIOSEIVICES ArCRITECTUIE ..vevveeveeeicreirsererseersseesssessssesssessaseesasresssesssseesseesaseesaneesssnesssnnesnnesans 9
DeSigNiNg MICIOSEIVICEScovvveeerreserrnesrssessssesesrssesssse e ssssesessesn s e sss s ssssessssssessssesessssnssssensanes 10

5L T 1 11
D011 0 [13
ADSIFACT INFrASITUCTUIE ...vveveeecee e s s e s e e b e e sann e s nnennnen 14
SOME USEIUI PAIBINS .. .eeiieeiiirereee i rssse s csseessse e s e e sssessse s sseesassessssessssessanessnsenansessnsensnessn 16
AdOPEING MICIOSEIVICES ... coveererscerresereeseresesessesesessesessese e sas s sessssessssesessssesssnessenessnssssnsenens 22
SUMIMAIY ...t e e Re e e e e e e e Re e s e e e s e n e e e Re e Ra e nen e e nsnnnns 23

TABLE OF CONTENTS

Chapter 2: Introduction to Dapr.......ccccusseemmmnsssnsnmmmssssssessssssmmssssssseessssssesssssssenns 25
L F= A 3 D o o OO 25
How Was Complex Made Simple? ... s ses s ns 26
Out-0f-the-BoX PatternsS.......ccccceorerrerresre e e 27
Dapr COMPONENTEScviereriirirrire e e e s s 28
HOW D0ES DAPr WOTK? ...oeeieriesirerese s sese s e s se e s s s se e s sae st s saesas s s saeste e s naenaes 30
HOSHING IMOUESeeruerieieerere st ses s s e serse e s ae s s e s ae e s e s s ae e e e s e ae s ae e e e naesaese e e e aesaesaenaenenaenaes 33
Getting Started with Dapr in Self-HoSted MOGE..........cccccvverrerererrerereressessere e sessesse e ssssesessees 34
DOWNIOAU DAPF ..ot e e bbb 34
INIANIZE DAPE....cviiiirer e s p e e s p e nne s 35
Run Applications With Dapr ... s 37
Exploring the Dapr DashbOardccovecerinnnnnesssse e 47
USING DAPE SDKSueveieerereriesesseressessesessessessesessessessesesssssessesssssssessesasssssessessessessssessessessssessesaes 48
£ 11134 7R 49
Chapter 3: Getting Up to Speed with Kubernetesc.cccccursmmnsmmmnsnsmssssnsssssnssssans 51
Kubernetes: The Big PiCtUIe.........ccocivicninrsr st 52
Control Plane COMPONENTScccuviiiinennninsine s s se s s st se s s s st snens 53
NOAE COMPONENTScereriertirirrire s s b e bbb e e 54
{0 T =TT b T TR 56
Running a DOCKEr CONTAINETcccevveververeriesirrerere s s e s e s e s sse e s e s saessssessesaessssesnessees 57
Building @ DOCKEr IMAQJEcocerceeeerererie e sae s s s sa e s s n 58
Optimizing the Size of @ DOCKEr IMAJEccocvriiicrrrr e 59
Pushing 10 Remote REGISIryccccvreerrienmrnncrrscsr s 60
Get Started with KUDEIMELES........ccviierreercs e 61
KUDEINETES ODJECLS.......ccerererrrce e e 62
POGS....cce e ——————————— 63

B3 T=] 64
DEPIOYMENTS......ciiiecirece e e e e e 65
Packaging Complex APPliICALIONS ..o 67
SUMIMAIY....evierreese s s rs e e s e Re e e e e e e e R e e s R e e ne s e e nRe e s re e nenannnnsnnnns 67

TABLE OF CONTENTS

Chapter 4: Running Dapr in Kubernetes Modeccciunsmmnnmnnssnsnsnssssssnssssssssnsnns 69
Installing Dapr in Kubernetes Mod ... s s snes 69
Exploring the Dapr Control PIANE ... sre s 70
Installing the Dapr Helm CRar...........cooveirecercs s 74
Zer0-Downtime UPGrades........cccuvernenerenesnsesssessss s ssssessssssss s ssssessssssssssssssssssssssssssssessnnes 76
0T B3 =110 o] OO 77
Dapr Applications in KUDEIMETES......c.ccvvvrierere e s s s ss e ssesre e s e saesnes 78
Dapr and SErviCe MEBSNEScovvvriererertrrere s s s e s e sae e e s a e sa e e saese e e e e naenaen 81
Isolation of Components and Configuration ... 82
SUMIMAIY....eveeeieere s e e re e e e e e e s se e e e e e e e e Re e e e e e se e e e e Re e s re e nennn e nrnnnns 82

Chapter 5: Debugging Dapr Applications..........ccciuunsmmmmnssssnsnmmssssssnmmssssssnmsssssssnsnns 85
D 0 0 OO 85
Dapr Extension for Visual Studio COE........c.ccvvvervrierenensrrene s e sese s se e ssesessessesnes 86
DevelopmMENt CONTAINET.........coivirrerererer e s s e se s s s ae e s e s aesaesr e e e saesee e e e naennes 87
Bridge t0 KUDEIMELES ..o 89
1] 1= OSSOSO 92

Part Il: Building BIOCKS OVEIVIEWccuurrressssssssssssnssssssssssssssssnnsssssssssssssssnnnnssssssssnns 93

Chapter 6: Service INVOCAtiONccccvrissmmmmmssssnnnmmsssssnnmmssssnsnssssssnnnssssssnnnsssssnnnnnnsss 95
L SRS 95
Working with HTTP-Based SErViCES.......c.cuurmrermrerrsinnerssersssssssssessse s ssssessssssessssssssssssssssessnses 98
NAME RESOIULION.........occicririrccire e 101

Multicast DNS in Self-Hosted MOGEcccorrienmneninscsne e 101
Kubernetes Name ReSolULioN ..o s 101
Cross-Namespace INVOCALION ... e 106
Working with gRPC-BaSed SEIVICEScceerrererrenerrnsiresesessesesessesessesessesesessesessssesssssssssssssssnens 107
Implementing @ RPC SEIVEN ... 108
Invoking gRPC Service from HTTP.......cccciiirninncsnns s sn s s s ssnnes 111
Implementing @ gRPC ClieNt.........ccvvvirennrrire s s s ssesnessssessesne s 112

vii

TABLE OF CONTENTS

Securing Service-to-Service COMMUNICALION........ccvivverrvierevrserserere s e ssesaesnes 114
Securing Dapr Sidecars and Dapr Applicationsccccvnivnennnnnnnnnn e 117
SUMIMANY ..ttt b e e e e e bR e e e R e R e e e e e Re e Re R e e e e e Re b e e e e e Renrn 118
Chapter 7: Publish and SubsCribeccuccmmmmnsnnmmmmnssssnnmmsssssmmmssssnmssssssmsssssnn 119
What IS PUbliSh/SUDSCHIDE?coveierreerreseresere s se s sessssnsssnens 119
What Are the Benefits of Publish and Subscribe?cccvvvvriinnsnnnesnese s 120
When Not to Use Publish and Subscribe? ... 122
How Does Dapr Simplify Publish and SUDSCIIDE?.........ccvvvrerievrsnreners e sessese e ssesesesaens 122
Defining the COMPONENL..........ccoiiicrr s 124
MeSSage FOrMAL.........ccccoiiirr e e e 125
RECEIVING @ IMESSAGE.....c.ueoerrrererrererreneresesessese s se s e e se e e e s s sse e s e nnssenenns 127
SubSCribiNg 10 @ TOPIC ...vcuervreererreerrese s nr s 129
Controlling TIME-10-LIVE (TTL) ...cvivverrerrerersrserseressesessesessessssessessessssessessesaessssessessesssssssessees 130
CONrOlliNG TOPIC ACCESS...vecurerrerrererserersessesessessessessssessessessssessessesssssssessesaesssssssessesssssssesseses 131
What Messaging Systems Are Supported DY Dapr?........ccevvverrerierenessensesessessssessesessssessessenes 131
A Temperature SeNSor EXAMPIE. ... s s snens 132
Switching Over to Another Messaging SYStemccoveercrreneresernse s 140
Limitations of the Publish and Subscribe Building BIOCK........c...ccoovrrrrenrnnrnsesessenesesesesenens 143
SUMIMAIY....eeiteeeteesere e e e e e e e e e Re e e R e e e R e e R e e b e e e R e R e e ne e e e 144

Chapter 8: State Management.............ccsrmmmmnssennmmmsssssnnmnsssssnsssssssssssssssssssssssssnns 149

Stateful vs. STateleSs SEIVICES ... s 145
State Management i DAPKcccvreirerrrser s e e e 147
Defining the COMPONENT..........co e 148
Controlling BERAVIOKccovviiereerieereresere s s s nsenis 149
SAVING STALEcoveeeerese e e 151
GELHING STALE.... e —————————— 153
DL 1= (T 10T L 155
Using State TranSACLIONSccvevreverreriererer s rre s s s s se e sa e sae e s e saesnesasnesnesaees 156
SUPPOIEU STOIES....cceiiiccrcre e e e ene 157
£ 1117 S 158

viii

TABLE OF CONTENTS

Chapter 9: Resource Bindingsccccurusssmmmmmssssnnnmssnnnnss 159
The Need to Communicate with External SErviCes...........ccovrrrnnnesenerensnssesesesesesssesesesesessens 159
SUPPOMEd BiNAINGS......ccocrerriiirierere s s b s s 160

GENEriC COMPONENTScoecirireriiiri e e e e bbb e e 161
Public Cloud Platform COmpPONENtS........cccvvvnineninninsne s s sessessesaes 164
Overview of the BUilding BIOCK.........cccuvvieriernniniene s sssse s sessesessessssessessessssessesaesaes 166
Binding COMPONENTScovevreirerererersire s ses e se s e e s s saesas e ssesaess s e ssesaessssessesaesassassessesas 166
INPUL BINGINGS .eeeeececerere s s s e e s e s s s e sne e e e s 167
OULPUL BINGINGS ... e s e e s e s s 169
Implementing an Image Processing APPlicationc.occoverrrsrnscnenneses s 171
OVBIVIBW....ueveeeresscessee e s e e s e s e s e s e b e e e s R e R e ne e e e Re e R e e e e e nRn e e e 171
Creating Resources in MiCroSOft AZUIEccovverrrenenenesssessse s s sesss e ssanes 174
Creating the Dapr COMPONENTSccvcererrierierere s s e s se s e s saesaesessesae s 177
Implementing the SEIVICE ... e sa e sae s 179
Running the Dapr Application..........cccvcvnninrn e 181
£ 10T 1117 T 183

Chapter 10: The Actor Model..........ccccrnnsmmmmmmssnnnnmmsssssnnmsssssssnmssssssssssssssnssesssssnnnss 185

Overview of the ACIOr MOMEL..........ccviceriierrrcsr e 185
Advantages and DiSAAVANTAQESccccvvrervererieninserrere s sese e sae e s saesnes 188
WHEN 10 USE I ...t 190

Actor Implementations.........cccviiiisnii s ———————— 191
LT T2 (0] TSR 191

The Actor Model in DAPK ... e e s e s e 192
Dapr PIAaCEMENT SEIVICEcccvcerereirsire ettt s e 193
The Lifetime of ACtOr INSEANCES ... 197
CONGUITEIICY 1uvverveersersersessesessessessssssessessessesessessessessssessesssssssessessessessssessesassssnsssessessensnsessenes 199
INVOKING ACTOIS Via the APcocoeee et sn e s e 200
IMPIEMENTING ACLOTS ...c.veoieircre s e e e s 201

£ 10T 1117 TS 212

ix

TABLE OF CONTENTS

(L) T gl T T] 215
The Challenges of Secrets Managementc.ccorvvrernnsnniesnne s sessenens 215
Application Challenges and Anti-patterns ... 216
The Need for a Central SECret STOre........covcvverrrerereserr e 217
The Secrets BUilding BIOCKccouueerinernsensnessssssessssessssesssssssssssesssssssssssesssssssssssssssssssssssssssnnns 218
SUPPOIEA SECIEL STOIES ...cvcerverreririere e e r s e nne s 218
Reference Secrets from COMPONENTS........cccvcveerernrerseriere s s sse e ses e ssesaesessessesaes 219
Retrieve @ Secret from the AP ... 221
Retrieve All Secrets in the STOre........ccco e 222
UL T LT (1 S (0] - 222
Using a Secret Store in KUDEIMELEScccvvererinernernesere s 227
A Few Remarks on Kubernetes SECretScouvvvenninrnsesnsesnnese s sss e sessessssenens 229
Controlling ACCESS 10 SECIEIScvvueriririrere s nnen 230
£ 1134 7R 231
Chapter 12: Observability: Logs, Metrics, and Tracesccucessrmsssssssssssssssssssssnnnnss 233
The Three Pillars of ODSErvabilitycoocoerererenrrserereser s 233
0 233
MEITICS vt R nr s 236
LU o O 237

FA 01 (=301 0] 1) (o PSR 243
Metrics and LOgS frOM AKSccoievrvriererirsereressssessessesasssssessessessssessessesssssssessesassssssssesaes 243
Metrics and Logs from ANy KB8S........c.ccurirninininnninsene s ses s sssssssessesnes 246
Traces froM ANY K8S.......ccovererrererenesenesesese s sessese s ses e ses e s sss e sessssessssessssesessssssenens 247
(€T 7 4 - OSSO 249
INStalling PromeEthUS.......c.ccceericercerine e 250
Setting UP Grafanaccccvvererennienienessssessese e sessese e ssssessessessssassessessessssessessesasssssensessens 250
Importing the Dapr DashDOArds ... 251
3101117 OO 252

TABLE OF CONTENTS

Part III: Integrationsccccccinninnnnnnsneemmmmmmmmmmmmmmssssssssssssssnnnn . 253
Chapter 13: Plugging MiddIewarecc.ccccummmsssnnnnmmssssnnnmsssssssssssssssnsssssssnssssssssnnnss 255
MiddIEWare iN DAPF........ccoceiriirerere e s r s s p e e s re s r e nne 255
Configuring and Using MiddIEWare............ccovrvnninnsnrrss e 257
Utilizing the OAuth 2.0 MIdAIBWAE.......c.ccvrererrerernsereree e 259
Authorization Code Grant MiddIEWArE...........c.cueeverererrisernsesessesese s s sessesessenens 261
Client Credentials Grant MiddIEWare...........cccvvriinnsnn s 263
Utilizing the OpenID Connect MiddIBWAE...........ccvcererrererrerieresessessesessesessessessesessessessessssessessens 266
Open Policy Agent MidTIBWANEccoererrerereerersereressssersessesssssssessessssessessessesssssssessessssessessesses 269
SUMIMANY ..ttt e s R e e e e e R e e e e e e R e e e e e Re e Re R e e e e e Re R e e e e e Rennis 270
Chapter 14: Using Dapr in ASP.NET Core........ccuussmmmmmmmmmmmssssssssssssnssssssssssssssssnnssnnss 271
L 27
Support for ASPNET CONTrOIIEIS.......uviiriererinnirene s sene s se s s e s sss e s s s e saesnes 272
SubSCribiNg 10 @ TOPIC ...vvvvvererere e 273
Retrieving an ltem from @ State StOre........cccvvvervrrini e 274
Support for ASP.NET Core Endpoint ROULINGccveerererreriereressenseressesessesessessssesessessssessessenses 275
Implementing @ gRPC SEIVICE.......cccvivirrirerrrr s 276
REtriEViNg SECIELS......ccecereecrercrire s 279
B30T 111 T o SRS 281
Chapter 15: Using Dapr with Azure Functions..........ccccnmnnssemmmmnsssssnnmnssssssssssssssnns 283
AZUre FUNCEIONS OVEIVIBWcocviieriicicsisesissssese s ss s ss s s s ssssssssassnens 283
Dapr Triggers and BindiNgS........c.ccuvvreriiiniinninirersie s s s s s s s s sse s saenns 285
Azure Functions DevelOPMENTccorvrie e s s 286
Ports of Dapr and Azure FUNCHIONS ... s e snes 286
Implementing an APPlICALION ..o ———————— 287
BT 111 1T o OSSR 290

xi

xii

TABLE OF CONTENTS

Chapter 16: Using Dapr with the Azure Logic Apps Runtime

............................... 291
AzUre LOgiC APPS DVEIVIBW.....cceiuicricirerese s st s n s st spe s s nne s 291
Integration Between Dapr and LOGIC APPS.....covvrvrerinnnniene s sssse s ssssessessessssessessens 292
Designing @ WOKFIOWccovecirenerescrnesesese s 293
B30T 1117 o OSSR 296

1T - 297

About the Author

Radoslav Gatev is a software architect and consultant

who specializes in designing and building complex and
vast solutions in Microsoft Azure. He helps companies all
over the world, ranging from startups to big enterprises,

to have highly performant and resilient applications that
utilize the cloud in the best and most efficient way possible.
Radoslav has been awarded a Microsoft Most Valuable
Professional (MVP) for Microsoft Azure for his ongoing

contributions to the community in this area. He strives for
excellence and enjoyment when working on the bleeding
edge of technology and is excited to work with Dapr. He frequently speaks and presents
at various conferences and participates in organizing multiple technical conferences in
Bulgaria.

xiii

About the Technical Reviewer

As a freelance Microsoft technologies expert, Kris van der
Mast helps his clients to reach their goals. Actively involved
in the global community, he is a Microsoft MVP since 2007
for ASP.NET and since 2016 for two disciplines: Azure and
Visual Studio and Development Technologies. Kris is also

a Microsoft ASP Insider, Microsoft Azure Advisor, aOS
ambassador, and Belgian Microsoft Extended Experts Team

\‘;}ﬁr’i (MEET) member. In the Belgian community, Kris is active as
a board member of the Belgian Azure User Group (AZUG)
and is Chairman of the Belgian User Group (BUG) Initiative. Since he started with .NET
back in 2002, he’s also been active on the ASP.NET forums where he is also a moderator.
His personal site can be found at www. krisvandermast.com. Kris is a public (inter)
national speaker and is a co-organizer of the CloudBrew conference.

Personal note:

While doing a book review, I also like to learn new things on the go. With this book

I'sure did. I hope you will enjoy reading it at least as much as I did.

https://urldefense.proofpoint.com/v2/url?u=https-3A__mvp.microsoft.com_en-2Dus_PublicProfile_38656-3FfullName-3DKris-2520-2520van-2520der-2520Mast&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=4QYEoKfQWyAgimg8VW3MlYAS8hCXSRCVj-JjgI1owyc&s=hDY0m-4KXUMwr9DFkfaNyeZ9L7HWfVmG1h9Mb8ddjJg&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__ASP.NET&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=4QYEoKfQWyAgimg8VW3MlYAS8hCXSRCVj-JjgI1owyc&s=yj29V34tnh2wjWuWzuR_GndqGSIlUlP5FhTKNGvDTe4&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.azug.be_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=4QYEoKfQWyAgimg8VW3MlYAS8hCXSRCVj-JjgI1owyc&s=ap3XZwtH_Gb3lVHTGE18s-iCSY2z_KyV_3hBw9-Xcrw&e=
https://urldefense.proofpoint.com/v2/url?u=https-3A__forums.asp.net_members_XIII.aspx&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=4QYEoKfQWyAgimg8VW3MlYAS8hCXSRCVj-JjgI1owyc&s=Z15_kvUcU8LVUv8xfjp362TyYqbSHOvPc1rXjbleDds&e=
https://www.krisvandermast.com
https://urldefense.proofpoint.com/v2/url?u=https-3A__www.cloudbrew.be_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=4QYEoKfQWyAgimg8VW3MlYAS8hCXSRCVj-JjgI1owyc&s=g_hI2iyjQE9TrqRmaQQFuBxZROwJHaNqMMRXl6cZuAw&e=

Foreword

In the year leading up to the first release of Dapr as an open source project in October
2019, Haishi Bai (my partner in co-founding Dapr) and I observed just how much the
cloud-native space had matured. It had grown to provide ops and infrastructure teams
with first-class tools to run their workloads either on premises or in the cloud.

With the rise of Kubernetes (K8s), an entire ecosystem of platforms has sprung up
to provide the missing pieces for network security, traffic routing, monitoring, volume
management, and more.

Yet, something was missing.

The mission statement to make infrastructure “boring” was being realized, but for
developers, many if not all of the age-old challenges around distributed computing
continued to exist in cloud-native platforms, especially in microservice workloads where
complexity grows with each service added.

This is where Dapr comes in. First and foremost a developer-facing tool, Dapr focuses
on solving distributed systems challenges for cloud-native developers. But just like any
new technology, it’s critical to be able to understand its uses, features, and capabilities.

This book by Radoslav Gatev is the authoritative, technical, hands-on resource you
need to learn Dapr from the ground up. Up to date with version 1.0 of Dapr, this book
gives you all you need to know about the Dapr building blocks and APIs (Application
Programming Interfaces), when and how to use them, and includes samples in multiple
languages to get you started quickly. In addition to the Dapr APIs, you'll also find
important information about how to debug Dapr-enabled applications, which is critical
to running Dapr in production.

Radoslav has extensive, in-depth knowledge of Dapr and is an active Dapr
contributor, participating in the Dapr community and helping others learn to use it
as well. He makes the project better by working with maintainers to report issues and
contribute content.

You really can’t go wrong with this book, and I highly recommend it to anyone who
wants to start developing applications with Dapr.

Yaron Schneider

Principal Software Engineer and Dapr Co-founder, Microsoft

xvii

Acknowledgments

In every venture uncommon to a self, there should be a great catalyst. I would like to
thank Apress and especially Joan Murray, Jill Balzano, Laura Berendson, Welmoed Spahr,
and everyone else involved in the publishing of this book. I had been thinking about
writing a book for quite some time, and I am grateful that Joan reached out to me. At that
moment I had a few conferences canceled, a few professional opportunities lost because
of the risks and the great uncertainty at the start of COVID-19. Fast-forward a year from
then, the book has been finished, and I am writing this. A year of lockdowns spent in
writing is a good year, after all.

Additionally, I would like to thank Mark Russinovich for being such an inspiration
and knowledge source for me. Sometimes, it takes just a tweet to change the life of a
person. He retweeted a blog post of mine about Dapr. It gained a lot of attention, and to a
large extent, because of that, Introducing Distributed Application Runtime (Dapr) is now
areality. would like to thank Yaron Schneider and all Dapr maintainers who are always
friendly and supportive. They helped a lot by answering some of the questions I've had
in the process.

I would also like to thank Kris van der Mast, the technical reviewer, for the excellent
feedback and suggestions that added immense value to this book.

I'would like to thank Mihail Mateev who gave me the opportunity to do my first
public session a couple of years ago. Since then, we have been collaborating with a lot
of other folks to make some of the biggest conferences in Bulgaria possible. Of course,
thanks to the community that still finds them interesting, and from the fascinating
discussions, they sparkle. I would like to thank Martin Tatar, Cristina Gonzalez Herrero,
and Irene Otero for their great help and continuous support to us, the Microsoft Most
Valuable Professionals.

I would like to thank Dimitar Mazhlekov with whom we have been friends,
teammates, business partners, and tech junkies. We have walked a long way and learned
alot together.

I'would like to thank all my teachers, professors, and mentors who supported me a
lot throughout the years. To find a good teacher is a matter of luck. And with you all, I am
the lucky person for being your student.

Xix

ACKNOWLEDGMENTS

I'would like to express my gratitude for being able to work with organizations around
the globe that gave me exposure to their unique and intriguing challenges that helped
me gain so much knowledge and experience. Thanks to all the team members I met
there and for what I was able to learn from every one of them.

And last but not least, to my girlfriend Desislava, my parents, extended family, and
friends, thank you for the endless support throughout the years! Thank you for keeping
me sane and forgiving my absence when I get to work on something challenging.

Introduction

Being able to work on various projects, one should be able to identify the common set
of issues every project faces. It doesn’t mean you can always apply the same solution
over and over again, but it puts a good structure. I was very lucky that early in my career,
I was pointed to the proper things to learn. T have already been using object-oriented
programming (OOP) for some time, but I was stunned when I read the book Design
Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm, Johnson,
and Vlissides for the first time. It gave me the answers to some of the questions I'd been
asking myself. From there on, I am a strong believer that patterns do not only serve as
reusable solutions to common problems, they become a common lingo and teach you
how to think in an abstract way. Being able to work at a conceptual level, instead of
focusing too much on the details, I believe made me a better professional.

I heard of Distributed Application Runtime (Dapr) for the first time when it was
announced at Microsoft Ignite 2019, Microsoft’s annual conference for developers
and IT professionals. At first, the idea of it resonated within me but I didn’t completely
understand it, and so I decided to start playing with it. In September 2020, a transition
to an open governance model was announced to ensure that the project is open and
vendor neutral. Fast-forward to February 2021 when Dapr v1.0 was released. Now that
Dapr is stable and production-ready, it is also in the process of being donated to the
Cloud Native Computing Foundation (CNCF) as an Incubation project. By the time you
read this, it may be finalized.

Dapr greatly simplifies the development of Microservices applications. It works with
any language and any platform. You can containerize your applications or not, you can
use Kubernetes or not, you can deploy to the cloud or not. You can sense the freedom
here. From a development perspective, Dapr offers a number of capabilities grouped
and packaged as building blocks. Let’s face it. You will have to use some services that are
external to the application you are aiming to build. It is very normal to not try to reinvent
the wheel and build everything from scratch. By using the building blocks provided
by Dapr, you use those external services without thinking about any SDKs or specific
concepts imposed by the external service you are trying to integrate with. You just have
to know how to work with the building block. This simplifies the operations you want to

xxi

INTRODUCTION

execute on the target external services, and Dapr serves as the common denominator.
That’s why you can swap one technology with another in the scope of the building block,
that is, reconfiguring Dapr from persisting state to, say, Redis to MySQL, for example.

Some believe Dapr is the service mesh but done right. The reason for that is that
service meshes rely on the sidecar architecture as Dapr does. However, service meshes
are for network infrastructure, while Dapr provides reusable patterns that are easy to
apply and repeatable. In the future, I expect building blocks to expand in functionality
and maybe new building blocks to come to Dapr. With that, the reach to potential
external services will become so wide. For greenfield projects, this will mean that Dapr
can be put on the foundational level of decisions. Once you have it, you can, later on,
decide what specific message broker or what specific persistence medium to use for state
storage, for example. This level of freedom unlocks many opportunities.

Introducing Distributed Application Runtime (Dapr) aims to be your guide to
learning Dapr and using it for the first time. Some previous experience building
distributed systems will be helpful but is by no means required. The book is divided
into three parts. In the first part before diving into Dapr, a chapter is devoted to set the
ground for the basic concepts of Microservices applications. The following chapter
introduces Dapr: how it works and how to initialize and run it locally. The next chapter
covers the basics of containers and Kubernetes. Then all that knowledge is combined in
order to explore how Dapr works inside Kubernetes. The part wraps up by exploring the
various options to develop and debug Dapr applications, by leveraging the proper Visual
Studio code extensions - both locally and inside Kubernetes.

The second part of the book has a chapter devoted to each building block that
explores it in detail. The building blocks are:

o Service Invocation

e Publish and Subscribe
o State Management

e Resource Bindings

e The Actor model

e Secrets

e Observability

xxii

INTRODUCTION

The final part of the book is about integrating Dapr with other technologies. The
first chapter outlines what middleware can be plugged into the request pipeline of Dapr.
Some of the middleware enable using protocols like the OAuth2 Client Credentials and
Authentication Code grants and OpenID Connect with various Identity Providers that
support them. The examples in the chapter use Azure Active Directory. The following
chapter discusses how to use Dapr with ASP.NET Core by leveraging the useful attributes
that come from the Dapr .NET SDK. The last two chapters cover how to combine Dapr
with the runtimes of Azure Functions and Azure Logic Apps.

Code samples accompany almost every chapter of the book. Most of them are
implemented in C#, but there are a few of them in Node.js, to emphasize the
multiple-language approach to microservices. You can find them at https://github.
com/Apress/introducing-dapr. You will need to have .NET and Node.js installed. Some
of the tips and tricks in the book are applicable only to Visual Studio Code (e.g., the
several extensions that are covered in Chapter 5: Debugging Dapr Applications), but you
can also use any code editor or IDE like Visual Studio. For some of the examples, you will
also need Docker on your machine and any Kubernetes cluster - either locally, as part of
Docker Desktop, or somewhere in the cloud.

I hope you enjoy the book. Good luck on your learning journey. Let’s start Dapr-
izing! I am happy to connect with you on social media:

LinkedIn: www.linkedin.com/in/radoslavgatev/
Twitter: https://twitter.com/RadoslavGatev

Feel free to also check my blog: www.gatevnotes.com.

xxiii

https://github.com/Apress/introducing-dapr
https://github.com/Apress/introducing-dapr
http://www.linkedin.com/in/radoslavgatev/
https://twitter.com/RadoslavGatev
http://www.gatevnotes.com

PART |

Getting Started

CHAPTER 1

Introduction
to Microservices

Digitalization drives businesses in such a direction that every system should be

resilient and available all the time. In order to achieve that, you have to make certain
decisions about the application architecture. In this chapter, you will learn how systems
evolved from calculation machines built to serve a specific purpose to general-purpose
computers. Making the same parallel but on the software side, we will discuss what
Monolithic applications are along with their pros and cons. Then, we will go through the
need of having distributed applications dispersed across a network of computers. You will
also learn about the Microservices architecture as a popular way for building distributed
applications - how to design such applications, what challenges the Microservices
architecture brings, and some of the applicable patterns that are often used.

A Brief History of System Design

It's always good to take a look back at history to understand how the concepts have
evolved over time making almost every innovation by building on the existing knowledge
and experience. There has been a long way for computers until you could walk with a
computing device in the pocket or on the wrist.

The first computing devices were entirely mechanical,' operating with components
like levers, belts, gears, and so on to perform their logic. That’s a lot of moving parts that

'The first mechanical computer is considered to be the Difference Engine that was designed

by Charles Babbage in the 1820s for calculating and tabulating the values of polynomial
functions. Later on, he devised another machine called the Analytical Engine that aimed to
perform general-purpose computation. The concepts it was to employ can be found in modern
computers, although it was designed to be entirely mechanical.

© Radoslav Gatev 2021
R. Gatev, Introducing Distributed Application Runtime (Dapr), https://doi.org/10.1007/978-1-4842-6998-5_1

https://doi.org/10.1007/978-1-4842-6998-5_1#DOI

CHAPTER 1 INTRODUCTION TO MICROSERVICES

take a lot of space. Apart from the slowness of their operation, each of them was a point
of failure on its own. But over time, the mechanical parts started getting replaced by their
electric counterparts.

Hardware Progress

To perform some logic, you need some way of representing state - like 1 and 0 in the
modern binary computers. Likewise, the relay was identified as a viable component

that was widely known and available to be utilized for performing the “on” and “oft”
switching. But still, relays were rather slow as they had a moving mechanical part - an
electromagnet opens or closes a metal contact between two conductors. Then vacuum
tubes gained traction as a way of switching. They didn’t have any moving parts; however,
they were still big, expensive, and nonefficient. Then they got replaced by transistors. But
imagine what is soldering thousands of discrete transistors in a complex circuit! There
will be faulty wirings that are hard to discover. Later on, the need for soldering discrete
transistors was avoided with integrated circuits where thousands of tiny transistors were
placed on small chips. This ultimately led the way to modern microprocessor technology.
These evolutionary steps were restricted by the speed, size, and cost of a single bit.

Early computers used to be expensive and could easily fill an entire room. Because
they weighed a lot, they were usually moved around using forklifts and transported
via cargo airplanes. Announced in 1956, IBM 305 RAMAC was the first computer to
use a random-access disk drive - the IBM 350 Disk Storage Unit that incorporated
50 24-inch-diameter rotating disks that could store 5 million 6-bit characters or the
equivalent of whopping 3.75 MB of data. This is the ancestor of every hard drive
produced ever since.

That’s how typically technology evolves. Advances of knowledge are being used to
build new things on top of the old knowledge base. Every decision at a time is restricted
by various boundaries we face - physical limits, cost, speed, size, purpose, and so on.

If you think about the purpose of the early computers, in the beginning, they were
devised with a sole purpose - from solving polynomial functions to cracking secret codes
ciphered by machines such as the German Enigma machine. There was a long way until
we could use general-purpose computers that are highly programmable.

Without making any generalizations, it will be highly inconvenient to build anything.
You have to manage all of the moving parts right from the beginning, which is a lot of
effort. For example, you had to either be a genius or be among one of the inventors to be

CHAPTER 1 INTRODUCTION TO MICROSERVICES

able to use the computer in the 1950s. With the introduction of personal computers, it
started to get easier. The same applies to software development.

Software Progress

While hardware tried to address the physical aspects of computer systems, kind of the
same evolution happened with software. The early programs were highly dependent on
the architecture of the computer executing them.

Applications Development

When writing low-level code, you have to think about everything - machine instructions
and what registers to use and how. With the advances of modern compilers, we have a
comfortable abstraction to express just what the program should do without thinking
about what instructions will be executed by the Central Processing Unit (CPU).

Programs used to be a self-sustainable piece of code without any external dependencies.
Object-oriented programming is a paradigm that essentially gave us yet another powerful
abstraction. By utilizing the power of interfaces, we can reuse a lot of code. Every piece
of code that we use out of the box has an interface (or a contract that it serves). Software
libraries emerged, and they became the building blocks of modern software. Let’s face it:
system software, server software, frameworks, utilities, and all kinds of application software
are all built using well-known and widely used libraries and components.

Some programs are still dependent on some operating system features or third-party
components that were installed on the developer’s machine. And the typical case is that
the program you just downloaded does not run on your machine. “But it works on my
machine,” they would say.

A few years ago, containers started to gain more and more popularity. Containers are
the solution to make your code easily transferable across machines and environments by
packaging all application code along with all of its dependencies. By doing this, you are
effectively isolating the host machines and their current state from your code.

Infrastructure and Scalability

In the past, programs were running on a single machine and were used only on that
same machine. This was until computers could be connected to networks where they
could talk to each other. The machine that hosts applications is called a server, and the
other machines that use the applications are called clients.

CHAPTER 1 INTRODUCTION TO MICROSERVICES

Over time what happened with some applications is that the number of clients
started to outgrow the capacity of the servers. To accommodate the ever-increasing
load resulted in adding more resources to each server, the so-called vertical scaling.

The application code is still the same but running on a beefier machine with a lot more
processing power and memory. At some point, the technological limits will be reached,
or it will become too expensive to continue adding power to a single machine. And in
case something happens with this machine, your application will become inaccessible
for all clients. The number of options to alleviate the issue was pretty much exhausted.

Then it became obvious that the applications should be distributed across different
servers. There are more instances of your applications running across a set of machines
instead of relying on a single big machine. The incoming load is typically distributed
across all machines. That'’s called horizontal scaling.

To be able to achieve horizontal scaling, you have to make sure that every instance of
the application doesn’t hold any internal state, that is, your application is stateless. This
is needed because each application replica should be able to respond to any request. As
you replicate software across more instances, you are starting to treat your servers more
like cattle as opposed to much-loved pets. You don’t really care even if you lose an entire
server if you have a couple of others that are still healthy and taking traffic. Of course, as
with any decision, this comes with certain trade-offs.

Even if you achieve some level of scalability, it doesn’t mean that your application
is prepared to withstand future requirements. Not only traffic can grow but also the
application functionality evolves and extends. Respectively with functionality, team size
is also a subject of change.

In the next sections of this chapter, I will walk you through the two popular
architectural styles for building an application - the Monolithic and the Microservices
architecture. It doesn’t make sense to explain one without mentioning the other because
they have rather contradictory principles.

Monolithic Architecture

According to the Merriam-Webster dictionary, the definition of the word monolith is

“a single great stone often in the form of an obelisk or column” or “a massive structure.”
Taking the broad meaning of a massive structure, a Monolithic application is built as a
single unit. This single unit contains all your application logic. Internally, this Monolithic
application can consist of different layers. One of the layers could be the presentation

6

CHAPTER 1 INTRODUCTION TO MICROSERVICES

layer, which deals with the user interface of the application; another layer can hold some
business logic; a third layer can be used for accessing the database. But it doesn’t mean
that those layers cannot be separated from one another in terms of a codebase. For
example, the business logic layer can spread across numerous small modules, each of
them implementing just a small part of the overall functionality. This generally improves
the quality of the code; however, those modules are still living in the same layer of the
application.

Figure 1-1 shows what typically happens when a user invokes Function A in a
Monolithic application. Function A passes the control to Function B, which depends
on Functions C and D (which depends on Function E), and when they return a result,
Function B will be able to pass the result to the user. Although the functionality is
separated into discrete functions, which are likely placed in separate class libraries, they
are all sharing common resources like the database and are running inside the same

process on the same machine.

/ /y Function A \

Function B

AN

Function C Function D » Function E

Figure 1-1. Functions inside a Monolithic application

Benefits of the Monolithic Architecture

However, “monolith” can be used as defamation nowadays for an application that
doesn’t follow modern trends that can result in a lot of prolonged discussions. At this
point, we have to acknowledge that there are still loads of Monolithic applications out
there that are business-critical. Developing monoliths has some benefits as well.

The first thing probably is the simplicity that comes with Monolithic applications.
If you think about it, Integrated Development Environments (IDEs) and application
frameworks are driving you in this direction. It’s very easy to create a new web project

CHAPTER 1 INTRODUCTION TO MICROSERVICES

and implement its models, views, and controllers. You click the Run button of your IDE
and voilg, it is up and running on your machine. Everything can be debugged end to end.
It feels really natural and fast. The deployment is also easy - package the application and
move it to the server that will host it. Done.

Later on, several other developers can join you and work on this application. And
you probably won’t have serious conflicts for most of the things you are implementing,
as long as the application is not very big and you are just a handful of people.

When your server starts facing pressure from traffic growth, you can probably
replicate the application to multiple servers and put a load balancer in front. This way
each replica will receive a portion of all requests, and it won’t get overwhelmed. This
approach is the so-called horizontal scaling.

Drawbacks of the Monolithic Architecture

However, as time goes by, your application will have more and more functionality
implemented. The code will become more complex with every passing day and

every new requirement that is implemented. Although the code could have been
separated into different modules, it is very easy to miss the fact there are so many cross-
dependencies in place.

This means that the Monolithic architecture is easy in the beginning and becomes
trickier over time. The more team members you assign to the project, the slower they
work together. The impact of each change that gets implemented is difficult to be
understood because of the dependencies. As shown in Figure 1-1, Function A depends
on Functions B, C, D, and E, which are interconnected.

Imagine there is a serious performance issue in Function B that makes your CPU and
memory go crazy high. This will likely bring down the whole process that is hosting it.
But wait. We have several other instances, right? Well, the same piece of code is running
in all the replicas, so it means that you are also replicating all performance issues and
bugs. Although the issue comes from a tiny function that lives in a small module of your
application, it impacts the availability of your whole application.

Let’s say that your team fixed the issue in Function B. You cannot just deploy the
changes made on Function B. Instead, you will have to package the whole application,
deploy it, and wait for it to warm up and start serving again.

What if at some point in time you identify that most of the load in the application
goes to a particular feature that the majority of clients use? You start wondering how to

CHAPTER 1 INTRODUCTION TO MICROSERVICES

scale out only the pieces of functionality in question to achieve a fine-grained density
with the hardware you have at hand.

Or maybe you want to start implementing new features with some new technology
that makes sense for the application you have and some of the team members are
knowledgeable about it. Let’s say it’s a different framework in a different language than
the ones you have based your Monolithic application on. Unfortunately, utilizing such
technology won'’t be possible as you are locked in a certain execution model that spans
the whole application. And generally speaking, attempts for mixing various technologies
that bring different concepts don’t end well in the long term.

It's a monolith. You cannot easily dismantle it as its components are tightly coupled.
If you waited too long, it might be that your application is a homogeneous mixture of
functions. Let’s see what is the case with the popular Microservices architecture.

Microservices Architecture

The Microservices architecture is an architectural pattern for building distributed
systems in such a way that they are comprised of different loosely coupled components
called services that run in different processes and are independently deployed.

Figure 1-2 shows how the Monolithic application you saw earlier in Figure 1-1 can
be shaped in the Microservices world. Each of the functions has its own service. The
services can be independently deployed and distributed across different machines.
But still, they are part of the same application and work as a whole. The services
communicate with each other by using a clearly defined Application Programming
Interface (API) via protocols such as HTTP, gRPC, AMQP, and others.

CHAPTER 1 INTRODUCTION TO MICROSERVICES

Service A
Function A
PI
Service D+E
Service B ,
API Function D
< Function B >
Function E
API
h 4
Service C
Function C

Figure 1-2. The Monolithic application translated into a Microservices
application

For the sake of the example, I have oversimplified the process of converting a
Monolithic application to one based on the Microservices architecture. It’s not a straight
two-step process. It takes careful analysis and thorough design beforehand.

Designing Microservices

Now that you know that an application should be split into multiple pieces, how do
you define how big those pieces are? There are various approaches to tackle this. But
designing microservices is pretty much a piece of art. You can start by understanding
how the business that you are digitalizing works and what are its processes and rules.
And then identify what are the business capabilities that the application should provide.
You can probably group them into several categories and identify the main objects.
Alternatively, you can use some of the tactics from Domain-Driven Design. You
can decompose the main domain into subdomains and identify the Bounded Contexts
we have. This is a strategy to split a large problem into a set of small pieces with clear
relationships. Instead of defining a large ubiquitous model that will end up representing
a lot of perspectives, the Bounded Contexts enable you to project small parts of the
whole domain from different lenses. Having outlined the Bounded Contexts and the

10

CHAPTER 1 INTRODUCTION TO MICROSERVICES

models, it’s easier to start thinking about the functionality of the service. Let me give you
an example. Let’s say we are designing an online store. We may have a Cart microservice,
a Payment microservice, and a Shipment microservice, among others. When a customer
purchases an item from the store, the underlying work will be performed by those
microservices. But each service sees the customer from a different perspective. The

Cart microservice sees the user as a Customer who added some product into the cart.
Customer is the entity representing the user in the context of managing a cart. To the
Payment service, the user is a Payer who uses a specific payment method to remit the
money. From the perspective of the Shipment service, the user is an entity named
Receiver that contains the user’s address. All three entities share the same identifier of a
user but have different attributes depending on the problem being addressed.

The goal of identifying the boundaries of a service is not just to make it as small as
possible. In the example in Figure 1-2, Function D and Function E are placed in the
same microservice as their functions belong to the same business capability. You should
not aim to create a microservice for the smallest piece of functionality. But ideally, a
microservice should comply with the Single-Responsibility Principle.

The first design of your microservices won't stay forever. As the business evolves, you
will likely do some refactoring to refine the size and granularity of the services. Getting
back to the example with the online store, if you find yourself constantly merging the
information about the user from Payment and Shipment services, for example, Payment
calls the Shipment service upon every operation, there is a huge chance those two
should be merged into one service.

Each service is responsible for storing its data in some persistence layer. Depending
on the nature of data, it can be persisted in various types of databases. Some of the
data can be cached to offload the performance hit on the services and their respective
databases. The potential of using different technologies in each service depending on
the case is enormous. In contrast to monoliths, you can choose whatever programming
languages, frameworks, or databases that fit best the problem you are solving or the
expertise of the team.

Benefits

The drawbacks of Monolithic applications, in general, are addressed by the
Microservices architecture.

11

