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Introduction

The Language Server Protocol (LSP) has been one of the most talked about topics during
the past few years when it comes to the tooling for programming languages. With the
advancement of the developer tools and the programming languages, developers started
to rely more and more on advanced tools and enhanced language services. When we
consider one of the most focused branches of developer tools which is IDEs and text
editors, there are many vendors who have released various editing tools in the past
couple of decades. When we consider the number of programming languages along with
the number of smart editors nowadays, in order to support language intelligence among
the editors, these vendors have to repeat the same thing. The Language Server Protocol
was introduced to solve this particular problem, and today it has become the norm of
the development tools’ language intelligence provider. By adopting the LSP, tools such
as text editors and integrated development environments (IDEs) could expand the
capabilities and avoid the users’ burden of switching between the development tools for
trying new programming languages and frameworks.

This book is for the developers who are passionate about developing programming
language tools. In this book, we provide the readers a comprehensive understanding
about the Language Server Protocol and how to develop a Language Server from scratch.
The readers will be guided with code samples to provide a better understanding about
the server implementation by adhering to the user experience best practices as well as
the LSP best practices. The readers are expected to use the book along with the example
implementation, in order to get a better understanding about the concepts described
in the book. In the example implementation, the book refers to VS Code as the client;
however, the readers can use any other client and integrate the server implementation as
desired.

The chapters of the book have been ordered to capture various aspects of the
developer experience when it comes to the programming language tooling, and the
LSP operations and features are categorized under these aspects. The readers are not
overwhelmed by including the code snippets of the data structures in the LSP and it is
recommended to refer to the official documentation of the Language Server Protocol for
the data structures.

xxi



CHAPTER 1

Developer Tools
and Language Services

Today, software development has become an area where there are higher expectations
when considering the rapid development, go-to market, deployment, distribution, and
similar aspects. In this book, we are going to focus on a specific technical perspective
related to source code editing or, in other words, writing the software.

Early Programmable Computers

Decades before the golden age of digital computers, it all began with mechanical
computers. Even though today computers can carry out various tasks, early
mechanical computers could carry out a specific task. Among them, one of the most
important programmable machines developed was the Jacquard loom. Jacquard
loom’s idea of programming the machinery was later inspired by other programmable
inventions as well.

Joseph-Marie Jacquard invented the Jacquard loom® in 1804. The Jacquard loom was
programmed by using punched cards. Different weaving patterns could be programmed
by using punched cards, and the loom was automated on top of the program. Therefore,
the Jacquard loom is considered the first programmable machine, and the concept of
punched cards was adopted later by both Babbage as well as digital computers.

In the history of mechanical computers, the Analytical Engine developed by
Charles Babbage? can be considered as the earliest mechanical computer. Input data
was fed to the machine by means of punched cards which were used in the Jacquard

"www.columbia.edu/cu/computinghistory/jacquard.html
2www. computerhistory.org/babbage/
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CHAPTER 1  DEVELOPER TOOLS AND LANGUAGE SERVICES

programmable loom. One of the most important aspects of the Analytical Engine is the
ability to program the engine by changing the instructions on punched cards.

In both of the aforementioned examples, the medium of programming the
computers was using punched cards. Not only mechanical computers but also early
digital age computers used punched cards to input programs to the computer and store
data. For example, if we consider computers such as IBM 360, it was the punched cards
that were used to write the programs.

Code Forms and Punched Cards

For instance, let’'s compare how we write our programs with a programming language
today with the punched card era.®* Have you ever wondered that it might have taken
hours to write a program, run it, and see the output? Have you ever tried to write a
program on a piece of paper? Imagine how tedious that would be to develop even

a simple “Hello world!” in such a manner? Decades before today, this is how even
professional programmers used to write their programs. As briefly described in the
previous section, in early days punched cards were used to store data and programs, and
those cards were fed into the computer for execution. Keypunching your program to the
punched card in a single run is not an easy task. Therefore, another technique called
code sheets, also known as coding forms, was used. The programmers had to write
their programs’ instructions on the code sheets at first. Then they had to convert these
instructions to a form which can be identified by the computers.

Computers could identify and process the instructions fed in the form of punched
cards. A punched card operator keypunches the instructions onto the punched cards to
insert them into the computer to run. If there is an error or a bug, you have to follow the
same routine again and again to fix it.

Now consider a program with a number of statements and the cycle of writing,
running, and fixing issues. Each time, you will get a stack of punched cards where the
program is embedded into. This is the amount of work that had to be done decades ago
in order to write even a simple "Hello World" program.

Swww.columbia.edu/cu/computinghistory/fisk.pdf
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Text Editors vs. Source Code Editors

With the advancement of technology, programmers started using various tools for
writing their codes with convenience. Among these tools, text-based editors have
become more popular than other options. Even though text-based tools are more
popular than the others, there are other tools such as visual programming editors which
allow users to write their code with graphic components. Developers can drag and drop
high-level graphical constructs/basic programming constructs to build the program,
and the editor auto-generates the textual code on behalf of the user. Google’s Blockly is a
library which allows building visual programming editors. Also, programming languages
such as Prograph and visual programming environments such as Cantata* can be
considered as tools for visual programming.

Today, when editing source codes, there are various editing tools to be chosen
among. The most common choice would be a source editor, text editor, or an IDE. In
one aspect, all the aforementioned choices are similar, in that all those options support
text editing. But, those are completely three different tools when it comes to the editing
experience. Most of the time, there is a misconception to consider that source code
editors and text editors are the same even though they are not. Text editors, as the name
implies, are used for editing textual content and can also be used for composing and
editing source codes. Source code editors on the other hand have language sensitivity
and context awareness. There are certain features incorporated into source code
editors which represent language sensitivity and context awareness. Among them,
auto-completion, syntax highlighting, and intelligent refactoring options such as source
formatting can be shown as the most commonly used features.

Before the origin of graphical user interfaces (GUIs), command-line interface
(CLI)-based text editors were popular among the developers. While CLI-based editors
are command driven, GUI-based editors are menu driven. Even though GUI-based
editors became popular, people continued to use CLI-based editors even today. Also,
having certain expertise in using a CLI-based editor is a must when you get to work
in an environment without a GUI such as a server. Today, we can install plugins and
extensions for text editors, and we can convert them to behave similarly to source code
editors. One such example is the Vim editor, where you can install various plugins for
formatting and auto-completion for JavaScript development.®

*https://dl.acm.org/doi/abs/10.1145/204362.204367
*https://vimawesome.com/plugin/vim-javascript
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Some examples of text-based editing tools are as follows:

e Vi
e Vim®
¢ Emacs’

e Notepad++®

o Visual Studio Code (VS Code?)
¢ NetBeans'

e Eclipse

Intelli] IDEA'

This is just a small sample of editors among numerous available options.
These various editors can be categorized based on multiple factors, such as

e Language support (multi-language or specific language support)

IDEs such as Intelli] IDEA, Eclipse, and VS Code support multiple
programming languages allowing the user to install plugins and
extensions. When the Java ecosystem is considered, Intelli] IDEA
and Eclipse are the popular choices among the developers.

o Hosting environment (cloud hosted or locally hosted)

IDEs such as Codenvy, JSFiddle, and CodePen are popular cloud-
hosted IDEs. CodePen and JSFiddle have become the most widely
used IDE solutions to share working code examples.

Swww.vim.org/download.php
"www.gnu.org/software/emacs/
8https://notepad-plus-plus.org/
*https://code.visualstudio.com/
"https://netbeans.apache.org/
"www.eclipse.org/downloads/

www. jetbrains.com/idea/download/
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o Development type oriented (web development/mobile
development/DevOps)

Android Studio is the official IDE by Google for Android
development which is built on Intelli] IDEA. If we consider
tools such as Vi and Vim, they are widely used when it comes to
DevOps tasks such as server configurations.

o Extensibility and plugin support

Users can install plugins to the VS Code editor and expand the
default capabilities. For example, the VS Code marketplace has
plugins for numerous programming languages.

Given the aforementioned categorization, if we consider the JVM ecosystem,
the most widely used IDE is Intelli] IDEA, while text editors such as VS Code and Vi/Vim
have a lesser usage.'® Even though we consider the JVM ecosystem here, according to
the Stack Overflow Developer Survey (2021),'* VS Code is the most commonly used text
editor among the developers.

Why IDEs

Source code editing is not the only phase in the software development life cycle, which
consists of a number of phases as well as associated supporting steps. In each of these
steps, the stakeholders use various tools to facilitate these phases. Several such tools can
be listed as follows:

o Diagramming tools (for use case identification, ER diagrams'®)
e Source code editors (Notepad++, Vim)

e Version control systems (Git,'® SVN'7)

Bhttps://res.cloudinary.com/snyk/image/upload/v1623860216/reports/jvm-ecosystem-
report-2021.pdf

“https://insights.stackoverflow.com/survey/2021#integrated-development-environment
“https://staruml.io/

"https://docs.github.com/en/get-started

"https://subversion.apache.org/
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o Debuggers (JSwat'®)

« Coverage tools (JaCoCo™)

o Code search tools (Sourcegraph®)
o Linters (Checkstyle?!)

o Issue trackers

e DevOps tools

e Andsoon

Among these tools, we can identify categories, and during the last couple of decades,
various platforms and products were introduced focusing on specific categories.

When we consider the IDEs, they put numerous features together. Therefore, we
can identify IDEs as an all-in-one package for a developer. This is one reason for IDEs
becoming popular over time when compared to text editors. Among the incorporated
features in IDEs, the following can be identified as the most widely used ones:

o Context-aware auto-completions (smart completions)

e Source refactoring options (rename references, formatting)
e Code search options (for Java, class and method search)

e Runand debug

o Code coverage

o Integrated version controlling (Git integration and SVN)

Bhttps://github.com/nlfiedler/jswat
“'www.eclemma.org/jacoco/

2 https://about.sourcegraph.com/
2thttps://checkstyle.sourceforge.io/config_design.html
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Language Intelligence

In the previous sections, we had a look at the various options available for source code
editing. Whether it is a text editor, a source code editor, or an IDE, all of those tools have
a common underlying competency to be aware of the language syntax and semantics; we
call it language intelligence. Let’s consider an example usage of an IDE for programming.
There are numerous language-sensitive features a user uses during coding.

One of the most frequently used language intelligence features is diagnostics.
For example, consider writing Java code with a missing semicolon (syntax error) and
compile it. Then the compiler will stop in the middle of compilation, and the console will
show the problems in the source. Listing 1-1 is an example of an erroneous Java source
where there is a missing semicolon. You can copy and paste the sample code snippet in
your favorite source code editor and observe how the editor represents these errors to
the developer.

Listing 1-1. Invalid Java Source with a Missing Semicolon

public class Greeting {
public static void main(String[] args) {
// Semicolon is missing in print statement
System.out.println("Hello World")

As an exercise, you can select more than one IDE/source editor and observe the
diagnostic representations in those. Depending on the tool, the representation of the
diagnostics can be different. Figure 1-1 is an example of the diagnostic representation for
the preceding erroneous source snippet.
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Figure 1-1. Showing diagnostics for Java in Intelli] IDEA

When it comes to the IDEs/editors for source code editing, it is important to show
the syntax or semantic errors on the fly. In order to implement the diagnostics for a
particular programming language or even a configuration language such as Swagger,*
the IDE or tooling developer needs to map the compiler’s knowledge to the tooling APIs
preserving the user experience.

We had a look at the diagnostics since it is one of the basic language intelligence
features. Similar to the diagnostics, other features such as smart completions, refactoring
(rename and formatting), code navigation, etc., play a major role in the development
experience. Therefore, every developer tooling vendor pays considerable attention
to language intelligence features integrated with the tools. With time, these language
features were enriched with capabilities such as incorporating machine learning,

artificial intelligence, and smart decompilers.?

*2https://swagger.io/solutions/api-documentation/
Bhttps://github.com/JetBrains/intellij-community/tree/master/plugins/
java-decompiler
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