SN

N
N\

P/ m:li\

AN
X
W\

"-“.‘
WY

/: ll“ -
I

/, ,“

Protocol and
Implementation

Supporting Language-Smart Editing and
Programming Tools

Nadeeshaan Gunasinghe
Nipuna Marcus

Apress:

Language Server Protocol
and Implementation

Supporting Language-Smart
Editing and Programming Tools

Nadeeshaan Gunasinghe
Nipuna Marcus

Apress’

Language Server Protocol and Implementation: Supporting Language-Smart Editing
and Programming Tools

Nadeeshaan Gunasinghe Nipuna Marcus
Walahanduwa, Sri Lanka Mawathagama, Sri Lanka
ISBN-13 (pbk): 978-1-4842-7791-1 ISBN-13 (electronic): 978-1-4842-7792-8

https://doi.org/10.1007/978-1-4842-7792-8

Copyright © 2022 by Nadeeshaan Gunasinghe and Nipuna Marcus

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7791-1. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7792-8

To our beloved parents who always were behind us and
Kasun Indrasiri who always was an inspiration and
a role model

Table of Contents

About the AUtROIS.......c.cccesmiimsmmsnsrns s n s XV
About the Technical ReVIEWETccssesssnssssnsssassssnsssassssassssasssansssasssssssssnsssassssanssas xvii
AcKkNOWIEdgmMEeNTSccuuuiissmmmmmmsssnnnmmssssssnnesssssnnsesssssnnsesssssnnsessssnnnnsssssnnnnsssssnnnnssssnnns Xix
L1 T LT (1 XXi
Chapter 1: Developer Tools and Language ServiCesccussmmsssmsssssnnssssnsssssnnssssanssss 1
Early Programmable COMPULETScccereermresereneressesesese s ssese s se e ssssssessssnssnens 1
Code Forms and PUNCHEd CardS.........coouererrenmrnsmsrsessssssesessesesssssssssesesssssssssesssssssssssssssssssssssssssanns 2
Text Editors vs. SoUrce Code EdItors.........ucuminrirrnsesnisensse s sessessssssesssssssssesessssessnnes 3
WY IDES ..o bbbt bbb e 5
Language INTEIlIgENCE.......cocvve e s e s a e e 7
10T 111 T OO RS 9
Chapter 2: Understanding the Language Server Protocolccccemrnssmnsnssnnssssanas 11
Understanding JSON-RPC ... s 13
ReQUEST ODJECT ... e e 13
RESPONSE ODJECT.......cceveerrierirene et nr s 15
BaICh ... —————————— 17
Understanding the Base ProtoCol............ccvvivenininninnn s sesses s s ssesssessessnsnens 18

g LT L0 T gl o o N 18

0] 017 1 o T 18
CommUNICALION MOEcoveereeeree e 19
GENEIAl MESSAGES ..cuevrveuerriserrnsesessesessssesrsse e se e s sr s e s e b e e s nr s s e r e e e e e p e e e e nns 20

B e AR e e 20
LT 0 0 20

L3 (=T 1 0T 1S 21

TABLE OF CONTENTS

101657 0 (- S 21
TEXIDOCUMENT ... e e 21
1] 4= OSSPSR 22
Chapter 3: Implementing a Language Serverccusssesmussssssmssssssnsssssssnsnsssssnnnssssss 23
Tools and DEPENUEBINCIEScccvvrerierirririe e s s b e s b e e nne 24
BUIldiNg the PrOJECL........ccoveeirceree e 25
Compatibility with Balleringcccccvveriennininiene s s ssesessessessesessessesaens 27
Debugging the Client and the SEIVENccueviirrrierierrsrrrere s s sressssessesnes 27
Understanding the Main Components..........ccccvinnnninn s 27
ST T g Y o T 28

ST 1T 0] (PR 31
Client Implementation ... e 33

£ 11104 RS 33

Chapter 4: General MeSSAQeSuuusmmrrrssssnnnmrsssssnnsssssssnssssssssnnsssssssnnsssssssnnssssssnnnnsss 39

GENEIAI MBSSAYES. . verveerersersersrsersersessessrsessersessssessessessssessessesasssssessessessesessessessessssessessessessnsensenes 35
T 7 S 35
LT 7 o 43
3] 10 [0 o TP 43
| TR 44

WiINAOW OPEIatioNS.......cceevreierrireresirserse st s e re e s se s s saese s e s s s e e s e sae st e e s e eaesae s e e naesnens 45
SHOWMESSAQEveereerrerreerereree s e sse s sae e s e s sae e s e s e s saese s e s e e ae s e e e e e saesaene e e naesaesee e e e nannaes 45
ShOWMESSAGEREQUESTcccereereertrerere e s s e e s s s e se s e s s s s se s e saesaese e e naesaesae e snenaesees 46
SNOWDOCUMENT ... e e 48
[T LTS T S 48
PrOgreSS/CrEAL.ccveveerrreresre e se e r e ne e nr s 49
ProgreSS/CaNCEIcouceirierinrenesrese e s e e sn s a e s snnne e nra s 49

1] 14 7R 50

TABLE OF CONTENTS

Chapter 5: Text Synchronization.........cccusccemrmnssnnnnnnsssssnnmssssssnmmmssssnsessssnesasnm.s 51
General Capabilitiesccccvvcerrierre e e 52
(01T (0] o< 1 OO ORS S 53

Indexing and Project INitializationc.cccoverreenncesreser s 55
0110 (08 T2 T OSSR 56
WIlISAVE....c.citiiiiiiire iR 59
WIllSAVEWAITUNTILevccce s 60
L0110 T 1 PP 61
0110 0 - TSR 62
6310111 SR 63

Chapter 6: Diagnostics, Smart Editing, and Documentation............cccccmrrissnnnnninans 65

DT 10 L0 L] OSSOSO 65
Initialization and Capabilities..........ccccvverrerriririerie e nne s 65
Publishing the DiagnoStiCSc.ccuveririniin i 67

{0 o1 L] 0] OSSP 72
Initialization and Capabilities..........c.ccucririininini s 72

CoMPIEtion RESOIVEcoceiuirieiriire et e 89

SIGNATUIE HEIP ..ot 92
Initialization and Capabilities..........cucvveriernrnrnine e 92

3 01 97
Initialization and Capabilities..........cvvvrererererreriere s serse e sa e s e sre e s e nsesaens 97
Generating the HOVEN ... s 97

£ 117 S 100

Chapter 7: Refactoring and Code FIXeScciuussmmmmmmssssnnsmsssssnnnssssssnnnssssssnnnssssssnnnss 101

RENAME ..o e e e e e p e e e e Re e e e e nnn 101
Initialization and Capabilities..........cucvvererniriniere s e 102
Generating the Workspace Editcccoevvirvnennnininse e sessese e sessessessessssessessees 103

Prepare RENAME ... s r s e p e s s p e nne 107

vii

TABLE OF CONTENTS

FOrMAatiNg ..ceceececer e e e 109
Initialization and Capabilities........ccuevrerrinrninn s 109
Generating the Formatting TEXEAILSccccvvririinini e 110

Range FOrMattingcccoeerrnernenerese s 111
Initialization and Capabilities..........cccviririnninr i ——— 112
Generating the Range Formatting TeXtEAitScccvvvvrierinnnini s 112

ON TYPE FOrMATINGcovecerereresere s s s e se s e s s e s sae e s saesne e e e naenae e 114
Initialization and Capabilities.........ccuvvrererrrrreriere s e sa e e sae s 114
Generating the On Type Formatting TeXtEdits.........ccccvvrinrininininsncn e 115

000 L3V 0] 117
Initialization and Capabilities..........cccvvririininin i ——————— 118
Generating the COABACHIONccceeecerierre s 120

Code ACtiONS RESOIVE........cccouruieiiririrsrcs e e 125

000 L] I PR 126
Initialization and Capabilities........ccuvvrerrinrininin s 126
Generating the RESPONSE ... e e 127

COUELENS RESOIVE.......eceeecereeriee e ne s 128

COUELENS REfTESHceveerreeriscsr e nr e 128

BT 11134 OO 129

Chapter 8: Code Navigation and Navigation Helpers.......c.ccceurnssennnnsssssnnnssssssnnnss 131

[31C] (<] €1 131
Client Capabilities. ... e e 132
Server Capabilities ... ———————— 132
Generating the RESPONSEcveeerererrnesrrese s s nranis 132

DEFINITION.....viviccce e ————————— 134
1= 0 T T2 Lo (T 134
Server Capabilities ... ——————— 135
Generating the RESPONSE ... e 135

viil

TABLE OF CONTENTS

TYPE DEFINITION ..o e e 138
Client CapabilitieS........covvrrirrirrrnrrr s e s 139
Server Capabilities ... ———————————— 139
Generating the RESPONSEccoeerreeererererese s 140

IMPIEMENTALIONc.civiiicir e 141
Client Capabilities.....cucvevvreriererrrirse s 142
LT L= g 0% Ta T o1] TR 142
Generating the RESPONSEccvevererrrerenesserserse s s ssesaessssessessesssssssessesasssssessessesssssssesaeses 142

(DL 1T 143
Client Capabilities. ... e e s 143
Server Capabilities ... ———————————— 143
Generating the RESPONSEcuecereierrnesiiese s 144

DOCUMENT SYMDOL......ccv i s e e s s ae e s sae s ae e e e e e nne e 144
12T 0 0T T2 Lo (TR 144
Server Capabilities ... ——————— 145
Generating the RESPONSE ... e 146

Document Highlight ... 150
Client Capabilities.....cccuvviirirrrrirsr e e e 150
Server Capabilities ... 150
Generating the RESPONSEcveveverrrieresirsersere s s e sesse e sssssssessesaessssessessesssssssesnees 151

DOCUMENT LINK ...t s 153
Client Capabilities. ..o e e s 153
Server Capabilities ... ———————————— 153
Generating the RESPONSEcceeerveernenirese s nra s 153

Document LinK RESOIVEcoveeierirce e sr s s s s sssse s 155

£ 11134 OO 156

ix

TABLE OF CONTENTS

Chapter 9: Presentation and Selectionccuccmrrnsssnnnnmssssnnnmnssssssnsssssssssesssssnnns 157
SEMANTIC TOKENScecuecrererieeecre s e s e s a s e ne e n e aes 157
Client Capabilities. ... e e s 159
Server Capabilities ... ——————————— 159
Generating the RESPONSEcveeererernesenese s s 160
DOCUMENTE COIOT ... e 165
12T 0 0 T T2 Lo (T 165
LT L= g 0% T = o1 O 165
Generating the RESPONSE ..o e 165
COlOr PreSentation.........c.ccceeeeerenerncsesese e e 167
Generating the RESPONSEccccereeerneserese s nra s 168
FOIAING RANGEcviveerrcertccr et 169
(TS 0 0 T T Lo (TS 170
LT L= g 0% T T o1) O 170
Generating the RESPONSEccccueccrirerrcrire st se s p s 170
SelECHON RANGE.......ccc i e e 172
Client Capabilities. ... e s 172
Server Capabilities ... 172
Generating the RESPONSEcvevvririneninir s s s s s sas s s sae s 172
Linked EdItiNg RANQEcceeererrrieriereresessesesessssessessessesssessessesessessessesssssssessesssssssessessssssssnsesaens 174
{812 0 0T T2 Lo (T 174
Server Capabilities ... —————————————— 174
Generating the RESPONSEccverererrererese s s neenis 174
Prepare Call HIBrarchyc.occoveeerenesnsesenesessse s ssssessssssessssssssssssssssessssenns 176
Client CapabilitieS........cooueerrrerererernserne s 176
Server Capabilitiesvvvvcrrrere s nne 176
Generating the RESPONSEccveveverrerierensrserere s ses s sse s s ssesssssssessesaessssessessesssssssesneses 177
Call Hierarchy INCOMINGcccoiirirrerire s se s se s e 178
Generating the RESPONSE ... e e 179

TABLE OF CONTENTS

Call Hierarchy OULGOINGcovierrerererersereressssessessessessssessessesssssssessessesssssssessessssessessesssssssensesses 180
Generating the RESPONSE ... s 180
SUMIMAIY ..t s b e e e e b b e e e e Re e A e e e e e Re e Re A e e e e e Re R e e e e naennn 181
Chapter 10: Workspace Operationscccommussssmmmsssssssnmssssssssmssssssnnssssssssssssssnnnnss 183
WOrKSPACE FOIUETScvueieieirire et e b s e e e 184
Client CapabilitieS........cooueerirererirernse s 184
Server Capabilitiesvvvcrvrere s ae 184
Sending the REQUESTccvverererirrere s re s s e sse e sse e se s saesas e ssesaesaeses e saesassassensesnens 185
Workspace Folders Change Notificationccucvninnnnnsninicsness s sessesesseens 185
Client Capabilities. ... e e s 186
Server Capabilities ... ———————————— 186
Processing the NotifiCation ... s 186
Notification of Configuration Changeccvvrrrniernnnsni s sessesaens 187
1= 0 T T2 Lo (TS 188
Processing the NOtIfiCationcccccvvrierrirrrcr e 188
CONTIGUIALION......couecieicccr s s p e e e b e e e nnas 191
Client Capabilities. ... e e 191
Generating the REQUESTcvverererneserese s s s neens 191
Watched Files Change NOTIfiCationc.ccccvvererinennsennnesensse s sessessssenens 192
[1= 0 T T2 Lo (TS 193
Registration OPtiONScccvecervererierersere s s s s s se s s sae s s e s sae s s e e s saesae e s e naesnes 193
Processing the Notification ... 194
WOrkSpace SYMDOL ..o e e s e e s 196
Client Capabilities. ... e e 196
Server Capabilities and Registration Options ... 197
Generating the RESPONSEcvevviiririerinir s s s s saesas e s sae s 197
EXECULE COMMEANGceeiriirieciri s 199
12T 0T T2 Lo T (T 199
Server Capabilities ... ——————————— 199
Executing the COMMAN.........ccovioereerrcrreer e 200

TABLE OF CONTENTS

ADPIY Bttt s 200
Client CapabilitieS........covvrriririrrn s e s 201
Sending the REQUEST ... s s nne s 202

Will Create FilEScccoereeerreeriresese e s s se e e e e nnn e 203
Client Capabilities.....c.ccuvvirrrnrrrirsr e e e 204
Registration OPtiONS......c.ccovvrierierierinsere s s s s s e 204
Generating the RESPONSEccveveverrrierenirsersere s s s sse e saessssessesaessssessessesssssssesnees 204

Did Create FileS......ovieeeriresisecsese s 205
Client Capabilities. ... e s 205
Server Capabilities ... ——————————— 205
Handling the NOtifiCationc.cocccreerncrncsr s 205

Will RENAME FilESvevieeeeieerinesine st sr e s sr s sss e e sn s 205
Client Capabilities.....cucverereriere s s s e r e s a e e ne e 206
ST V= G 10T) T 206
Generating the RESPONSE ... bbb 206

Did RENAME FlBSceeeeereecrerceree e 206
Client Capabilities. ... e s 206
Server Capabilitiescuvvvirrnirnrir e e 207
Handling the Notification ... e 207

L L D= 0 207
{812 0 0T = Lo (T 207
Server Capabilities ... ———————————— 207
Generating the RESPONSEcceerererrererese s s s nrenis 208

Deleted Files NOLIfICAtION.........ccoveeeresernserirese e e 208
Client CapabilitieS........cooueerrrereresernsesne s 208
SErver Capabilitiescvevererreriere s sere s s e s e e e ae e 208
Handling the Notification ... 208

£ 111117 OO 209

xii

TABLE OF CONTENTS

Chapter 11: Advanced CONCePLS.....ccccrrrsssnnnrrsssssnnnssssssnssssssssnnssssssssnnssssssnnssssssnnnnss 211
WOIK DONE PrOgreSscoeviiiirirene s ss s s st sssesesne st st s snesne s s s s 211
BEOIN PrOQIESS ..cveiiiririerie st d s bbb b e e e e s 214
REPOIM PrOQIESS....c.cereeerreerrnesesseses e ses e sessese s ses e ses e s e se s ses e ssssesss e sessssensssesssessnns 215
ENG PrOOIESS ..oueveeeeresesieese s se e se s s s se s s s s s e s snesssnessesnssasnssssnnennes 215
Implementing the Server-Initiated Progress.......covvvrinnnnsniennninsesse s ssssessesessssessessenns 215
Partial RESUIL SUPPOIT.......ccieveirierere st serere s e s sse e e se s ssese s e s saess e e s e ssesaesessesaesaesssssssesanes 218
Working With LAUNCREIS ..ot e 218
L =] 1T N o0 1 T 223
Implementing and Extending ProtoCol SErViCES........ccourrrrrernererenerensesesese s 223
Supporting Multiple Languages.........c.cueeeerrenernnesesesssesssssesesssessssessssssssssssssssesssssssssssssseses 226
11T 111 1T o OSSOSO 230

T X, X;

xiii

About the Authors

Nadeeshaan Gunasinghe is Technical Lead at WSO2

and has more than five years of experience in enterprise
integration, programming languages, and developer
tooling. He leads the Ballerina Language Server team and

is a key contributor to Ballerina, which is an open source
programming language and platform for the cloud, and he is
an active contributor to the WSO2 Enterprise Service Bus.

Nipuna Marcus is Technical Lead at WSO2 and has more
than five years of experience in front-end development,
programming languages, and developer tooling. He was a
member of the Ballerina Language Server team and a key
contributor to the Ballerina programming language.

About the Technical Reviewer

¥ Andres Sacco has been working as a developer since

2007 in different languages including Java, PHP, Node.js,
and Android. Most of his background is in Java and the
libraries or frameworks associated with this language, for
example, Spring, Hibernate, JSE and Quarkus. In most

of the companies that he worked for, he researched new
technologies in order to improve the performance, stability,
and quality of the applications of each company.

xvii

Acknowledgments

We would first like to thank Jonathan Gennick, Assistant Editorial Director at Apress, for
evaluating and accepting our proposal for this book. We would also like to thank Laura
Berendson, Development Editor at Apress, and Nirmal Selvaraj, Project Coordinator, for
guiding us toward the end. Andres Sacco served as the Technical Reviewer. Thank you,
Andres, for making sure we did our best.

Kasun Indrasiri, Software Architect and author of Microservices for the Enterprise and
GRPC: Up and Running, inspired us to work on this book and mentored us throughout
the process. We are eternally grateful to Kasun Indrasiri for the guidance and support.

Finally, we would like to thank our families and parents as, without them, none of
our life achievements would be possible.

Xix

Introduction

The Language Server Protocol (LSP) has been one of the most talked about topics during
the past few years when it comes to the tooling for programming languages. With the
advancement of the developer tools and the programming languages, developers started
to rely more and more on advanced tools and enhanced language services. When we
consider one of the most focused branches of developer tools which is IDEs and text
editors, there are many vendors who have released various editing tools in the past
couple of decades. When we consider the number of programming languages along with
the number of smart editors nowadays, in order to support language intelligence among
the editors, these vendors have to repeat the same thing. The Language Server Protocol
was introduced to solve this particular problem, and today it has become the norm of
the development tools’ language intelligence provider. By adopting the LSP, tools such
as text editors and integrated development environments (IDEs) could expand the
capabilities and avoid the users’ burden of switching between the development tools for
trying new programming languages and frameworks.

This book is for the developers who are passionate about developing programming
language tools. In this book, we provide the readers a comprehensive understanding
about the Language Server Protocol and how to develop a Language Server from scratch.
The readers will be guided with code samples to provide a better understanding about
the server implementation by adhering to the user experience best practices as well as
the LSP best practices. The readers are expected to use the book along with the example
implementation, in order to get a better understanding about the concepts described
in the book. In the example implementation, the book refers to VS Code as the client;
however, the readers can use any other client and integrate the server implementation as
desired.

The chapters of the book have been ordered to capture various aspects of the
developer experience when it comes to the programming language tooling, and the
LSP operations and features are categorized under these aspects. The readers are not
overwhelmed by including the code snippets of the data structures in the LSP and it is
recommended to refer to the official documentation of the Language Server Protocol for
the data structures.

xxi

CHAPTER 1

Developer Tools
and Language Services

Today, software development has become an area where there are higher expectations
when considering the rapid development, go-to market, deployment, distribution, and
similar aspects. In this book, we are going to focus on a specific technical perspective
related to source code editing or, in other words, writing the software.

Early Programmable Computers

Decades before the golden age of digital computers, it all began with mechanical
computers. Even though today computers can carry out various tasks, early
mechanical computers could carry out a specific task. Among them, one of the most
important programmable machines developed was the Jacquard loom. Jacquard
loom’s idea of programming the machinery was later inspired by other programmable
inventions as well.

Joseph-Marie Jacquard invented the Jacquard loom® in 1804. The Jacquard loom was
programmed by using punched cards. Different weaving patterns could be programmed
by using punched cards, and the loom was automated on top of the program. Therefore,
the Jacquard loom is considered the first programmable machine, and the concept of
punched cards was adopted later by both Babbage as well as digital computers.

In the history of mechanical computers, the Analytical Engine developed by
Charles Babbage? can be considered as the earliest mechanical computer. Input data
was fed to the machine by means of punched cards which were used in the Jacquard

"www.columbia.edu/cu/computinghistory/jacquard.html
2www. computerhistory.org/babbage/

© Nadeeshaan Gunasinghe and Nipuna Marcus 2022
N. Gunasinghe and N. Marcus, Language Server Protocol and Implementation,
https://doi.org/10.1007/978-1-4842-7792-8_1

https://doi.org/10.1007/978-1-4842-7792-8_1#DOI
http://www.columbia.edu/cu/computinghistory/jacquard.html
http://www.computerhistory.org/babbage/

CHAPTER 1 DEVELOPER TOOLS AND LANGUAGE SERVICES

programmable loom. One of the most important aspects of the Analytical Engine is the
ability to program the engine by changing the instructions on punched cards.

In both of the aforementioned examples, the medium of programming the
computers was using punched cards. Not only mechanical computers but also early
digital age computers used punched cards to input programs to the computer and store
data. For example, if we consider computers such as IBM 360, it was the punched cards
that were used to write the programs.

Code Forms and Punched Cards

For instance, let’'s compare how we write our programs with a programming language
today with the punched card era.®* Have you ever wondered that it might have taken
hours to write a program, run it, and see the output? Have you ever tried to write a
program on a piece of paper? Imagine how tedious that would be to develop even

a simple “Hello world!” in such a manner? Decades before today, this is how even
professional programmers used to write their programs. As briefly described in the
previous section, in early days punched cards were used to store data and programs, and
those cards were fed into the computer for execution. Keypunching your program to the
punched card in a single run is not an easy task. Therefore, another technique called
code sheets, also known as coding forms, was used. The programmers had to write
their programs’ instructions on the code sheets at first. Then they had to convert these
instructions to a form which can be identified by the computers.

Computers could identify and process the instructions fed in the form of punched
cards. A punched card operator keypunches the instructions onto the punched cards to
insert them into the computer to run. If there is an error or a bug, you have to follow the
same routine again and again to fix it.

Now consider a program with a number of statements and the cycle of writing,
running, and fixing issues. Each time, you will get a stack of punched cards where the
program is embedded into. This is the amount of work that had to be done decades ago
in order to write even a simple "Hello World" program.

Swww.columbia.edu/cu/computinghistory/fisk.pdf

2

http://www.columbia.edu/cu/computinghistory/fisk.pdf

CHAPTER 1 DEVELOPER TOOLS AND LANGUAGE SERVICES

Text Editors vs. Source Code Editors

With the advancement of technology, programmers started using various tools for
writing their codes with convenience. Among these tools, text-based editors have
become more popular than other options. Even though text-based tools are more
popular than the others, there are other tools such as visual programming editors which
allow users to write their code with graphic components. Developers can drag and drop
high-level graphical constructs/basic programming constructs to build the program,
and the editor auto-generates the textual code on behalf of the user. Google’s Blockly is a
library which allows building visual programming editors. Also, programming languages
such as Prograph and visual programming environments such as Cantata* can be
considered as tools for visual programming.

Today, when editing source codes, there are various editing tools to be chosen
among. The most common choice would be a source editor, text editor, or an IDE. In
one aspect, all the aforementioned choices are similar, in that all those options support
text editing. But, those are completely three different tools when it comes to the editing
experience. Most of the time, there is a misconception to consider that source code
editors and text editors are the same even though they are not. Text editors, as the name
implies, are used for editing textual content and can also be used for composing and
editing source codes. Source code editors on the other hand have language sensitivity
and context awareness. There are certain features incorporated into source code
editors which represent language sensitivity and context awareness. Among them,
auto-completion, syntax highlighting, and intelligent refactoring options such as source
formatting can be shown as the most commonly used features.

Before the origin of graphical user interfaces (GUIs), command-line interface
(CLI)-based text editors were popular among the developers. While CLI-based editors
are command driven, GUI-based editors are menu driven. Even though GUI-based
editors became popular, people continued to use CLI-based editors even today. Also,
having certain expertise in using a CLI-based editor is a must when you get to work
in an environment without a GUI such as a server. Today, we can install plugins and
extensions for text editors, and we can convert them to behave similarly to source code
editors. One such example is the Vim editor, where you can install various plugins for
formatting and auto-completion for JavaScript development.®

*https://dl.acm.org/doi/abs/10.1145/204362.204367
*https://vimawesome.com/plugin/vim-javascript

https://dl.acm.org/doi/abs/10.1145/204362.204367
https://vimawesome.com/plugin/vim-javascript

CHAPTER 1 DEVELOPER TOOLS AND LANGUAGE SERVICES

Some examples of text-based editing tools are as follows:

e Vi
e Vim®
¢ Emacs’

e Notepad++®

o Visual Studio Code (VS Code?)
¢ NetBeans'

e Eclipse

Intelli] IDEA'

This is just a small sample of editors among numerous available options.
These various editors can be categorized based on multiple factors, such as

e Language support (multi-language or specific language support)

IDEs such as Intelli] IDEA, Eclipse, and VS Code support multiple
programming languages allowing the user to install plugins and
extensions. When the Java ecosystem is considered, Intelli] IDEA
and Eclipse are the popular choices among the developers.

o Hosting environment (cloud hosted or locally hosted)

IDEs such as Codenvy, JSFiddle, and CodePen are popular cloud-
hosted IDEs. CodePen and JSFiddle have become the most widely
used IDE solutions to share working code examples.

Swww.vim.org/download.php
"www.gnu.org/software/emacs/
8https://notepad-plus-plus.org/
*https://code.visualstudio.com/
"https://netbeans.apache.org/
"www.eclipse.org/downloads/

www. jetbrains.com/idea/download/

4

http://www.vim.org/download.php
http://www.gnu.org/software/emacs/
https://notepad-plus-plus.org/
https://code.visualstudio.com/
https://netbeans.apache.org/
http://www.eclipse.org/downloads/
http://www.jetbrains.com/idea/download/

CHAPTER 1 DEVELOPER TOOLS AND LANGUAGE SERVICES

o Development type oriented (web development/mobile
development/DevOps)

Android Studio is the official IDE by Google for Android
development which is built on Intelli] IDEA. If we consider
tools such as Vi and Vim, they are widely used when it comes to
DevOps tasks such as server configurations.

o Extensibility and plugin support

Users can install plugins to the VS Code editor and expand the
default capabilities. For example, the VS Code marketplace has
plugins for numerous programming languages.

Given the aforementioned categorization, if we consider the JVM ecosystem,
the most widely used IDE is Intelli] IDEA, while text editors such as VS Code and Vi/Vim
have a lesser usage.'® Even though we consider the JVM ecosystem here, according to
the Stack Overflow Developer Survey (2021),'* VS Code is the most commonly used text
editor among the developers.

Why IDEs

Source code editing is not the only phase in the software development life cycle, which
consists of a number of phases as well as associated supporting steps. In each of these
steps, the stakeholders use various tools to facilitate these phases. Several such tools can
be listed as follows:

o Diagramming tools (for use case identification, ER diagrams'®)
e Source code editors (Notepad++, Vim)

e Version control systems (Git,'® SVN'7)

Bhttps://res.cloudinary.com/snyk/image/upload/v1623860216/reports/jvm-ecosystem-
report-2021.pdf

“https://insights.stackoverflow.com/survey/2021#integrated-development-environment
“https://staruml.io/

"https://docs.github.com/en/get-started

"https://subversion.apache.org/

https://res.cloudinary.com/snyk/image/upload/v1623860216/reports/jvm-ecosystem-report-2021.pdf
https://res.cloudinary.com/snyk/image/upload/v1623860216/reports/jvm-ecosystem-report-2021.pdf
https://insights.stackoverflow.com/survey/2021#integrated-development-environment
https://staruml.io/
https://docs.github.com/en/get-started
https://subversion.apache.org/

CHAPTER 1 DEVELOPER TOOLS AND LANGUAGE SERVICES

o Debuggers (JSwat'®)

« Coverage tools (JaCoCo™)

o Code search tools (Sourcegraph®)
o Linters (Checkstyle?!)

o Issue trackers

e DevOps tools

e Andsoon

Among these tools, we can identify categories, and during the last couple of decades,
various platforms and products were introduced focusing on specific categories.

When we consider the IDEs, they put numerous features together. Therefore, we
can identify IDEs as an all-in-one package for a developer. This is one reason for IDEs
becoming popular over time when compared to text editors. Among the incorporated
features in IDEs, the following can be identified as the most widely used ones:

o Context-aware auto-completions (smart completions)

e Source refactoring options (rename references, formatting)
e Code search options (for Java, class and method search)

e Runand debug

o Code coverage

o Integrated version controlling (Git integration and SVN)

Bhttps://github.com/nlfiedler/jswat
“'www.eclemma.org/jacoco/

2 https://about.sourcegraph.com/
2thttps://checkstyle.sourceforge.io/config_design.html

6

https://github.com/nlfiedler/jswat
http://www.eclemma.org/jacoco/
https://about.sourcegraph.com/
https://checkstyle.sourceforge.io/config_design.html

CHAPTER 1 DEVELOPER TOOLS AND LANGUAGE SERVICES

Language Intelligence

In the previous sections, we had a look at the various options available for source code
editing. Whether it is a text editor, a source code editor, or an IDE, all of those tools have
a common underlying competency to be aware of the language syntax and semantics; we
call it language intelligence. Let’s consider an example usage of an IDE for programming.
There are numerous language-sensitive features a user uses during coding.

One of the most frequently used language intelligence features is diagnostics.
For example, consider writing Java code with a missing semicolon (syntax error) and
compile it. Then the compiler will stop in the middle of compilation, and the console will
show the problems in the source. Listing 1-1 is an example of an erroneous Java source
where there is a missing semicolon. You can copy and paste the sample code snippet in
your favorite source code editor and observe how the editor represents these errors to
the developer.

Listing 1-1. Invalid Java Source with a Missing Semicolon

public class Greeting {
public static void main(String[] args) {
// Semicolon is missing in print statement
System.out.println("Hello World")

As an exercise, you can select more than one IDE/source editor and observe the
diagnostic representations in those. Depending on the tool, the representation of the
diagnostics can be different. Figure 1-1 is an example of the diagnostic representation for
the preceding erroneous source snippet.

CHAPTER 1 DEVELOPER TOOLS AND LANGUAGE SERVICES

® @ LanguageServerBookSamples - Greeting.java
= H S €« A, Add Configuration... @ fE BQ
LanguageServerBookSamples = src = '€ Greeting
E Project = B = = B — @ Greetingjava
= 2 LanguageServerBookSamples [L€ 1 » | public class Greeting { o1
=) .idea 2 > public static void main(String[] args) {
src 3 // Semicolon is missing in print statement
& Greeting 4 System.out.println("Hello World")
u LSImplSamples.iml 5 }
- |l External Libraries 6 }
‘D Scratches and Consoles 7
2
=
g
£ Problems: Current File 1 Project Errors 1 a —
= ® C’Greeting.java ~/Development/repofLanguageServerBookSamples/src 1 problem
. 0 ;' expected :4
£
2
&
*
= TODO | @ Problems EM Terminal () Event Log
(| 6:2 LF UTF-8 4spaces ‘la = 303 of 1979M

Figure 1-1. Showing diagnostics for Java in Intelli] IDEA

When it comes to the IDEs/editors for source code editing, it is important to show
the syntax or semantic errors on the fly. In order to implement the diagnostics for a
particular programming language or even a configuration language such as Swagger,*
the IDE or tooling developer needs to map the compiler’s knowledge to the tooling APIs
preserving the user experience.

We had a look at the diagnostics since it is one of the basic language intelligence
features. Similar to the diagnostics, other features such as smart completions, refactoring
(rename and formatting), code navigation, etc., play a major role in the development
experience. Therefore, every developer tooling vendor pays considerable attention
to language intelligence features integrated with the tools. With time, these language
features were enriched with capabilities such as incorporating machine learning,

artificial intelligence, and smart decompilers.?

*2https://swagger.io/solutions/api-documentation/
Bhttps://github.com/JetBrains/intellij-community/tree/master/plugins/
java-decompiler

8

https://swagger.io/solutions/api-documentation/
https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler
https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler

