Convolutional
Neural Networks
with Swift for
Tensorflow

Image Recognition and
Dataset Categorization

Brett Koonce

Convolutional Neural
Networks with Swift
for Tensorflow

Brett Koonce

Apress’

Convolutional Neural Networks with Swift for Tensorflow: Image

Recognition and Dataset Categorization

Brett Koonce
Jefferson, MO, USA

ISBN-13 (pbk): 978-1-4842-6167-5 ISBN-13 (electronic): 978-1-4842-6168-2
https://doi.org/10.1007/978-1-4842-6168-2

Copyright © 2021 by Brett Koonce

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,

1 NY Plaza, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6167-5. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6168-2

Table of Contents

About the AUthorcccmvemmrsmmmm s ——————— xi
About the Technical REVIEWETccusseesssssnsssssnsssssnsssssnsssssnsssssanssssnnss xiii
Introduction........cccccinsmmmismmmmsss s ———————— Xv
How this book is organizedccccmemsssmnnmmmssssnnsmsssssnnsssssssssnsssssnnnnes Xix
Chapter 1: MNIST: 1D Neural Networkcccussssmmsmnnnmssssssssssssssssssssssnns 1
DAtaSEt OVEIVIBWcceveerircirie et 1
Dataset hANGIEr..........ovcereerecrr s 2
Code: Multilayer perceptron + MNIST ..o 4
RESUILS ... 6
Demo breakdown (igh [@VEI)cceceeverierirrere s 7
0] 00 3)OS 7
Model breakdown (2)cocvveeerierirrirre e s 8
GIObal Vari@hIeSs (3) ..ccveveeerreserrrerrsrenerraeressesesesesss s s e sra e seans 10
Training 100D: UPAALES (4) ..vvccverererreerreeresesesese s sessese s sessesessesessssesessssesssnens 11
Training 100DP: ACCUIACY (D) .vvuerersererrererersereresessenersssesessesessesessssessssssssssnessssssssssnens 12
Demo breakdown (IOW IBVEI)........ccocerereririniernsnsene e snens 14
Fully connected neural network layers.........cccceeevvvcerreniersensesseesessesses e ssessenns 14
How the OPtiMIZEr WOIKScoeverviriereviesersere e sessessessesessessessessesessessessessssessessens 15
Optimizers + neural NEIWOIKSccccevevrrrierin e ssesnens 16
SWift fOr TENSOMTIOWceviccircsire s e 17
SIUE QUESTS . s 18
RECAP ...t 18

iii

TABLE OF CONTENTS

Chapter 2: MNIST: 2D Neural Networkccccusssesnsssssssssssssssssnssssssnnnnes 19
0] 110 11 0] L 19
3x3 additive blur eXample ..o ——— 20

3x3 Gaussian blur eXamPIeccceerevvnennnnr e 20
Combined 3x3 convolutions — Sobel filter examplecccocvvvrnienriesernnne. 21

X3 SHAING...ce e —————— 22
T o 11 o S 22

1 40100 S 23

2D MNIST MOGEIvvvrerirerererereresesesesesese s ss e ssanas 23
00 L TR 24

SIUE QUEST......eeeerecc e 27
RECAP ...t e e e nne 27
Chapter 3: CIFAR: 2D Neural Network with BIOCKS........ccussssssssnnnnnsnnas 29
CIFAR datasel........cccvirernnenininnnese s sene 29
0] 1] 29
BreakadOWN........cooeiiictrc s s 30
[0 PR 30
RESUILS ... s 33
SIUE QUEST ... —————————— 34
RBCAD ..t —————————— 34
Chapter 4: VGG Networkccusesrmsesmssmsmsssmsssssssssssssssssssssssssssssansnsass 35
Background: ImageNet.........c.cccvrnrinnn 35
Getting IMAgENEL........cco e ——— 36
Imagenette dataset.............ccoriirn—————— 36

Data augmentationccvvvvnienennsnrne e ————— 36

VGG ..oeeenenerersnsssssese st e e e e b e e e nan 40

iv

TABLE OF CONTENTS

0T R 4
RESUILS.....ccvieiiireriire e 45
MEMOIY USAQE......eiuirerirreererersessse s st s e s s s s s e s s sa s n e st e ne s ae s 45

Model refactoring........cccocvverienerirsr e s 47
VGG16 With SUDDIOCKS.....cccuiuierrieriririrere s ssssssssssssesees 47
RS (0 [0 11T 50

RECAD ...t e e 50

Chapter 5: ResNet 34.........ccccccmmmmnssmmmmmmmssssnnmmsssssmmssssssnmssssssssssssnnnns 51

SKip CONMNECTLIONS......ccectrirerin e 51
T SRS 52
Batch normalization............coveeeveneresmrnsesneses s 53

0 L 54
RESUIS......cveeeercres e 60
SIdE QUEST......eeere s —————— 61

RBCAD ...ttt —————— 61

Chapter 6: ResNet 50.......cccccerrirmmmmmmmmnnmsssnmmmmmmmmssssssssssssssssssssssssssses 63

Bottleneck BIOCKS..........cccoiriinircrrr 63

00 L P 64

RESUILS ... s e 70

Side Quest: IMAGENEL.........cccvoveererrrere s 70

RBCAD ..t ————— 72

Chapter 7: SqueezeNetccccrniiemmmmnnsennnmnnsssnnmmssssnmnsass 73

SQUEEZENEL.......cerere e e s 73
Fire MOQUIES.......coviviiiiri s 74

DEEP COMPIESSIONcevereirerire s s s sa e s r e s s ae s s 75
MOdEl PrUNiNg ..ccceecerere e ————— 75
Model qUantization.............cvcvrnrnrnn e ——— 76

TABLE OF CONTENTS

SIZE MELHIC v s 76
Difference between SqueezeNet 1.0 and 1.1......ccccovvvvirivnrnrennenesessenenns 77
00 LR 77
L= V10110 8 0 o 81
RESUILS.....ceeeereerce e s 83
SIE UEST.....ererrerrrrire et e e 85
RECAD ...t e ene 85
Chapter 8: MobileNet V1cccciniimmemmmmmmmnnmnsssssssssssee s ssssssssssens 87
10 o712 T T OSSR 87
Spatial separable conVOIULIONS ... 87
Depthwise CoONVOIULIONS ..o e 88
POINtWiSe CONVOIULIONS.......coveeereerreeresesese e 88
RELU B.....vveieeeeee et bttt 89
Example of the reduction in MACs with this approach...........ccccevvvninenne. 89
COUBcvriciere e s 90
RESUIES......cociriiiriiin i —————— 96
RBCAD ..ttt —————— 97
Chapter 9: MobileNet v2...........cccccmnsmmnmmmsnmmsnmmsmmsssmmssmssmssssssssas 99
Inverted residual DIOCKS.......c.cocoereeerecrrce e 99
Inverted skip CONNECTIONS ... s 100
Linear hottleneck Iayers.........cuorvvrresessserssesessse s s ssssessenes 100
Lo SRS 100
RESUIS......cveeeereres s s s 106
RBCAD ...t ————————— 107

TABLE OF CONTENTS

Chapter 10: EfficientNet...........ccccninmmmmmnssssnmmmsssssnnmnsssssensssssnenmnnn 109
SWISH ...t 110
SE (Squeeze + Excitation) DIOCKccccceerenerenernncrercnerese e 111
o SR 111
RESUIS ... s 119

EfficientNet variantscocuvervnnnicnnese s 121
EfficientNet [B1-8]........ccovrerrrinernnerncsersse s s sesnssenens 121
RANAAUGMENT ..o 121
NOISY STUARNL ... 122
EffiCIENtDet.......ccoe e 123
LT o7 oSSR 123

Hard swish and hard Sigmoidccccevrrvrinnnnininrn e 126
Remove the Squeeze and Excitation (SE) block logic for half the network....... 126
CUSTOM NBAG......c.eeeeee e e 126
HYPErparameters ... s st s s 127
PErfOrMAaNCEcccvveerrecrereser e e 127
COUBcerrriere s s 127
RESUIES......cciiiiiri 142
RBCAD ..ttt ——————————— 144
Chapter 12: Bag of TriCKS ..ucuuseeerrrssssnnnsmssssssnsssssssnssssssssnssssssssnsnsssssnns 145
Bag Of TrCKS.....ceicererecrir e e s 145
What to learn from this..........ccoveiricrnnnrs s 148
ReadiNg PAPEIScociiriiirere et 149
Stay behind the CUrVe........ocrrc e ———— 149
HOW | read PAPEISccvcerercrirsirere st sn s snens 151
RECAD ...ttt e s 151

vii

TABLE OF CONTENTS

Chapter 13: MNIST Revisitedccoecemmmmssnnnmmssssnnnmsssssnssssssssnsssssssnns 153
NEXE SIEPS .. ————————— 153
Pain POINTS ...cvoiiirerc s 155
TPU €S STUAY.....creeerereerreerreeresese s e se s sessssesnnnens 157
Tensorflow 1 4 PYLOICHccevvecerrccrccer e 158
Enter functional programming......c.cccevvvnrnennnnsnessnessesese e ssssessessenes 159
SWift + TPU dEBMOvveeirireriririsisee s snanas 160
RESUILS ...t 164
RECAD ...t e e 165

Chapter 14: You Are Here.........ccccuunnmmmmmmmmmmnmmsssssssssssnssssssssssssssssnnsnnes 167
A (short and opinionated) history of COMPUtING........ccccvrvrernrernnenenesernseseneens 167

HISTOrY O GPUS......eceeecrceree e 169
Cloud COMPULING ..c.veueereeereecrese e 170
Crossing the Chasm ... s 170
COMPULET VISION.....cieiererierirse s 170
Direct applications.........ccvvnvnininnnsn e 171
Indirect appliCations..........cccvvrierennrni e ————————— 171
Natural [anguage ProCESSINGcuvrerrrrerrrererrnsesrsesesesessssesese e ssssesessesessanes 171
Reinforcement learning and GANS..........cceerrevnnersenieresessessese s sesse e ssssessessenes 172
SimuIations iN GENEIAL........covirveriererirrerre s sae s e e snens 172
To infinity and beyond...........ccccvrenncncnc e ———— 173
WHY SW....ececeeereeec e s 174
WHY LLVM.....oiesecceeees st ss e 176
WHY MLIR ...ttt 177
Why ML is the most important fieldccoceovvrininninrrr e 177
L L S 178
L0 178

viii

TABLE OF CONTENTS

Appendix A: Cloud Setupcurseerrmssssnnrmmsssssnsssssssnsssssssssnsssssssnnsssss 179
OULIINE ...t 180
Google Cloud with CPU inSTANCESccucererinnninicne s s sessesnens 181

How to sign up for Google Cloudcccoevvvniniennnnsnene s sesesnens 181
Creating your first few inStancesccccocvnvririinnnnnn e 181
Google Cloud with preconfigured GPU inStance............coouevvrererencrnsenenenenennes 182
GOOGIE ClOUd NIESveereeererereree s 185
Cattle, NOt PEIS.....coi i —————— 185
Basic Google Cloud nomenclature...........ccocvveerneneresesssesessesesesesessesesseens 186
ClEANING UP....ccerirerrreserree e sn e ssnnis 187
LT o7 oSSR 187

Appendix B: Hardware Prerequisites, Software Installation

Guidelines, and Unix Quickstart...........cccussmmmrmssssnnnmsssssnnssssssssnsssssnnns 189
3T S 189

Don’t go @loNe! ... ————————— 190
GPU ..ot 190
MURIPIE GPUS ..ottt sr s nnens 192
CPU ... s 193
RAM ...ttt ne e s p e e 194
SSD ..t ————————————————— 194
ReComMMENdAtioNs........ccoveemrenereeerreere e 195
HardWare reCapccocvvererinnsesiese s e sss e s e srs e s e s ssessssessesnens 197
INSEAIlING UDUNTU ... 197
GENEIAI PIrEP .cvveiveiririer et p e s e 199
LRSI 1] | 201
UDUNTU FECAD ..ottt s s 205

ix

TABLE OF CONTENTS

Installing swift for tensorflow ... 206
Installing graphics card drivers and swift for tensorflow..........c.cccceveruenee. 206
Swift for TENSOrfOW FECAP.......coivrerrerrere e rersere s ss e e sae s 214

Installing s4tf from SCratCh..........cccvevriririnncrc e ————— 215
There be dragonS NEre ... s 215
Installing s4tf from scratCh recapccccvvevvrvrre s 226

Client setup process + Unix quickstart..........cccocviriennnnininnnnnnnesssenennens 226
Setting up your client computer/crash course in UniXcccccvverreererierienns 226
GeNeral CONTigcovcvierere s 227
Configuring your network for remote acCess........c.cccvvrrernsnsensesesensensennes 227
Crash COUrSE iN TMUX.......ccceererererrneeseseresssss e sesesssssnsas 229

Appendix C: Additional ReSOUICeS......cccurrusssannsrssssnnsnsssssannnsssssnnnnsssss 231

Python --> swift transition guUIde..........ccceeeernrnnnennres s 231
g o e TSRS 231
REPL ...ttt s ss ettt 231
Python --> Swift DFdge........coeereerreree s 232
PYthon ==> C DIUQE......coveereereerree e 232
PYthon lDFariescccoeevnerereserese s 232

Self-Study GUIE.....ccveeerreerrerr e 233
ThINGS 10 STUAY ...vceereecerrcre e e 233
System monitoring/Utilitiescocvvernssnnesrrese s 238

INA@X . iiiiisssnnnnnnnnnnnssssssssnnnnnnnnnsssssssssnnnnnnnnssssssssnnnnnnnnensssssssnnnnnnnnnnssssssnn 241

About the Author

Brett Koonce is the CTO of QuarkWorks, a mobile consulting agency. He’s
a developer with 5 years of experience creating apps for iOS and Android.
His team has worked on dozens of apps that are used by millions of people
around the world. Brett knows the pitfalls of development and can help
you avoid them. Whether you want to build something from scratch, port
your app from iOS to Android (or vice versa), or accelerate your velocity,
Brett can help.

About the Technical Reviewer

Vishwesh Ravi Shrimali graduated from BITS Pilani in 2018, where he
studied mechanical engineering. Since then, he has worked with Big
Vision LLC on deep learning and computer vision and was involved in
creating official OpenCV Al courses. Currently, he is working at Mercedes-
Benz Research and Development India Pvt. Ltd. He has a keen interest

in programming and Al and has applied that interest in mechanical
engineering projects. He has also written multiple blogs on OpenCV and
deep learning on LearnOpenC}V, a leading blog on computer vision. He
has also coauthored Machine Learning for OpenCV 4 (Second Edition) by
Packt. When he is not writing blogs or working on projects, he likes to go
on long walks or play his acoustic guitar.

xiii

Introduction

In this book, we are going to learn convolutional neural networks by
focusing on the specific problem of image recognition, using Swift for
Tensorflow and a command-line Unix approach. If you are new to this
field, then I would suggest you read the first few chapters and get a working
system bootstrapped and then spend your time going through the basics
with MNIST and CIFAR repeatedly, in particular familiarizing yourself with
how neural networks work. If you feel comfortable with the core concepts
already, then feel free to skip ahead to the middle where we explore some

more powerful convolutional neural networks.

Why Swift

The short version is that I believe swift is a modern, open source, beginner-
friendly language that has proven itself by solving real problems for

iOS developers daily. By integrating automatic differentiation into the
programming language, a number of interesting compiler techniques to
address the limitations of current machine learning software and hardware
become possible in the long term. This is in my opinion where the world is
headed, one way or another.

Why image recognition

Image recognition is one of the oldest, most well-understood uses of
neural networks. As a result, we can introduce the basics and then build
up to advanced state-of-the-art approaches in a logically consistent
manner. With this foundation, you will be able to branch out to tackle

INTRODUCTION

other image-related tasks (e.g., object detection and segmentation) easily.
The deep learning techniques needed to build large-scale convolutional
neural networks translate easily to reinforcement learning and generative
adversarial networks (GANS), two important areas of modern research. In
addition, I believe this foundation will make it easy to make the transition
to time sequence models such as recurrent neural networks (RNNs) and
long short-term memory (LSTM) once you have mastered CNNs.

Why CLI

Broadly speaking, this book is going to focus on a command-line interface
(CLI)-based approach using both a local machine on your home network
and virtual machines in the remote, Google Cloud. This is in my opinion
the best approach because

e We can control costs very effectively. In the worst-
case scenario, you can perform the majority of your
work using a local machine built for under a thousand
dollars, and your only remaining cost will be electricity
and time.

e We can scale easily from anywhere in the world.
Using cloud instances full time can quickly become
expensive, and so many people avoid learning cloud
workflows. But using on-demand cloud-based
resources periodically to augment your local workflow
means you can learn the cloud in a very practical and
efficient way. Eventually, you will be able to prototype
and build solutions on your primary machine, then
quickly scale them up in the cloud to parallelize
computation and access more powerful hardware
when needed or available.

INTRODUCTION

We can get the best of both worlds. While minimizing
costs is certainly important, I have found that focusing
on how much money you are spending tends to produce
a mindset where you are afraid to try new things and
experiment in general. Building your own machine puts
you into the mindset of putting in more cycles to reduce
your costs, which is in my opinion the key to success.

So, toward this end, we will utilize a command-line workflow with the

following goals:

We will use a local terminal interface to log in to all of
our machines, so that there is literally no difference
between our approaches on the desktop and in the
cloud.

We will utilize the same operating system and software
locally and in the cloud so that we do not have to

learn about differences between platforms. Then, by
definition, any workflow you can do on your computer,
you will be able to do in the cloud, and vice versa.

Ultimately, by blurring the line between your personal computer and

the cloud, my goal is for you to understand that there is fundamentally
no difference between doing things locally or remotely. The real limiting

factor then is your imagination, not resources.

Doing things this way will be more work at first, I will admit. But once

you have mastered this workflow, it will be much easier for you to scale

in the future. If you are willing to put in the time now, this approach will

make your skills much more flexible and powerful in the future. What you
do with them is up to you.

xvii

How this book is organized

This book is organized as follows.

Basics

We will explore the basic building blocks of neural networks and how to
combine them with convolutions to perform simple image recognition

tasks.

e Neural networks (1D MLP/multilayer perceptron) and
MNIST

e Convolutional neural networks (2D CNN) and MNIST

¢ Color, CNN stacks, and CIFAR

Advanced

We will build upon the above to produce actual state-of-the-art

approaches in this field.

¢ VGGI6
¢ ResNet 34
¢ ResNet 50

Xix

HOW THIS BOOK IS ORGANIZED

Mobile

We will look at some different approaches for mobile devices, which
require us to utilize our computing resources carefully.

o SqueezeNet
e MobileNet vl

¢ MobileNet v2

State of the art

We will look at the work that leads up to EfficientNet, the current state of
the art for image recognition. Then we will look at how people are working
on finding ways to produce similar results by combining many different
papers together.

o EfficientNet
¢ MobileNetV3

e Bagoftricks/reading papers

Future

We will zoom out a bit and look at why I am excited about swift for
tensorflow as a whole and give you my vision of what the future of machine
learning looks like.

e MNIST revisited

e You are here

HOW THIS BOOK IS ORGANIZED

Appendices

Here’s some information that didn’t quite fit in with the above but I still
feel is important:

e A:Cloud Setup

e B:Hardware Prerequisites, Software Installation
Guidelines, and Unix Quickstart

e (C:Additional Resources

CHAPTER 1

MNIST: 1D Neural
Network

In this chapter, we will look at a simple image recognition dataset called
MNIST and build a basic one-dimensional neural network, often called a
multilayer perceptron, to classify our digits and categorize black and white
images.

Dataset overview

MNIST (Modified National Institute of Standards and Technology) is a
dataset put together in 1999 that is an extremely important testbed for
computer vision problems. You will see it everywhere in academic papers
in this field, and it is considered the computer vision equivalent of hello
world. Itis a collection of preprocessed grayscale images of hand-drawn
digits of the numbers 0-9. Each image is 28 by 28 pixels wide, for a total of
784 pixels. For each pixel, there is a corresponding 8-bit grayscale value, a
number from 0 (white) to 255 (completely black).

At first, we’re not even going to treat this as actual image data. We're
going to unroll it - we’re going to take the top row and pull off each row
at a time, until we have a really long string of numbers. We can imagine
expanding this concept across the 28 by 28 pixels to produce a long row of
input values, a vector that’s 784 pixels long and 1 pixel wide, each with a
corresponding value from 0 to 255.
© Brett Koonce 2021 1

B. Koonce, Convolutional Neural Networks with Swift for Tensorflow,
https://doi.org/10.1007/978-1-4842-6168-2_1

https://doi.org/10.1007/978-1-4842-6168-2_1#DOI

CHAPTER 1 MNIST: 1D NEURAL NETWORK

The dataset has been cleaned so that there’s not a lot of non-digit
noise (e.g., off-white backgrounds). This will make our job simpler. If
you download the actual dataset, you will usually get it in the form of a
comma-separated file, with each row corresponding to an entry. We can
convert this into an image by literally assigning the values one a time in
reverse. The actual dataset is 60000 hand-drawn **training** digits with
corresponding **labels** (the actual number), and 10000 **test** digits
with corresponding **labels**. The dataset proper is usually distributed as
a python pickle (a simple way of storing a dictionary) file (you don’t need
to know this, just in case you run across this online).

So, our goal is to learn how to correctly guess what number we are
looking at in the **test** dataset, based on our **model** that we have
learned from the **training** dataset. This is called a **supervised
learning** task since our goal is to emulate what another human (or
model) has done. We will simply take individual rows and try to guess the
corresponding digit using a simple version of a neural network called a
multilayer perceptron. This is often shortened to **MLP**.

Dataset handler

We can use the dataset loader from “swift-models,” part of the Swift for
Tensorflow project, to make dealing with the preceding sample simpler. In
order for the following code to work, you will need to use the following swift
package manager import to automatically add the datasets to your code.

BASIC: If you are new to swift programming and just want to get
started, simply use the swift-models checkout you got working in the
chapter where we set up Swift for Tensorflow and place the following code
(MLP demo) into the “main.swift” file in the LeNet-MNIST example and
run “swift run LeNet-MNIST".

CHAPTER 1 MNIST: 1D NEURAL NETWORK

ADVANCED: If you are a swift programmer already, here is the base
swift-models import file we will be using:

[NENEN

/// swift-tools-version:5.3
// The swift-tools-version declares the minimum version of
Swift required to build this package.

import PackageDescription

let package = Package(
name: "ConvolutionalNeuralNetworksWithSwiftForTensorFlow",
platforms: [
.mac0S(.v10_13),
])
dependencies: [
.package(
name: "swift-models", url: "https://github.com/
tensorflow/swift-models.git", .branch("master")

)s

])
targets: [
.target(
name: "MNIST-1D", dependencies: [.product(name:
"Datasets"”, package: "swift-models")],
path: "MNIST-1D"),
]

Hopefully, the preceding code is not too confusing. Importing this
code library will make our lives much easier. Now, let’s build our first
neural network!

CHAPTER 1 MNIST: 1D NEURAL NETWORK

Code: Multilayer perceptron + MNIST

Let’s look at a very simple demo. Put this code into a “main.swift” file with
the proper imports, and we'll run it:

/17 1
import Datasets
import TensorFlow

/12

struct MLP: Layer {
var flatten = Flatten<Float>()
var inputlayer = Dense<Float>(inputSize: 784, outputSize:
512, activation: relu)
var hiddenLayer = Den se<Float>(inputSize: 512, outputSize:
512, activation: relu)
var outputlayer = Dense<Float>(inputSize: 512, outputSize: 10)

@differentiable
public func forward(_ input: Tensor<Float>) -> Tensor<Float> {
return input.sequenced(through: flatten, inputlayer,
hiddenLayer, outputlLayer)
}
}

/13

let batchSize = 128
let epochCount = 12
var model = MLP()

CHAPTER 1 MNIST: 1D NEURAL NETWORK

let optimizer = SGD(for: model, learningRate: 0.1)
let dataset = MNIST(batchSize: batchSize)

print("Starting training...")

for (epoch, epochBatches) in
dataset.training.prefix(epochCount).enumerated() {
/1 4
Context.local.learningPhase = .training
for batch in epochBatches {
let (images, labels) = (batch.data, batch.label)
let (_, gradients) = valueWithGradient(at: model) { model
-> Tensor<Float> in
let logits = model(images)
return softmaxCrossEntropy(logits: logits, labels: labels)
}

optimizer.update(&model, along: gradients)

}

/15

Context.local.learningPhase = .inference

var testlLossSum: Float = 0

var testBatchCount = 0

var correctGuessCount = 0

var totalGuessCount = 0

for batch in dataset.validation {
let (images, labels) = (batch.data, batch.label)
let logits = model(images)
testLossSum += softmaxCrossEntropy(logits: logits, labels:
labels).scalarized()
testBatchCount += 1

CHAPTER 1 MNIST: 1D NEURAL NETWORK

let correctPredictions = logits.argmax(squeezingAxis: 1) .
== labels

correctGuessCount += Int(Tensor<Int32>(correctPredictions).
sum().scalarized())

totalGuessCount = totalGuessCount + batch.data.shape[0]

}

let accuracy = Float(correctGuessCount) / Float(totalGuessCount)
print(
[Epoch \(epoch + 1)] \
Accuracy: \(correctGuessCount)/\(totalGuessCount)
(\(accuracy)) \
Loss: \(testLossSum / Float(testBatchCount))

Results

When you run the preceding code, you should get an output that looks
like this:

RN

Loading resource: train-images-idx3-ubyte Loading resource:
train-labels-idx1-ubyte Loading resource: t10k-images-idx3-
ubyte Loading resource: t10k-labels-idx1-ubyte

Starting training..

[Epoch 1] Accuracy: 9364/10000 (0.9364) Loss: 0.21411717
[Epoch 2] Accuracy: 9547/10000 (0.9547) Loss: 0.15427242

CHAPTER 1 MNIST: 1D NEURAL NETWORK

w

Accuracy: 9630/10000 (0.963) Loss: 0.12323072
Accuracy: 9645/10000 (0.9645) Loss: 0.11413358
Accuracy: 9700/10000 (0.97) Loss: 0.094898805

Epoch 3]
]
]
] Accuracy: 9747/10000 (0.9747) Loss: 0.0849531
]
]
]

~

Epoch
Epoch
Epoch

S U

~

Accuracy: 9757/10000 (0.9757) Loss: 0.076825164
Epoch 8] Accuracy: 9735/10000 (0.9735) Loss: 0.082270846
Epoch 9] Accuracy: 9782/10000 (0.97) Loss: 0.07173009
Epoch 10] Accuracy: 9782/10000 (0.97) Loss: 0.06860765
Epoch 11] Accuracy: 9779/10000 (0.9779) Loss: 0.06677916
Epoch 12] Accuracy: 9794/10000 (0.9794) Loss: 0.063436724

Epoch

O oo

[
[
[
[
[
[
[
[
[
[

Congratulations, you've done machine learning! This demo is only a
few lines long, but a lot is actually happening under the hood. Let’s break
down what'’s going on.

Demo breakdown (high level)

We will look at all of the preceding code, going through section by section
using the number in the comments (e.g., //1, //2, etc.). We will first do

a pass to try and explain what is going on at a high level and then do a
second pass where we explain the nitty-gritty details.

Imports (1)

Our first few lines are pretty simple; we’re importing the swift-models
MNIST dataset handler and then the TensorFlow library.

