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Introduction

In this book, we are going to learn convolutional neural networks by
focusing on the specific problem of image recognition, using Swift for
Tensorflow and a command-line Unix approach. If you are new to this
field, then I would suggest you read the first few chapters and get a working
system bootstrapped and then spend your time going through the basics
with MNIST and CIFAR repeatedly, in particular familiarizing yourself with
how neural networks work. If you feel comfortable with the core concepts
already, then feel free to skip ahead to the middle where we explore some

more powerful convolutional neural networks.

Why Swift

The short version is that I believe swift is a modern, open source, beginner-
friendly language that has proven itself by solving real problems for

iOS developers daily. By integrating automatic differentiation into the
programming language, a number of interesting compiler techniques to
address the limitations of current machine learning software and hardware
become possible in the long term. This is in my opinion where the world is
headed, one way or another.

Why image recognition

Image recognition is one of the oldest, most well-understood uses of
neural networks. As a result, we can introduce the basics and then build
up to advanced state-of-the-art approaches in a logically consistent
manner. With this foundation, you will be able to branch out to tackle
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other image-related tasks (e.g., object detection and segmentation) easily.
The deep learning techniques needed to build large-scale convolutional
neural networks translate easily to reinforcement learning and generative
adversarial networks (GANS), two important areas of modern research. In
addition, I believe this foundation will make it easy to make the transition
to time sequence models such as recurrent neural networks (RNNs) and
long short-term memory (LSTM) once you have mastered CNNs.

Why CLI

Broadly speaking, this book is going to focus on a command-line interface
(CLI)-based approach using both a local machine on your home network
and virtual machines in the remote, Google Cloud. This is in my opinion
the best approach because

e We can control costs very effectively. In the worst-
case scenario, you can perform the majority of your
work using a local machine built for under a thousand
dollars, and your only remaining cost will be electricity
and time.

e We can scale easily from anywhere in the world.
Using cloud instances full time can quickly become
expensive, and so many people avoid learning cloud
workflows. But using on-demand cloud-based
resources periodically to augment your local workflow
means you can learn the cloud in a very practical and
efficient way. Eventually, you will be able to prototype
and build solutions on your primary machine, then
quickly scale them up in the cloud to parallelize
computation and access more powerful hardware
when needed or available.
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We can get the best of both worlds. While minimizing
costs is certainly important, I have found that focusing
on how much money you are spending tends to produce
a mindset where you are afraid to try new things and
experiment in general. Building your own machine puts
you into the mindset of putting in more cycles to reduce
your costs, which is in my opinion the key to success.

So, toward this end, we will utilize a command-line workflow with the

following goals:

We will use a local terminal interface to log in to all of
our machines, so that there is literally no difference
between our approaches on the desktop and in the
cloud.

We will utilize the same operating system and software
locally and in the cloud so that we do not have to

learn about differences between platforms. Then, by
definition, any workflow you can do on your computer,
you will be able to do in the cloud, and vice versa.

Ultimately, by blurring the line between your personal computer and

the cloud, my goal is for you to understand that there is fundamentally
no difference between doing things locally or remotely. The real limiting

factor then is your imagination, not resources.

Doing things this way will be more work at first, I will admit. But once

you have mastered this workflow, it will be much easier for you to scale

in the future. If you are willing to put in the time now, this approach will

make your skills much more flexible and powerful in the future. What you
do with them is up to you.

xvii



How this book is organized

This book is organized as follows.

Basics

We will explore the basic building blocks of neural networks and how to
combine them with convolutions to perform simple image recognition

tasks.

e Neural networks (1D MLP/multilayer perceptron) and
MNIST

e Convolutional neural networks (2D CNN) and MNIST

¢ Color, CNN stacks, and CIFAR

Advanced

We will build upon the above to produce actual state-of-the-art

approaches in this field.

¢ VGGI6
¢ ResNet 34
¢ ResNet 50

Xix



HOW THIS BOOK IS ORGANIZED

Mobile

We will look at some different approaches for mobile devices, which
require us to utilize our computing resources carefully.

o SqueezeNet
e MobileNet vl

¢ MobileNet v2

State of the art

We will look at the work that leads up to EfficientNet, the current state of
the art for image recognition. Then we will look at how people are working
on finding ways to produce similar results by combining many different
papers together.

o EfficientNet
¢ MobileNetV3

e Bagoftricks/reading papers

Future

We will zoom out a bit and look at why I am excited about swift for
tensorflow as a whole and give you my vision of what the future of machine
learning looks like.

e  MNIST revisited

e You are here
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Appendices

Here’s some information that didn’t quite fit in with the above but I still
feel is important:

e A:Cloud Setup

e B:Hardware Prerequisites, Software Installation
Guidelines, and Unix Quickstart

e (C:Additional Resources



CHAPTER 1

MNIST: 1D Neural
Network

In this chapter, we will look at a simple image recognition dataset called
MNIST and build a basic one-dimensional neural network, often called a
multilayer perceptron, to classify our digits and categorize black and white
images.

Dataset overview

MNIST (Modified National Institute of Standards and Technology) is a
dataset put together in 1999 that is an extremely important testbed for
computer vision problems. You will see it everywhere in academic papers
in this field, and it is considered the computer vision equivalent of hello
world. Itis a collection of preprocessed grayscale images of hand-drawn
digits of the numbers 0-9. Each image is 28 by 28 pixels wide, for a total of
784 pixels. For each pixel, there is a corresponding 8-bit grayscale value, a
number from 0 (white) to 255 (completely black).

At first, we’re not even going to treat this as actual image data. We're
going to unroll it - we’re going to take the top row and pull off each row
at a time, until we have a really long string of numbers. We can imagine
expanding this concept across the 28 by 28 pixels to produce a long row of
input values, a vector that’s 784 pixels long and 1 pixel wide, each with a
corresponding value from 0 to 255.
© Brett Koonce 2021 1
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CHAPTER 1  MNIST: 1D NEURAL NETWORK

The dataset has been cleaned so that there’s not a lot of non-digit
noise (e.g., off-white backgrounds). This will make our job simpler. If
you download the actual dataset, you will usually get it in the form of a
comma-separated file, with each row corresponding to an entry. We can
convert this into an image by literally assigning the values one a time in
reverse. The actual dataset is 60000 hand-drawn **training** digits with
corresponding **labels** (the actual number), and 10000 **test** digits
with corresponding **labels**. The dataset proper is usually distributed as
a python pickle (a simple way of storing a dictionary) file (you don’t need
to know this, just in case you run across this online).

So, our goal is to learn how to correctly guess what number we are
looking at in the **test** dataset, based on our **model** that we have
learned from the **training** dataset. This is called a **supervised
learning** task since our goal is to emulate what another human (or
model) has done. We will simply take individual rows and try to guess the
corresponding digit using a simple version of a neural network called a
**multilayer perceptron**. This is often shortened to **MLP**.

Dataset handler

We can use the dataset loader from “swift-models,” part of the Swift for
Tensorflow project, to make dealing with the preceding sample simpler. In
order for the following code to work, you will need to use the following swift
package manager import to automatically add the datasets to your code.

BASIC: If you are new to swift programming and just want to get
started, simply use the swift-models checkout you got working in the
chapter where we set up Swift for Tensorflow and place the following code
(MLP demo) into the “main.swift” file in the LeNet-MNIST example and
run “swift run LeNet-MNIST".
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ADVANCED: If you are a swift programmer already, here is the base
swift-models import file we will be using:

[NENEN

/// swift-tools-version:5.3
// The swift-tools-version declares the minimum version of
Swift required to build this package.

import PackageDescription

let package = Package(
name: "ConvolutionalNeuralNetworksWithSwiftForTensorFlow",
platforms: [
.mac0S(.v10_13),
])
dependencies: [
.package(
name: "swift-models", url: "https://github.com/
tensorflow/swift-models.git", .branch("master")

)s

])
targets: [
.target(
name: "MNIST-1D", dependencies: [.product(name:
"Datasets"”, package: "swift-models")],
path: "MNIST-1D"),
]

Hopefully, the preceding code is not too confusing. Importing this
code library will make our lives much easier. Now, let’s build our first
neural network!
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Code: Multilayer perceptron + MNIST

Let’s look at a very simple demo. Put this code into a “main.swift” file with
the proper imports, and we'll run it:

/17 1
import Datasets
import TensorFlow

/12

struct MLP: Layer {
var flatten = Flatten<Float>()
var inputlayer = Dense<Float>(inputSize: 784, outputSize:
512, activation: relu)
var hiddenLayer = Den se<Float>(inputSize: 512, outputSize:
512, activation: relu)
var outputlayer = Dense<Float>(inputSize: 512, outputSize: 10)

@differentiable
public func forward(_ input: Tensor<Float>) -> Tensor<Float> {
return input.sequenced(through: flatten, inputlayer,
hiddenLayer, outputlLayer)
}
}

/13

let batchSize = 128
let epochCount = 12
var model = MLP()



CHAPTER 1 MNIST: 1D NEURAL NETWORK

let optimizer = SGD(for: model, learningRate: 0.1)
let dataset = MNIST(batchSize: batchSize)

print("Starting training...")

for (epoch, epochBatches) in
dataset.training.prefix(epochCount).enumerated() {
/1 4
Context.local.learningPhase = .training
for batch in epochBatches {
let (images, labels) = (batch.data, batch.label)
let (_, gradients) = valueWithGradient(at: model) { model
-> Tensor<Float> in
let logits = model(images)
return softmaxCrossEntropy(logits: logits, labels: labels)
}

optimizer.update(&model, along: gradients)

}

/15

Context.local.learningPhase = .inference

var testlLossSum: Float = 0

var testBatchCount = 0

var correctGuessCount = 0

var totalGuessCount = 0

for batch in dataset.validation {
let (images, labels) = (batch.data, batch.label)
let logits = model(images)
testLossSum += softmaxCrossEntropy(logits: logits, labels:
labels).scalarized()
testBatchCount += 1
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let correctPredictions = logits.argmax(squeezingAxis: 1) .
== labels

correctGuessCount += Int(Tensor<Int32>(correctPredictions).
sum().scalarized())

totalGuessCount = totalGuessCount + batch.data.shape[0]

}

let accuracy = Float(correctGuessCount) / Float(totalGuessCount)
print(
[Epoch \(epoch + 1)] \
Accuracy: \(correctGuessCount)/\(totalGuessCount)
(\(accuracy)) \
Loss: \(testLossSum / Float(testBatchCount))

Results

When you run the preceding code, you should get an output that looks
like this:

RN

Loading resource: train-images-idx3-ubyte Loading resource:
train-labels-idx1-ubyte Loading resource: t10k-images-idx3-
ubyte Loading resource: t10k-labels-idx1-ubyte

Starting training..

[Epoch 1] Accuracy: 9364/10000 (0.9364) Loss: 0.21411717
[Epoch 2] Accuracy: 9547/10000 (0.9547) Loss: 0.15427242
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w

Accuracy: 9630/10000 (0.963) Loss: 0.12323072
Accuracy: 9645/10000 (0.9645) Loss: 0.11413358
Accuracy: 9700/10000 (0.97) Loss: 0.094898805

Epoch 3]
]
]
] Accuracy: 9747/10000 (0.9747) Loss: 0.0849531
]
]
]

~

Epoch
Epoch
Epoch

S U

~

Accuracy: 9757/10000 (0.9757) Loss: 0.076825164
Epoch 8] Accuracy: 9735/10000 (0.9735) Loss: 0.082270846
Epoch 9] Accuracy: 9782/10000 (0.97) Loss: 0.07173009
Epoch 10] Accuracy: 9782/10000 (0.97) Loss: 0.06860765
Epoch 11] Accuracy: 9779/10000 (0.9779) Loss: 0.06677916
Epoch 12] Accuracy: 9794/10000 (0.9794) Loss: 0.063436724

Epoch

O oo

[
[
[
[
[
[
[
[
[
[

Congratulations, you've done machine learning! This demo is only a
few lines long, but a lot is actually happening under the hood. Let’s break
down what'’s going on.

Demo breakdown (high level)

We will look at all of the preceding code, going through section by section
using the number in the comments (e.g., //1, //2, etc.). We will first do

a pass to try and explain what is going on at a high level and then do a
second pass where we explain the nitty-gritty details.

Imports (1)

Our first few lines are pretty simple; we’re importing the swift-models
MNIST dataset handler and then the TensorFlow library.



