
Symplectic 
Pseudospectral 
Methods for 
Optimal Control

Xinwei Wang · Jie Liu · Haijun Peng

Theory and Applications in 
Path Planning

Intelligent Systems, Control and Automation:
Science and Engineering



Intelligent Systems, Control and Automation:
Science and Engineering

Volume 97

Series Editor

Kimon P. Valavanis, Department of Electrical and Computer Engineering,
University of Denver, Denver, CO, USA

Advisory Editors

P. Antsaklis, University of Notre Dame, IN, USA

P. Borne, Ecole Centrale de Lille, France

R. Carelli, Universidad Nacional de San Juan, Argentina

T. Fukuda, Nagoya University, Japan

N.R. Gans, The University of Texas at Dallas, Richardson, TX, USA

F. Harashima, University of Tokyo, Japan

P. Martinet, Ecole Centrale de Nantes, France

S. Monaco, University La Sapienza, Rome, Italy

R.R. Negenborn, Delft University of Technology, The Netherlands

António Pascoal, Institute for Systems and Robotics, Lisbon, Portugal

G. Schmidt, Technical University of Munich, Germany

T.M. Sobh, University of Bridgeport, CT, USA

C. Tzafestas, National Technical University of Athens, Greece



Intelligent Systems, Control and Automation: Science and Engineering book
series publishes books on scientific, engineering, and technological developments
in this interesting field that borders on so many disciplines and has so many
practical applications: human-like biomechanics, industrial robotics, mobile
robotics, service and social robotics, humanoid robotics, mechatronics, intelligent
control, industrial process control, power systems control, industrial and office
automation, unmanned aviation systems, teleoperation systems, energy systems,
transportation systems, driverless cars, human-robot interaction, computer and
control engineering, but also computational intelligence, neural networks, fuzzy
systems, genetic algorithms, neurofuzzy systems and control, nonlinear dynamics
and control, and of course adaptive, complex and self-organizing systems. This
wide range of topics, approaches, perspectives and applications is reflected in a
large readership of researchers and practitioners in various fields, as well as
graduate students who want to learn more on a given subject. The series has
received an enthusiastic acceptance by the scientific and engineering community,
and is continuously receiving an increasing number of high-quality proposals from
both academia and industry. The current Series Editor is Kimon Valavanis,
University of Denver, Colorado, USA. He is assisted by an Editorial Advisory
Board who help to select the most interesting and cutting edge manuscripts for the
series: Panos Antsaklis, University of Notre Dame, USA Stjepan Bogdan,
University of Zagreb, Croatia Alexandre Brandao, UFV, Brazil Giorgio Guglieri,
Politecnico di Torino, Italy Kostas Kyriakopoulos, National Technical University of
Athens, Greece Rogelio Lozano, University of Technology of Compiegne, France
Anibal Ollero, University of Seville, Spain Hai-Long Pei, South China University
of Technology, China Tarek Sobh, University of Bridgeport, USA.

Springer and Professor Valavanis welcome book ideas from authors. Potential
authors who wish to submit a book proposal should contact Thomas Ditzinger
(thomas.ditzinger@springer.com)

Indexed by SCOPUS, Google Scholar and SpringerLink.

More information about this series at http://www.springer.com/series/6259

mailto:thomas.ditzinger@springer.com
http://www.springer.com/series/6259


Xinwei Wang • Jie Liu • Haijun Peng

Symplectic Pseudospectral
Methods for Optimal Control
Theory and Applications in Path Planning

123



Xinwei Wang
Department of Engineering Mechanics
Dalian University of Technology
Dalian, Liaoning, China

Haijun Peng
Department of Engineering Mechanics
Dalian University of Technology
Dalian, Liaoning, China

Jie Liu
War Research Institute
Academy of Military Sciences
Beijing, China

ISSN 2213-8986 ISSN 2213-8994 (electronic)
Intelligent Systems, Control and Automation: Science and Engineering
ISBN 978-981-15-3437-9 ISBN 978-981-15-3438-6 (eBook)
https://doi.org/10.1007/978-981-15-3438-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-15-3438-6


Preface

Vehicles are equipment with capabilities to realize certain missions in various
workspace such as land, sea, air, and space. Their structures usually exhibit com-
plex dynamical characteristics and dynamical behaviors. Mechanical disciplines
such as analytical dynamics, multi-body dynamics, and nonlinear dynamics give
deep insights into motion laws of vehicles. Meanwhile, control disciplines provide
feasible and powerful tools to regulate the motion of vehicles according to human
will.

In the 1960s, Richard Bellman (academician of United States National Academy
of Sciences) and Lev S. Pontryagin (academician of Academy of Sciences of former
Soviet Union) had laid the mathematical foundation of optimal control theory.
Optimal control theory greatly facilitated the progress of military science and
equipment during the cold war, successively providing cutting edge technologies
for the two countries for tens of years. Nowadays, the optimal control problems for
vehicles encountered in engineering are becoming more and more complicated,
which makes it impossible to implement analytical solutions by Bellman’s dynamic
programming and Pontryagin’s maximum principle. Arthur E. Bryson (the aca-
demician of both United States National Academy of Sciences and American
Academy of Arts and Sciences), who is considered as the father of modern optimal
control theory, points out that “with powerful digital computer, numerical solutions
can be found for realistic problems”. It significantly prompts the development of
computational optimal control.

The trajectory optimization of vehicles is a typical open-loop optimal control
problem for nonlinear systems. It aims at finding optimal control inputs and cor-
responding trajectory to fulfill the mission, meanwhile minimizing a certain
objective and satisfying various kinds of constraints. Direct methods and indirect
methods are the two main categories of computational optimal control techniques.
They both usually start from the difference discretization of dynamic equations
while neglecting the inherent dynamical characteristics of optimal control problems.
This leads to deficiencies in the stability and precision of computational optimal
control techniques. Jerrold E. Marsden, the fellow of British Royal Society and the
leading scholar in classical mechanics, says that “Algorithms could be developed
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with the natural dynamics built in, thereby yielding better convergence properties”.
In addition, Gene H. Golub, the founder of modern matrix computation, points out
that “It is a basic tenet of numerical analysis that solution procedures should exploit
structure whenever it is present.” For optimal control problems, they have inherent
Hamiltonian mathematical structures. Thus, the energy/momentum variation of the
controlled system with respect to time can be seen as important natural dynamics,
and the symplectic structure is a distinct mathematical structure in Hamiltonian
systems.

State-space representation is the basis of optimal control theory and it can trace
back to the system of Hamiltonian canonical equations. Hamiltonian systems, as the
cornerstone in analytical dynamics, bridge the gap between optimal control and
analytical mechanics. Based on Hamiltonian systems, Wanxie Zhong (the aca-
demician of Chinese Academy of Sciences) identified the simulation between
structural mechanics and optimal control for the first time. And a series of com-
putational optimal/robust control methods for linear systems have been proposed
drawing ideas in computational mechanics.

The first and the third authors of the book, i.e., Xinwei Wang and Haijun Peng,
were both taking Ph.D.s under the supervision of Prof. Zhong. In the last two
decades, based on Hamiltonian systems and the symplectic theory, the research
group has developed a series of symplectic algorithms to solve nonlinear optimal
control problems with different complex features. In this book, we report our recent
progress in symplectic numerical algorithms that incorporate pseudospectral
methods to achieve better computational efficiency and accuracy. Additionally, Jie
Liu, the second author of the book, has applied the developed symplectic pseu-
dospectral method to solve trajectory optimization problems in various fields.
Hence, some of his works are taken as examples in this book.

The publication of the book should appreciate those who helped us over the
years. Our first gratitude goes to Prof. Zhong who was the pathfinder in our research
direction. And many thanks go to other colleagues from the Dalian University of
Technology, including Prof. Qiang Gao, Prof. Zhigang Wu, Prof. Shujun Tan, etc.
Gratitude also goes to Prof. Wei Han from Naval Aviation University. Besides,
many of our current and former students, such as Mingwu Li, Xin Jiang, Boyang
Shi, also contributes much to the development of algorithms during the last decade.
Finally, we gratefully acknowledge helpful suggestions and assistance by Jasmine
Dou (Editor, Springer) and her staff.

Dalian, China Xinwei Wang
Beijing, China Jie Liu
Dalian, China
July 2020

Haijun Peng
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Chapter 1
Overview of This Book

1.1 Optimal Control

Optimal control is an important component of modern control theory [1, 2]. In the
1960s, the former Soviet Union scholar Lev Pontryagin proposed the Pontryagin’s
maximum principle [3], meanwhile, the American scholar Richard Bellman devel-
oped the dynamic programming method [4]. Such two techniques significantly
enriched and improved the theory of optimal control, prompting the development of
the analytical solution of optimal control problems. Humans were initially starting
the exploration of the space at that time, techniques based on optimal control theory
such as orbit design [5] and the Kalman filter [6] won great successes.

However, as optimal control problems encountered in engineering are getting
more complicated (i.e., large-scale, complex constraints, time-delay, etc.), the analyt-
ical solution becomes impossible. Luckily, due to the rapid development of compu-
tational techniques and devices, it is available for engineers to implement numerical
solutions. During the last 70 years, the optimal control theory has beenwidely applied
to various fields such as aerospace engineering, chemical engineering, economics,
communications, automobile engineering. Hence, computational optimal control
techniques [7–9], as the core to implement optimal control theory in practice, have
drawn more and more attention.

1.2 Pseudospectral Methods

Numerical methods for optimal control problems are generally divided into indirect
methods and direct methods. Pseudospectral methods, as the most popular direct
methods in the last two decades, have drawn much attention [10]. The collocation
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2 1 Overview of This Book

points in pseudospectral methods are generally orthogonal Gauss points, leading
to a highly accurate approximation of the original problem. More precise solutions
can be obtained by pseudospectral methods when compared to other direct schemes
under the same scale of discretization. Additionally, pseudospectral methods have
a faster convergent rate, i.e., they show exponential convergent rate for problems
where solutions are smooth and well behaved. Though this excellent property loses
for constrained problems, multi-interval strategies can be used for compensation,
leading to local pseudospectral methods. The first successful practical application of
pseudospectral methods is the zero propulsion attitude maneuver of Internal Space
Station in 2007. The operation command generated by pseudospectral methods helps
to save fuel that values about one million dollars [11].

1.3 The Property of Symplectic Conservation

Optimal control problems can be transformed into Hamiltonian systems by the
Pontryagin’s maximum principle or the variational principle. The most notable
feature of Hamiltonian systems is the phase flow in Hamiltonian systems is a
symplectic transformation. Numerical methods that are symplectic conservative can
solve Hamiltonian systems efficiently [12]. Hence, computational optimal control
methods owning the symplectic conservative property are much appealing.

The concept of symplectic conservation is first proposed in computational
mechanics. Hence, many scholars draw on mature theories in computational
mechanics to enrich the symplectic conservative application in computational
optimal control. For example,Zhong et al., explored the simulationbetween computa-
tional structuremechanics andoptimal control [13].Marsden extended the variational
integrationmethods in computational dynamics to computational optimal control and
proposed theDiscreteMechanics andOptimal Control (DMOC)method based on the
Lagrange-D’Alembert’s principle in analytical mechanics [14, 15]. Recently, Peng
et al. developed a series of symplectic methods based on the generating function
method [16–19].

Computational techniques that own the property of symplectic conservation has
three most notable merits. First, the Hamiltonian structure of the original system is
conserved; Secondly, they have good stability for problems with a long time interval;
Thirdly, they can precisely reflect the energy variation for mechanical systems.
Hence, it is attractive to construct symplectic numerical methods for optimal control
problems.

1.4 Motivation of the Book

For decades, pseudospectral methods are generally developed and improved under
the framework of direct methods. However, as essentially a numerical approximation
technique, the application of pseudospectral methods should not be limited to the



1.4 Motivation of the Book 3

construction of direct methods. Additionally, during the design of traditional numer-
ical methods, one usually focuses on how to improve the numerical precision under
given discretization scheme while the inherent mathematical structures of optimal
control problems are neglected. Based on the above facts, this book will start from
the inherent Hamiltonian mathematical structure of optimal control problems and
develop a series of symplectic pseudospectral methods (SPMs) for problems with
different features. The parametric variational principle and the multi-interval pseu-
dospectral methods are used when constructing SPMs. Additionally, the SPM is
taken as the core solver to construct symplectic pseudospectral model predictive
controllers. Finally, some successful applications of SPMs in solving path planning
problems are presented.

1.5 Scope of the Book

The book is constituted of three parts. Part I (this chapter, Chaps. 2, and 3) is the intro-
ductory material. Part II (Chaps. 4–7) provides a series of symplectic pseudospectral
methods for nonlinear optimal control problems with various complicated factors.
Part III (Chaps. 8–11) gives the application of symplectic pseudospectral methods
in trajectory planning of various vehicles. The detailed content of each chapter is
summarized as follows:

Part I: Introductory materials

This chapter gives an overview of this book, where the motivation of this book is
emphasized.

Chapter 2 summarizes the numerical methods for nonlinear optimal control prob-
lems. Four kinds of computational techniques, i.e., indirect methods, direct methods,
hybrid methods, and artificial intelligence-based methods are reviewed. And a brief
comparison between indirect methods and direct methods is provided.

Chapter 3 first gives the mathematical formulations of three kinds of problems
studied in this book. And mathematical foundations required when constructing
SPMs, such as the Hamiltonian structure of optimal control problems, symplectic
theory and pseudospectral methods are briefly presented.

Part II: Symplectic pseudospectral methods for nonlinear optimal control
problems

Chapter 4 focuses on generally unconstrained nonlinear optimal control problems.
An SPM for this kind of problem is developed based on the first kind of generating
function. Besides, a mesh refinement technique based on the relative curvature of
state variables is provided.

Chapter 5 focuses on problems with inequality constraints.
Chapter 6 focuses on time-delayed problems.
Chapter 7 presents the basic idea of model predictive control. And the SPM devel-

oped in Chap. 5 is taken as the core solver to construct the symplectic pseudospectral
model predictive controller.
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Part III: Applications in trajectory planning and control

Chapter 8 provides several applications in the optimal maneuver of the spacecraft.
Chapter 9 presents trajectory planning problems for unmanned ground systems

with different configurations.
Chapter 10 presents an autonomous control framework of three-dimensional

overhead cranes.
Chapter 11 focuses on trajectory planning issues for tractor-trailer systems.
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Chapter 2
Computational Techniques for Nonlinear
Optimal Control

2.1 Introduction

There are already many excellent reviews on numerical techniques for nonlinear
optimal control [1–5]. According to the implementation of numerical techniques,
computational methods for optimal control problems can generally fall into two
groups, i.e., direct methods and indirect methods. Besides, hybrid methods and arti-
ficial intelligence-basedmethods are also popular. In this chapter, the pros and cons of
these methods are presented and researches that consider the property of symplectic
conservation are reviewed.

2.2 Indirect Methods

Indirect methods transform an optimal control problem into a Hamiltonian two-point
boundary value problem (TPBVP) of state and costate variables by the variational
principle or the Pontryagin’s maximum principle. The TPBVP may couple with
other algebraic equations if complicated factors are involved in the optimal control
problem, and it is called the first-order necessary conditions [6]. Then the numerical
solver for TPBVPs is used to solve the problem.

The main advantage of indirect methods is twofold. On the one hand, numerical
solutions obtained by the indirect methods are naturally local optimal since it is
constructed based on the first-order necessary conditions. On the other hand, the
solutions of costate variables are usually directly provided, which are the prerequisite
to analyze the Hamiltonian structure of the original optimal control problem. As for
the disadvantage of indirect methods, the most notable one is that one must derive
the first-order necessary conditions of the problem according to its formulation,
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while this process would be extremely hard once complicated factors are involved.
Fortunately, many mathematicians have done much fundamental work in this area,
facilitating successive researchers to conduct deeper research under the framework
of indirect methods. In [6], the first-order necessary conditions for problems with
factors such as equality constraints, inequality constraints, interior point constraints,
and integral constraints are provided. [7] focus on time-delayed optimal control
problems. The first-order necessary conditions for fractional order optimal control
problems are studied in [8, 9]. Another drawback of indirect methods is that high-
quality initial guesses of state and costate variables are usually required. However,
it is generally hard to provide a high-quality initial guess of costate variables since
it is of no physical meaning.

For the transformed TPBVP, numerical methods such as shooting method [10–
12], multiple shooting method [13], generating function method [14–17], and finite
difference method [18–20], can be used. In shooting methods, initial guesses on
costate variables must satisfy the transversality conditions. For problems with a short
time interval, the shooting method is effective; however, for problems with a long
time interval, it is prone to fail the convergence due to the numerical illness. It is seen
that shooting methods are with small convergent radius and extremely sensitive to
the initial guesses. Compared to shooting methods, the demand for initial guesses is
not that high in the generating functionmethod. However, plenty of series expansions
are required in the generating method, one must turn to mathematical software such
as MATLAB for help.

It should be noted that the Hamiltonian TPBVP structure naturally exists under
the framework of indirect methods, which tends to facilitate the construction of
symplectic methods. To realize the symplectic solving of linear-quadratic optimal
control problems, Zhuk et al. design the symplectic Möbius integrator to solve
Riccati equations in [21]. The generating function method mentioned above is also
symplectic. Besides the initial development of Park et al., Pent et al. conduct some
creative work in this area in recent years [22–25]. Focusing on the unconstrained
nonlinear optimal control problem, they use the multiple interval mesh with regular
Lagrange interpolation to transform the original problem into a system of nonlinear
algebraic equations. Since the methods are constructed based on the least action
principle and the finite element discretization, the core matrix is naturally sparse and
symmetric, which is an advantage for solving large-scale problems. Later, Li et al.
approximate state and costate variables by pseudospectral methods instead of the
regular Lagrange interpolation [26]. Results suggest that discretization with pseu-
dospectral methods lead to better computational efficiency and precision. In addition,
focusing on problems with inequality constraints, Li et al. first transform the original
nonlinear problem into a series of linear-quadratic problems by the quasilinearization
technique. Then the transformed linear-quadratic problems are solved by symplectic
algorithms in an iterative manner [27, 28]. The quasilinearization technique used in
[27, 28] is actually a successive convexification technique. Due to its benefit, the
initial guesses on costate variables are avoided, and the method is less sensitive to
initial guesses.
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2.3 Direct Methods

Direct methods transform a nonlinear optimal control problem into a finite-
dimensional nonlinear programming (NLP) by discretization or parametrization [29].
Thus, NLP solvers can be used to solve the problem efficiently. The most notable
advantage of direct methods is that they can treat the problem under a uniform NLP
framework regardless of the characteristics of the problem.Optimal control problems
met in engineering applications usually are subjected to complicated factors. Direct
methods are popular in engineering due to this uniformity. In addition, directmethods
usually have a larger convergent radius than indirect methods, which suggests they
are less sensitive to initial guesses.

The disadvantages of direct methods mainly come down to three aspects. First,
the scale of the resulted NLP grows faster than the number of variables, leading to the
so-called “curse of dimensionality” [29]. Though computational devices nowadays
have more and more computational power, this is still a bottleneck for large-scale
problems. Secondly, constraints are usually slightly relaxed in direct method for
numerical computation. Hence, original constraintsmay not be strictly satisfied in the
obtained results. Thirdly, solutions obtained by direct methods usually do not satisfy
the first-order necessary conditions for optimal control problems, which suggests
that it even cannot guarantee the local optimality of the solutions. Information on
costate variables is usually not directly available in direct methods, making it hard
to analyze the Hamiltonian structure of the optimal control problem.

There are mainly two manners to implement the transformation to NLP by
parametrization, i.e., function expansion [30, 31] and function interpolation. And
the functional interpolation is commonly used. In methods based on function inter-
polation, control and/or state variables are approximated by a set of trial functions.
The system equations and constraints are satisfied at a set of collation nodes within
the time domain, and the cost functional is transformed as a function of state and
control variables at the interpolation nodes. If the solution domain is divided into
sub-intervals where state and controls are interpolated within the sub-interval, it
leads to the local interpolation method. Conversely, if the solution domain is seen as
a whole interval and the variables are interpolated within this big interval, it leads to
the global interpolation method.

There are also some researches considering the symplectic conservation under the
framework of directmethods. In [32], Bonnans discusses the symplectic conservation
condition of using the Runge–Kutta difference scheme to discretize unconstrained
nonlinear optimal control problems. The discrete mechanics and optimal control
method (DMOC) mentioned in Sect. 1.3, is also a symplectic method, where the
variational principle in discrete fashion is applied to achieve symplectic conservation
[33, 34]. However, it should be noted that only symplectic conservation in system
equations is considered. Hence, we say that the symplectic-conservation property in
the DOMC method is not complete.

The book aims at developing symplectic methods that integrate the pseudospec-
tral approximation. Hence, we will give a detailed introduction of pseudospectral
methods for solving nonlinear optimal control problems in the rest of this section.


