\WebAssembly
for Cloud

A Basic Guide for Wasm-Based
Cloud Apps

Shashank Mohan Jain

ApPress’

WebAssembly for
Cloud

A Basic Guide for Wasm-Based
Cloud Apps

Shashank Mohan Jain

Apress’

WebAssembly for Cloud: A Basic Guide for Wasm-Based Cloud Apps

Shashank Mohan Jain
Bangalore, India

ISBN-13 (pbk): 978-1-4842-7495-8 ISBN-13 (electronic): 978-1-4842-7496-5
https://doi.org/10.1007/978-1-4842-7496-5

Copyright © 2022 by Shashank Mohan Jain

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Jas Le on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza,

New York, NY 10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM
Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484274958. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7496-5

I dedicate this book to my parents and their blessings,
without which this book was not at all possible.

I also dedicate this book to my dear wife. I would not have
been able to write it without her constant pushing
and support.

I appreciate my angel of a daughter for allowing me the
time to write this book.

Finally, I thank a dear friend who constantly pushed me
into writing this.

Table of Contents

About the AUthOrccccviissemmmmmsssssmmmsssssnmssssssn s nans ix
About the Technical REVIEWETccussssmssmsssssnnsssssssssnssssssssnsssssssnnsssssnns xi
Acknowledgments........ccurrmssnnmmsssnsssssnsssssnnssssnsssssnsesssnsssssnnssssnnssssnns Xiii
Introductionccccciisemmmmisssnnnnmnssssnnnnsssssn s XV
Chapter 1: WebAssembly Introductionccocccnmnnsssnnnnmssssnnnssssssssnenns 1
Wasm in the CIOUM ... s 4
WebhASSEMDIY USE CASESccceriieriercrerinsirse s s sns s s sss e s s 8
WebAssembly ArChItECIUNEccovveeereer s 8
Stack-Based Virtual Maching.........c.ccoouvrvnininnnnsni s 9
1T304 S 11

Chapter 2: WebAssembly Module Internals: Sections

and Memory Model.........ccccmmmmsnmnmmmssssnsmmsssssnssssssssssssssssnnsssssssnnsnssssnnns 13
TYPE SECHON.......ecceeceeeeer e 17
FUNCLION SECHION ... 18
COUE SECLION......coviierrese s e 18
(010 =T 10 RS 20
4] 0] BT 0] o OO 20
TabIE SECHON.......cccrirereeeccrr e 20
MEMOrY SECLION.......coeiicircre e 22
(D7 T 1 o O 23

TABLE OF CONTENTS

(1LY (0] = [0 o T 25
SHAM SECHON ... s 25
GIODAI SECHION ... e 25
Programmatically Parsing a Wasm Fileccoeernrnnenenencrnseseseses e 25
SUMMANY....eriieernesere e e nr e e 31
Chapter 3: WebAssembly Text Toolkit and Other Utilities........ccceurreres 33
The Wat2wasm ULIIITYcccevvvvirennrnsere s se s sessese s s 33
TADIS....cceccer e ———————— 49
The wasm2wat ULIlItY ..o 52
Object Dump Using wasm-objdump ..o 53
SUMMANY....eiieererere s se e e s e e e e 55

Chapter 4: WebAssembly with Rust and JavaScript:

An Introduction to wasm-bindgen..........cccuscmmmmnsssnnnnnnssssnmmssssnmmnnn. 57
WaASM-DINAGEN ... e e a e s 58
PrereqUISITESccverec e 58
Complex Types via wasm-bDindgen...........cccvnnnninininnnsnnese s sessesns 70
The BIOOM FILE......cccoeeeeereeresesess s se s sessssesnsnens 73
How @ BIoom Filter WOrKSccoveierierncsnnesessse s sssse e 74
The CUCKOO FIltEI ... 77
1] 4= 7 85

Chapter 5: WaPCcccccunmmmnmmmssnmmsanmsssmssssssssmsssnssssssssssssassssssssansssas 87
WAPG AICHIECIUNE........coceeee s 87
Handling @ CompleX TYPEcovceereerrecreree e 98
Rust Host for waPC-based Bindingsccccvvrermneneresesnsmsesesesssesessesessssessenes 100
SUMMANY ...t r s re e nr e e 108

TABLE OF CONTENTS

Chapter 6: Wasm Web Interfaceccccussemmmnsssssnnnmsssssnssssssssssnsssssnns 109
NOdE EXAMPIE......ooeicrrerer e e s 121
SUMIMANY.....eeeererereeee e e s e e e re e e e 128

Chapter 7: Wasm and Kubernetesccucemmmmssssmmmmmssssssnmssssssssnssssnns 129
00T (- ST 129
KUDBIMELES......ceeeeerecrr e 132
The Workings of KUDEINELEescccvvvvvcerernrrsre e 135
Packaging a Rust Web App into a Docker Container.........ccccoeevvververerensensenens 136
Pushing an Image to a Docker Registry......cccoovvrvrvenierininsn s 139
PrereqUISITEScccv e ————— 140

The Pod YamI Fileccoeoreereeeeerscre e 141
The Service Yaml Filecocovereeererrecrereseree e 141
A Golang-based Web App Deployed on Kubernetes.........c.cccvvvvniniennnnceniennen 144
Kubernetes Deployment of the Golang Web App.......cccvvrininnincncnccinsenen 147
The Pod YamI Filecccueeervierenceresesssesess s s se s sessesenns 147
The Service Yaml Filecoovovveeerenennscssesessse s 148
SUMMANY ...t p e np e e 150

Chapter 8: Extending Istio with WebAssembly...........cccennssnnnnnisssnnns 151
WRAL IS ENVOY?Z....coviieirererrssesere e ssssessessessssssessessesssssssessesassssssssessesssssssensesaes 151
Rust-based Wasm Filter ... 152
Deployment STEPS......ccccvvrrirr s ——————— 155
ENVOY SEIUP ..o s 155
LaUNCN ENVOYccevcreeesere s se s s sss e s s e s s 159
SUMMAIY . ueitiirere s e sa e e e e s b e e e s e aesae e e e naenne e 160

1T = 161

vii

About the Author

Shashank Mohan Jain has worked in the
IT industry for 20 years, mainly in cloud
computing and distributed systems. He has
a keen interest in virtualization techniques,
security, and complex systems.

Shashank has more then 30 software
patents in cloud computing, [oT, and machine
learning. He has been a speaker at many
cloud conferences. In addition, he holds Sun,

Microsoft, and Linux kernel certifications.

ix

About the Technical Reviewer

Srinivasa Reddy Challa is an expert developer at SAP. He has experience
developing applications in various programming languages, including
Java, Kotlin, Node.js, Rust, Golang, and Python, and frameworks like
Spring, Django, and Express. Srinivasa also has extensive experience
working with cloud providers like AWS, Azure, and AliCloud and has cloud
certification in AWS. He has a bachelor’s degree in computer science
engineering.

Acknowledgments

I'would like to acknowledge Kevin Hoffman, whose work in WebAssembly
is an inspiration. Kevin is the creator of the waPC library, which is used in a
chapter in the book.

xiii

Introduction

Somewhere, something incredible is waiting to be known.

—Carl Sagan

I start this journey with a quote from the eminent scientist and science
communicator Carl Sagan. This short book introduces the amazing
world of WebAssembly. The book’s main theme is to create a simple
WebAssembly program from scratch and take it to the cloud. In doing
this, you'll gain a solid introduction to the valuable features offered by
WebAssembly. Consider this book an introduction to WebAssembly and
how it is powering browser-based applications and cloud applications.
“To get the most out of this book, you should have a bit of understanding
of cloud fundamentals and basic knowledge of programming languages
like Rust, golang and javascript’

CHAPTER 1

WebAssembly
Introduction

Before introducing WebAssembly, it’s important to get a brief history of
virtualization to better understand the context of WebAssembly.

When VMware started the virtualization revolution, virtual machines
were positioned as the unit of computation. This meant that you could
create and deploy software compatible with a virtual machine (VM). The
VM-based approach provided great isolation because it introduced a
kernel boundary between software and the host on which the workload
ran (called a hypervisor). Although they were secure, VMs were heavy in
nature and took time to spin up.

As cloud technology progressed, we saw the advent of container-based
virtualization, which was mainly facilitated by structures within the Linux
kernel. Containers on the same host shared the Linux kernel but have
adequate mechanisms for security, like namespaces, seccomp profiles,
and SELinux, which offered multilayered security for containers. In 2018,
a new technology called WebAssembly has emerged. It was created by
Mozilla and started as a browser-based technology. Since then, developers
have employed it on the cloud and server-side apps. WebAssembly allows
an extra level of virtualization by running the Wasm computation within a
Linux process.

Things began with virtual machines (which are complete operating
systems) and then moved to Linux containers (Linux processes
protected and isolated by the Linux kernel). Now there is WebAssembly,

© Shashank Mohan Jain 2022 1
S. M. Jain, WebAssembly for Cloud, https://doi.org/10.1007/978-1-4842-7496-5_1

https://doi.org/10.1007/978-1-4842-7496-5_1#DOI

CHAPTER 1 WEBASSEMBLY INTRODUCTION

a computation unit within the Linux process. The goal is to provide a
computation unit that can quickly spin up and be suitable for serverless
workloads.

WebAssembly (also known as Wasm) is the new universal bytecode
for interoperable compute units. Interoperable means that the compute
unit should be able to run on any compatible Wasm runtime. A compute
unitis a Wasm module. The basic idea is to have a bytecode format that is
universal and standard.

Languages like JavaScript, Rust, Golang, and Java can be compiled to a
Wasm-based bytecode. Once this bytecode is generated, it can be executed
on any Wasm runtime.

Wasm is a small and efficient stack-based virtual machine that
abstracts the target architecture by compiling the code to a universal
bytecode representation. Wasm is based on an industry-wide collaborative
effort to get a performant and secure close to assembly language.

The Bytecode Alliance, set up to create shared implementations of
WebAssembly standards, includes major players like Arm, Intel, Google,
Microsoft, Mozilla, and Fastly.

Wasm is also well suited to run code in a multitenant way because it
has the right security primitives built into it. Since it’s launched within a
process but is not a process itself, it also provides a means to avoid cold
start problems, which are typical of serverless environments. Wasm is
gaining tractions in areas like

» Providing data filtering capabilities in case of gateways
like Envoy

e Policy engines like Open Policy Agent
e Kubernetes admission controller

o Databases like Postgres with custom extensions
supporting Wasm

https://bytecodealliance.org/
https://www.arm.com/
https://www.intel.com/
https://about.google/
https://www.microsoft.com/
https://www.mozilla.org/
https://www.fastly.com/

CHAPTER 1 WEBASSEMBLY INTRODUCTION

Wasm is now seen as a forefront technology in the cloud-native
community. According to the Cloud Native Computing Foundation’s
CTO, Chris Aniszczyk, “Any project that has an extension mechanism will
probably take advantage of Wasm to do that.”

The promise, and excitement, is around a mix of portability
and speed.

—Fintan Ryan, a senior analyst at Gartner

With low resource overhead and speed up in startup time compared
to JavaScript, Wasm can be provisioned on IoT devices with resource-
constrained memory, CPU, and storage. With no cold start issues, the
portability and low resource consumption would make WebAssembly
ideal for serverless deployments on the cloud and the edge. Initially started
as a sandboxing technique for browser-based applications (for example,
running image processing, decoding video and audio on the browser),
it has now made inroads into server-side technologies due to powerful
sandboxing capabilities and low overhead.

The security capabilities of Wasm make it a good fit for preventing
security vulnerabilities like buffer overflows and control flow integrity
issues. Wasm separates code and data. It has a static type system with type
checking and a very structured control flow designed to make it easier to
write code that compiles to be safe, with linear memory, global variables,
and stack memory accessed separately. These aspects are discussed in the
later chapters in regards to how Wasm provides neat mechanisms to avoid
such security challenges.

Under the hood, Wasm runtime is a stack-based virtual machine
operating on the Wasm bytecode by pushing and popping data off the
stack. The closest comparison would be to the working of a JVM. One
major difference is that JVM bytecode isn't universal (i.e., only
programming languages like Kotlin and Scala can be compiled as Java

https://www.linkedin.com/in/caniszczyk/
https://www.gartner.com/en/experts/fintan-ryan
https://www.gartner.com/en

CHAPTER 1 WEBASSEMBLY INTRODUCTION

bytecode). But, almost all the programming languages like C, C++, Rust,
Golang, and JavaScript can be compiled into Wasm bytecode.

Wasm currently only supports numeric data types, although there’s a
proposal to add reference types like strings, sequences, records, variants
to make it easier for Wasm modules to interact with modules running
in other runtimes or written in different languages. Though this is not a
limitation, other data types, such as strings, can still be realized with these
numeric types, just that it makes programming Wasm directly a bit tedious.
A Wasm module doesn’t have access to APIs and system calls in the
OS. If you want it to interact with anything outside the module, you must
explicitly import it, so the only code that could be executed is the code
that is packaged as part of the module. This interaction with the operating
system calls is facilitated by a new spec known as WASI (WebAssembly
System Interface). The WASI spec allows an interoperable Wasm code that
can be ported to any Wasm runtime (i.e., runtimes like Lucet, Wasmer, and
Node.js) once the Wasm compiler generates the bytecode.

Wasm in the Cloud

There are differences in running Wasm in a browser vs. running it on a
cloud or an edge application (e.g., on an IoT device). When running Wasm
on a browser, the interface to the OS is handled by the browser on behalf of
the Wasm module. For servers or edge applications, this must be facilitated
by the Wasm runtime hosting the Wasm module. The types of system calls
would be like a file system I/0O or network I/0.

One approach was to have each hosting Wasm runtime implement
how to facilitate the system call on behalf of the Wasm module. This was
the approach so far, but this led to portability issues as each runtime
exposes different methods for the Wasm module to consume for making
the system calls. The WASI spec evolved in the Wasm community to
provide standardization. It's a modular set of system interfaces that looks

https://hacks.mozilla.org/2019/08/webassembly-interface-types/
https://hacks.mozilla.org/2019/08/webassembly-interface-types/

CHAPTER 1 WEBASSEMBLY INTRODUCTION

like an abstracted OS, with low-level interfaces like I/O and high-level
interfaces like cryptography, keeping WebAssembly code portable. This
also provided better security as with this fine-grained access control

can be achieved. For example, a certain Wasm module can only access
certain files and not the whole file system. This considerably reduces the
possible attack surface originating from a specific Wasm module, even if
it’s malicious.

Many runtimes have emerged to support running Wasm-based
workloads in the cloud and edge. Node.js is a prominent player with the V8
runtime supporting the execution of the Wasm modules by loading them
within JavaScript code. The Bytecode Alliance had three runtimes. Two
(Wasmtime and Fastly’s Lucet) recently merged, optimizing edge compute
using ahead-of-time compilation to reduce latency. It is rewritten on top
of Wasmtime. WAMR, the micro runtime, is for embedded devices with
limited resources; that remains a separate runtime.

There are other runtimes, such as Wasmer and TeaVM (for Java
bytecode to Wasm). As the community grows, and thereby the number of
runtimes grows, it becomes important to keep an eye on the performance
aspects of these runtimes. There is a set of benchmarks that measure
different aspects of Wasm’s runtime performance.

Figure 1-1 shows that the wavm runtime is fastest, followed by the
node runtime.

CHAPTER 1 WEBASSEMBLY INTRODUCTION

M Total time {less is batter)

native

wavm

wasmer-livm

wasmbime

wasmer-cranelift

WaBMEr-jit

wasmer-singlapass

lucet

1] 300000000 600000000 900000000 1200000000

Figure 1-1. Wasm runtime performance

Figure 1-2 shows the performance aspects where again wavm is the
fastest, followed by the node runtime.

00000000
B00000000
J00000000
00000000
500000000
400000000
300000000

200000000

100000000 I
0‘3?‘0 f"p & ; s 3 %é?‘;‘ &

&

Figure 1-2. Wasm runtime performance (interpreted mode)

The following are the main benefits of using WebAssembly.
o Near-native performance

o Lightweight

